期刊文献+
共找到11,356篇文章
< 1 2 250 >
每页显示 20 50 100
Interfacial Frustration-induced Novel Self-assembled Structures from Block Copolymers under Janus Spherical Confinement
1
作者 Xing-Ye Li Zheng Wang +2 位作者 Yu-Hua Yin Run Jiang Bao-Hui Li 《Chinese Journal of Polymer Science》 2025年第8期1423-1432,共10页
Spatial confinement of block copolymers can induce frustrations,which can further be utilized to regulate self-assembled structures,thus providing an efficient route for fabricating novel structures.We studied the sel... Spatial confinement of block copolymers can induce frustrations,which can further be utilized to regulate self-assembled structures,thus providing an efficient route for fabricating novel structures.We studied the self-assembly of AB di-block copolymers(di-BCPs)confined in Janus spherical nanocavities using simulations,and explained the structure formation mechanisms.In the case of a strongly selective cavity wall,all the lamella-forming,gyroid-forming,and cylinder-forming di-BCPs can form interfacial frustration-induced Janus concentric perforated lamellar nanoparticles,whose outermost is a Janus spherical shell and the internal is a sphere with concentric perforated lamellar structure.In particular,Janus concentric perforated lamellar nanoparticles with holes distributed only near the equatorial plane were obtained in both lamella-forming and gyroid-forming di-BCPs,directly reflecting the effect of interfacial frustration.The minority-block domain of the cylider-forming di-BCPs may form hemispherical perforated lamellar structures with holes distributed in parallel layers with a specific orientation.For symmetric di-BCPs,both the A and B domains in each nanoparticle are continuous,interchangeable,and have rotational symmetry.While for gyroid-forming and cylinder-forming di-BCPs,only the majority-block domains are continuous in each nanoparticle,and holes in the minority-block domains usually have rotational symmetry.In the case of a weakly selective cavity wall,the inhomogeneity of the cavity wall results in structures having a specific orientation(such as flower-like and branched structures in gyroid-forming and cylinder-forming di-BCPs)and a perforated wetting layer with uniformly distributed holes.The novel nanoparticles obtained may have potential applications in nanotechnology as functional nanostructures or nanoparticles. 展开更多
关键词 Simulated annealing Diblock copolymer self-assembly 3D confinement interfacial frustration
原文传递
Highly efficient and stable NiOx-based inverted perovskite photovoltaics via scalable and low-cost carboxylate-featured self-assembled interfacial material
2
作者 Anran Yu Yanyan Wang +5 位作者 Xiaoguo Li Chongyuan Li Zejiao Shi Liangliang Deng Xin Zhang Yiqiang Zhan 《Journal of Energy Chemistry》 2025年第8期269-276,共8页
The NiOx,due to its excellent semiconductor properties,ease of large-area deposition,and tunable optoelectronic characteristics,shows great potential in industrial large-area perovskite technologies.However,NiO_(x)-ba... The NiOx,due to its excellent semiconductor properties,ease of large-area deposition,and tunable optoelectronic characteristics,shows great potential in industrial large-area perovskite technologies.However,NiO_(x)-based perovskite solar cells(PSCs)are limited by interfacial photocatalytic chemical reactions and energy level mismatch.Thus,phosphate-based self-assembled monolayers(SAMs)have been widely developed for delicate interfacial modification;however,they suffer from severe issues such as self-aggregation and high cost.Herein,a low-cost carboxylate-based SAM(pyrenebutyric acid,PyBA)was used to modify NiO_(x),achieving an improved surface chemical environment and interfacial properties,such as an increased Ni^(3+)/Ni2^(+)ratio,a reduced proportion of high-valence Ni^(≥3+),and better-aligned hole transport interface energy level.The introduction of PyBA also results in larger grain size,higher uniformity,and enhanced photoluminescence(PL)from the bottom of the perovskite,yielding a significant increase in efficiency from an initial 22.48%to 25.14%,while increasing the open-circuit voltage(VOC)from 1.077 to 1.192 V.Additionally,a perovskite module with an aperture area of 21 cm^(2)achieved an efficiency of 22.28%,demonstrating the excellent scalability of the PyBA treatment.Moreover,the well-modified buried interface combined with the chemical inertness and structural rigidity of pyrene ensures excellent ultraviolet(UV)stability(the target module maintained 92%of the initial efficiency after 200 h and the control device only retained 40%). 展开更多
关键词 self-assembled monolayers Vacancy defect Module
在线阅读 下载PDF
Interfacial Modification of NiO_(x)by Self-assembled Monolayer for Efficient and Stable Inverted Perovskite Solar Cells 被引量:1
3
作者 Xin Yu Yandong Wang +5 位作者 Liufei Li Shantao Zhang Shuang Gao Mao Liang Wen-Hua Zhang Shangfeng Yang 《Chinese Journal of Chemical Physics》 SCIE EI CAS CSCD 2024年第4期553-562,I0080-I0091,I0095,共23页
NiO_(x)as a hole transport material for inverted perovskite solar cells has received great attention owing to its high transparency,low fabrication temperature,and superior stability.However,the mismatched energy leve... NiO_(x)as a hole transport material for inverted perovskite solar cells has received great attention owing to its high transparency,low fabrication temperature,and superior stability.However,the mismatched energy levels and possible redox reactions at the NiO_(x)/perovskite interface severely limit the performance of NiO_(x) based inverted perovskite solar cells.Herein,we introduce a p-type self-assembled monolayer between NiO_(x)and perovskite layers to modify the interface and block the undesirable redox reaction between perovskite and NiO_(x)The selfassembled monolayer molecules all contain phosphoric acid function groups,which can be anchored onto the NiOr surface and passivate the surface defect.Moreover,the introduction of self-assembled monolayers can regulate the energy level structure of NiO_(x),reduce the interfacial band energy offset,and hence promote the hole transport from perovskite to NiO_(x)layer.Consequently,the device performance is significantly enhanced in terms of both power conversion efficiency and stability. 展开更多
关键词 Perovskite solar cell NiO_(x) self-assembled monolayer interfacial engineering Stability
在线阅读 下载PDF
Reversible encapsulation tailored interfacial dynamics for boosting the water-gas shift performance 被引量:1
4
作者 Nanfang Tang Qinghao Shang +12 位作者 Shuai Chen Yuxia Ma Qingqing Gu Lu Lin Qike Jiang Guoliang Xu Chuntian Wu Bing Yang Zhijie Wu Hui Shi Jian Liu Wenhao Luo Yu Cong 《Chinese Journal of Catalysis》 2025年第1期394-403,共10页
Revealing the structure evolution of interfacial active species during a dynamic catalytic process is a challenging but pivotal issue for the rational design of high-performance catalysts.Here,we successfully prepare ... Revealing the structure evolution of interfacial active species during a dynamic catalytic process is a challenging but pivotal issue for the rational design of high-performance catalysts.Here,we successfully prepare sub-nanometric Pt clusters(~0.8 nm)encapsulated within the defects of CeO_(2)nanorods via an in-situ defect engineering methodology.The as-prepared Pt@d-CeO_(2)catalyst significantly boosts the activity and stability in the water-gas shift(WGS)reaction compared to other analogs.Based on controlled experiments and complementary(in-situ)spectroscopic studies,a reversible encapsulation induced by active site transformation between the Pt^(2+)-terminal hydroxyl and Pt^(δ+)-O vacancy species at the interface is revealed,which enables to evoke the enhanced performance.Our findings not only offer practical guidance for the design of high-efficiency catalysts but also bring a new understanding of the exceptional performance of WGS in a holistic view,which shows a great application potential in materials and catalysis. 展开更多
关键词 interfacial dynamics HYDROXYLS Water-gas shiftreaction In-situspectroscopy
在线阅读 下载PDF
An overview of photothermal materials for solar-driven interfacial evaporation 被引量:1
5
作者 Yiming Fang Huimin Gao +4 位作者 Kaiting Cheng Liang Bai Zhengtong Li Yadong Zhao Xingtao Xu 《Chinese Chemical Letters》 2025年第3期6-15,共10页
The utilization of solar-driven interfacial evaporation technology is highly important in addressing the energy crisis and water scarcity,primarily because of its affordability and minimal energy usage.Enhancing the p... The utilization of solar-driven interfacial evaporation technology is highly important in addressing the energy crisis and water scarcity,primarily because of its affordability and minimal energy usage.Enhancing the performance of solar energy evaporation and minimizing material degradation during application can be achieved through the design of novel photothermal materials.In solar interfacial evaporation,photothermal materials exhibit a wide range of additional characteristics,but a systematic overview is lacking.This paper encompasses an examination of various categories and principles pertaining to photothermal materials,as well as the structural design considerations for salt-resistant materials.Additionally,we discuss the versatile uses of this appealing technology in different sectors related to energy and the environment.Furthermore,potential solutions to enhance the durability of photothermal materials are also highlighted,such as the rational design of micro/nano-structures,the use of adhesives,the addition of anti-corrosion coatings,and the preparation of self-healing surfaces.The objective of this review is to offer a viable resolution for the logical creation of high-performance photothermal substances,presenting a guide for the forthcoming advancement of solar evaporation technology. 展开更多
关键词 Solar-driven interfacial evaporation Desalination Wastewater treatment Photothermal material SALT-RESISTANCE Durability
原文传递
Manipulating optical and electronic properties through interfacial ferroelectricity 被引量:1
6
作者 Yulu Liu Gan Liu Xiaoxiang Xi 《Chinese Physics B》 2025年第1期2-12,共11页
Interfacial ferroelectricity is a recently established mechanism for generating spontaneous reversible electric polarization,arising from the charge transfer between stacked van der Waals layered atomic crystals.It ha... Interfacial ferroelectricity is a recently established mechanism for generating spontaneous reversible electric polarization,arising from the charge transfer between stacked van der Waals layered atomic crystals.It has been realized in both naturally formed multilayer crystals and moirésuperlattices.Owing to the large number of material choices and combinations,this approach is highly versatile,greatly expanding the scope of ultrathin ferroelectrics.A key advantage of interfacial ferroelectricity is its potential to couple with preexisting properties of the constituent layers,enabling their electrical manipulation through ferroelectric switching and paving the way for advanced device functionalities.This review article summarizes recent experimental progress in interfacial ferroelectricity,with an emphasis on its coupling with a variety of electronic properties.After introducing the underlying mechanism of interfacial ferroelectricity and the range of material systems discovered to date,we highlight selected examples showcasing ferroelectric control of excitonic optical properties,Berry curvature effects,and superconductivity.We also discuss the challenges and opportunities that await further studies in this field. 展开更多
关键词 interfacial ferroelectricity sliding ferroelectricity moir´e ferroelectricity
原文传递
Preparation of spherical HMX@PDA-based PBX by co-axial droplet microfluidic technology:Enhancing the interfacial effect and safety performance of composite microspheres 被引量:1
7
作者 Yunyan Guo Yi Liu +6 位作者 Jiani Xie Jiawei Li Fan Wang Jinshan Lei Chongwei An Zhongliang Ma Bidong Wu 《Defence Technology(防务技术)》 2025年第3期73-83,共11页
Surface engineering plays a crucial role in improving the performance of high energy materials,and polydopamine(PDA)is widely used in the field of energetic materials for surface modification and functionalization.In ... Surface engineering plays a crucial role in improving the performance of high energy materials,and polydopamine(PDA)is widely used in the field of energetic materials for surface modification and functionalization.In order to obtain high-quality HMX@PDA-based PBX explosives with high sphericity and a narrow particle size distribution,composite microspheres were prepared using co-axial droplet microfluidic technology.The formation mechanism,thermal behavior,mechanical sensitivity,electrostatic spark sensitivity,compressive strength,and combustion performance of the microspheres were investigated.The results show that PDA can effectively enhance the interfacial interaction between the explosive particles and the binder under the synergistic effect of chemical bonds and the physical"mechanical interlocking"structure.Interface reinforcement causes the thermal decomposition temperature of the sample microspheres to move to a higher temperature,with the sensitivity to impact,friction,and electrostatic sparks(for S-1)increasing by 12.5%,31.3%,and 81.5%respectively,and the compressive strength also increased by 30.7%,effectively enhancing the safety performance of the microspheres.Therefore,this study provides an effective and universal strategy for preparing high-quality functional explosives,and also provides some reference for the safe use of energetic materials in practical applications. 展开更多
关键词 Droplet microfluidic technology interfacial reinforcement Safety performance Surface modification POLYDOPAMINE HMX
在线阅读 下载PDF
Heterophase interfacial strengthening mechanism in CrNiCux medium-entropy alloys fabricated by laser-directed energy deposition 被引量:1
8
作者 Wei Feng Zhixin Xia +5 位作者 Jixin Hou Tao Jiang Zhonghan Liu Zhenxuan Xie Chaohui Zhu Yunhe Yu 《Journal of Materials Science & Technology》 2025年第3期269-281,共13页
The unique structure and formation mechanism of medium-entropy alloys(MEAs)generally result in bet-ter comprehensive properties than traditional alloys.However,the strength-ductility trade-offremains a bottleneck,whic... The unique structure and formation mechanism of medium-entropy alloys(MEAs)generally result in bet-ter comprehensive properties than traditional alloys.However,the strength-ductility trade-offremains a bottleneck,which limits their applications.In this study,we designed novel high-performance CrNiCu x MEAs with a heterophase composition by incorporating a Cu-rich phase,and they were fabricated using laser-directed energy deposition(LDED).The results show that synergistic strengthening from multiple phases significantly improved the mechanical properties of the alloys,resulting in a tensile strength of 675 MPa and a ductility of 34.4%,demonstrating an excellent combination of high tensile strength and ductility.The improved mechanical properties of the CrNiCu x medium-entropy alloys are primarily due to the heterophase interfacial strengthening mechanism.In the alloy,numerous semi-coherent and coher-ent interfaces formed between the Cr-rich phase,Cu-rich phase,and the matrix,creating extensive lattice distortions at the interfaces.An increase in the Cu-rich phase content promoted the interaction between phases,enhancing the strain energy of the alloy and the barrier strength of the interfaces.The calcu-latedτint values,ranging from approximately 5.92-6.69 GPa,are significantly higher than those found in traditional alloys,providing a benchmark for designing new high-performance medium-entropy alloys. 展开更多
关键词 Laser-directed energy deposition CrNiCu x Mechanical properties Heterophase interfacial strengthening
原文传递
Three-dimensional carbon microclusters organized by hollow carbon nanospheres for stable Li metal anodes:enabling high packing density and low tortuosity via self-assembly 被引量:1
9
作者 Du Yeol Jo Jae Bong Lim +2 位作者 Jin Koo Kim Yun Chan Kang Seung-Keun Park 《Rare Metals》 2025年第1期95-109,共15页
Recently,hollow carbon nanospheres(HCSs)have garnered significant attention as potential Li metal hosts owing to their unique large voids and ease of fabrication.However,similar to other nanoscale hosts,their practica... Recently,hollow carbon nanospheres(HCSs)have garnered significant attention as potential Li metal hosts owing to their unique large voids and ease of fabrication.However,similar to other nanoscale hosts,their practical performance is limited by inhomogeneous agglomeration,increased binder requirements,and high tortuosity within the electrode.To overcome these problems and high tortuosity within the electrode,this study introduces a pomegranate-like carbon microcluster composed of primary HCSs(P-CMs)as a novel Li metal host.This unique nanostructure can be easily prepared using the spray-drying technique,enabling its mass production.Comprehensive analyses with various tools demonstrate that compared with HCS hosts,the P-CM host requires a smaller amount of binder to fabricate a sufficiently robust and even surface electrode.Furthermore,owing to reduced tortuosity,the well-designed P-CM electrode can provide continuous and shortened pathways for electron/ion transport,accelerating the Li-ion transfer kinetics and prohibiting preferential Li plating at the upper region of the electrode.Due to these characteristics,Li metal can be effectively encapsulated in the large inner voids of the primary HCSs constituting the P-CM,thereby enhancing the electrochemical performance of P-CM hosts in Li metal batteries.Specifically,the Coulombic efficiency of the P-CM host can be maintained at 97%over 100 cycles,with a high Li deposition areal capacity of 3 mAh·cm^(-2)and long cycle life(1000 h,1 mA·cm^(-2),and 1.0 mAh·cm^(-2)).Furthermore,a full cell incorporating a LiFePO4 cathode exhibits excellent cycle life. 展开更多
关键词 Li metal host Hollow carbon nanosphere Carbon microclusters self-assembly TORTUOSITY Spray drying
原文传递
Recent advances in interfacial engineering for high-efficiency perovskite photovoltaics 被引量:1
10
作者 Zhijie Wang Cheng Gong +4 位作者 Cong Zhang Chenxu Zhao Tzu-Sen Su Haiyun Li Hong Zhang 《DeCarbon》 2025年第2期10-23,共14页
Through strategies such as process optimization,solvent selection,and component tuning,the crystallization of perovskite materials has been effectively controlled,enabling perovskite solar cells(PSCs)to achieve over 2... Through strategies such as process optimization,solvent selection,and component tuning,the crystallization of perovskite materials has been effectively controlled,enabling perovskite solar cells(PSCs)to achieve over 25%power conversion efficiency(PCE).However,as PCE continues to improve,interfacial issues within the devices have emerged as critical bottlenecks,hindering further performance enhancements.Recently,interfacial engineering has driven transformative progress,pushing PCEs to nearly 27%.Building upon these developments,this review first summarizes the pivotal role of interfacial modifications in elevating device performance and then,as a starting point,provides a comprehensive overview of recent advancements in normal,inverted,and tandem structure devices.Finally,based on the current progress of PSCs,preliminary perspectives on future directions are presented. 展开更多
关键词 Perovskite solar cells interfacial engineering Defect passivation Energy level alignment Ion migration Device stability
在线阅读 下载PDF
Self-Assembly of Highly Stable Nanoparticles by Amphiphilic Glycolurils for Efficient Intracellular Short DNA Delivery
11
作者 Guo Congying Gao Rui +4 位作者 Li Qian Wang Hui Zhang Danwei Zhou Wei Li Zhan-Tingo 《有机化学》 北大核心 2025年第8期2945-2952,共8页
Four glycoluril-based amphiphilic molecular clips(AMCs)M1~M4 have been prepared for intracellular delivery of short DNA.M1~M4 have two methyl groups on its convex surface and four cations on its aromatic side arm,whic... Four glycoluril-based amphiphilic molecular clips(AMCs)M1~M4 have been prepared for intracellular delivery of short DNA.M1~M4 have two methyl groups on its convex surface and four cations on its aromatic side arm,which can be used to construct self-assembled nanoparticles in aqueous solution driven by hydrophobic interaction.Dynamic light scattering experiments show that M1 and M2 can be driven hydrophobically to aggregate into extremely stable nanoparticles in water at the micromolar concentrations.Fluorescence titration and zeta potential experiments support that the nanoparticles formed by M1 and M2 are able to efficiently encapsulate short DNA(sDNA).Fluorescence imaging and flow cytometry studies reveal that their nano sizes enable intracellular delivery of the encapsulated sDNA into both normal and cancer cells,with delivery percentage reaching up to 94%,while in vitro experiments indicate that the two compounds have excellent biocompatibility and low cytotoxicity. 展开更多
关键词 self-assembly GLYCOLURIL AMPHIPHILICITY NANOPARTICLE DNA delivery
原文传递
Enhanced selectivity of catalytic hydrogenation of halogenated nitroaromatics by interfacial effects
12
作者 HUANG Rui LIU Shengjie +1 位作者 WU Qingyuan ZHENG Nanfeng 《无机化学学报》 北大核心 2025年第1期201-212,共12页
The highly selective catalytic hydrogenation of halogenated nitroaromatics was achieved by employing Pd‑based catalysts that were co‑modified with organic and inorganic ligands.It was demonstrated that the catalysts c... The highly selective catalytic hydrogenation of halogenated nitroaromatics was achieved by employing Pd‑based catalysts that were co‑modified with organic and inorganic ligands.It was demonstrated that the catalysts contained Pd species in mixed valence states,with high valence Pd at the metal‑support interface and zero valence Pd at the metal surface.While the strong coordination of triphenylphosphine(PPh3)to Pd0 on the Pd surface prevents the adsorption of halogenated nitroaromatics and thus dehalogenation,the coordination of sodium metavanadate(NaVO3)to high‑valence Pd sites at the interface helps to activate H2 in a heterolytic pathway for the selective hydrogenation of nitro‑groups.The excellent catalytic performance of the interfacial active sites enables the selective hydrogenation of a wide range of halogenated nitroaromatics. 展开更多
关键词 halogenated nitroaromatic heterogeneous catalysis HYDROGENATION selectivity control interfacial effect
在线阅读 下载PDF
Controlling interfacial adhesion during the transfer of large-area 2D materials:mechanisms,strategies,and research advances
13
作者 HU Rong SONG Jia +4 位作者 HUANG Wei ZHOU An-na LIN Jia-long CAO Yang HU Sheng 《新型炭材料(中英文)》 北大核心 2025年第3期553-583,共31页
Large-area two-dimensional(2D)materials,such as graphene,MoS_(2),WS_(2),h-BN,black phosphorus,and MXenes,are a class of advanced materials with many possible applications.Different applications need different substrat... Large-area two-dimensional(2D)materials,such as graphene,MoS_(2),WS_(2),h-BN,black phosphorus,and MXenes,are a class of advanced materials with many possible applications.Different applications need different substrates,and each substrate may need a different way of transferring the 2D material onto it.Problems such as local stress concentrations,an uneven surface tension,inconsistent adhesion,mechanical damage and contamination during the transfer can adversely affect the quality and properties of the transferred material.Therefore,how to improve the integrity,flatness and cleanness of large area 2D materials is a challenge.In order to achieve high-quality transfer,the main concern is to control the interface adhesion between the substrate,the 2D material and the transfer medium.This review focuses on this topic,and finally,in order to promote the industrial use of large area 2D materials,provides a recipe for this transfer process based on the requirements of the application,and points out the current problems and directions for future development. 展开更多
关键词 2D materials GRAPHENE LARGE-AREA interfacial adhesion modulation High quality transfer
在线阅读 下载PDF
Interface self-assembly of plasmonic nanolayer for sensitive detection of heavy metals in water using NELIBS
14
作者 Yuying Zhu Yuanchao Liu +7 位作者 Siyi Xiao Chen Niu Condon Lau Zhe Li Zebiao Li Binbin Zhou Zongsong Gan Lianbo Guo 《Nano Materials Science》 2025年第3期340-348,共9页
Nowadays,high-stable and ultrasensitive heavy metal detection is of utmost importance in water quality monitoring.Nanoparticle-enhanced laser-induced breakdown spectroscopy(NELIBS)shows high potential in hazardous met... Nowadays,high-stable and ultrasensitive heavy metal detection is of utmost importance in water quality monitoring.Nanoparticle-enhanced laser-induced breakdown spectroscopy(NELIBS)shows high potential in hazardous metal detection,however,encounters unstable and weak signals due to nonuniform distribution of analytes.Herein,we developed an interface self-assembly(ISA)method to create a uniformly distributed gold nanolayer at a liquid-liquid interface for positive heavy metal ions capture and NELIBS analysis.The electrostatically selfassembled Au nanoparticles(NPs)-analytes membrane was prepared at the oil-water interface by injecting ethanol into the mixture of cyclohexane and Au NPs-analytes water solution.Then,the interface self-assembled Au NPs-analytes membrane was transformed onto a laser-processed superhydrophilic Si slide for detection.Three heavy metals(cadmium(Cd),barium(Ba),and chromium(Cr))were analyzed to evaluate the stability and sensitivity of the ISA method for NELIBS.The results(Cd:RSD=3.6%,LoD=0.654 mg/L;Ba:RSD=3.4%,LoD=0.236 mg/L;Cr:RSD=7.7%,LoD=1.367 mg/L)demonstrated signal enhancement and high-stable and ultrasensitive detection.The actual sample detection(Cd:RE=7.71%,Ba:RE=6.78%)illustrated great reliability.The ISA method,creating a uniform distribution of NP-analytes at the interface,has promising prospects in NELIBS. 展开更多
关键词 INTERFACE self-assembly NELIBS Hazardous metal Ultrasensitive detection
在线阅读 下载PDF
Electric Field-Controlled Interfacial Polarization Coupling in van der Waals Ferroelectric Heterojunctions
15
作者 Wei Li HengLiu Hualing Zeng 《Chinese Physics Letters》 2025年第5期188-205,共18页
Recent advances in van der Waals(vdW) ferroelectrics have sparked the development of related heterostructures with non-volatile and field-tunable functionalities. In vdW ferroelectric heterojunctions, the interfacial ... Recent advances in van der Waals(vdW) ferroelectrics have sparked the development of related heterostructures with non-volatile and field-tunable functionalities. In vdW ferroelectric heterojunctions, the interfacial electrical characteristics play a crucial role in determining their performance and functionality. In this study,we explore the interfacial polarization coupling in two-dimensional(2D) ferroelectric heterojunctions by fabricating a graphene/h-BN/CuInP_(2)S_(6)/α-In_(2)Se_(3)/Au ferroelectric field-effect transistor. By varying the gate electric field, the CuInP_(2)S_(6)/α-In_(2)Se_(3) heterojunction displays distinct interfacial polarization coupling states, resulting in significantly different electrical transport behaviors. Under strong gate electric fields, the migration of Cu ions further enhances the interfacial polarization effect, enabling continuous tuning of both the polarization state and carrier concentration in α-In_(2)Se_(3). Our findings offer valuable insights for the development of novel multifunctional devices based on 2D ferroelectric materials. 展开更多
关键词 GRAPHENE ferroelectric heterojunctions interfacial polarization coupling ferroelectric fiel electric field van der waals ferroelectric heterojunctions interfacial electrical characteristics vdw ferroelectric heterojunctions
原文传递
Mesoscopic Simulation on Self-assembly of Diphenylalanine-based Analogue with Ethylenediamine Linker
16
作者 Xin-Yi Zhao Si-Qi Sun +3 位作者 Ning Zhou Xiao-Jun Xu Yan Wang Ting-Ting Sun 《Chinese Journal of Polymer Science》 2025年第4期666-676,共11页
Diphenylalanine and its analogs cause many concerns owing to their perfect self-assembly properties in the fields of biology,medicine,and nanotechnology.Experimental research has shown that diphenylalanine-based analo... Diphenylalanine and its analogs cause many concerns owing to their perfect self-assembly properties in the fields of biology,medicine,and nanotechnology.Experimental research has shown that diphenylalanine-based analogs with ethylenediamine linkers(PA,P=phenylalanine,and A=analog)can self-assemble into spherical assemblies,which can serve as novel anticancer drug carriers.In this work,to understand the assembly pathways,drug loading behavior,and formation mechanism of PA aggregates at the molecular level,we carried out dissipative particle dynamics(DPD)simulations of PA molecule systems.Our simulation results demonstrate that PA molecules spontaneously assemble into nanospheres and can self-assemble into drug-loaded nanospheres upon addition of the cancer chemotherapeutic agent doxorubicin(DOX).We also found that the hydrophobic side chain beads of PA molecules exhibited a unique onion-like distribution inside the nanospheres,which was not observed in the experiment.The onion-like nanospheres were verified by calculating the radial distribution function(RDF)of the DPD beads.Furthermore,based on the analysis of the percentages of different interaction components in the total nonbonded energies,main chain-side chain interactions between PA molecules may be important in the formation of onion-like nanospheres,and the synergistic effects of main chain-side chain,main chain-drug,side chain-drug,and main chain-solvent interactions are significant in the formation of drug-loaded nanospheres.These findings provide new insights into the structure and self-assembly pathway of PA assemblies,which may be helpful for the design of efficient and effective drug delivery systems. 展开更多
关键词 Diphenylalanine-based analogue self-assembly Drug delivery
原文传递
Rational design of MXene@VS_(4) heterostructures via interfacial coupling for advanced magnesium-ion batteries
17
作者 Xinyu Zhang Wenxin Li +3 位作者 Meihan Sun Meng Wu Fanfan Liu Dan Zhou 《Journal of Energy Chemistry》 2025年第10期566-575,共10页
Rechargeable magnesium batteries(RMBs)have garnered significant attention in energy storage applications due to their high capacity,low cost,and high safety.However,the strong polarization effect and slow kinetic de-i... Rechargeable magnesium batteries(RMBs)have garnered significant attention in energy storage applications due to their high capacity,low cost,and high safety.However,the strong polarization effect and slow kinetic de-intercalation of Mg^(2+)in the cathode limit their commercial application.This study presents a novel interface-coupled V_(2)CT_(x)@VS_(4)heterostructure through a one-step hydrothermal process.In this architecture,V_(2)CT_(x)and VS_(4)can mutually support their structural framework,which effectively prevents the structural collapse of V_(2)CT_(x)MXene and the aggregation of VS_(4).Crucially,interfacial coupling between V_(2)CT_(x)and VS_(4)induces strong V-S bonds,substantially enhancing structural stability.Benefiting from these advantages,the heterostructure exhibits high specific capacity(226 mAh g^(-1)at 100 mA g^(-1))and excellent long-cycle stability(89% capacity retention after 1000 cycles at 500 mA g^(-1)).Furthermore,the Mg^(2+)storage mechanism in the V_(2)CT_(x)@VS_(4)composite was elucidated through a series of ex-situ characterizations.This work provides a feasible strategy for designing V_(2)CT_(x)MXene-based cathodes with high capacity and extended cyclability for RMBs. 展开更多
关键词 MXene HETEROSTRUCTURE Reaction mechanism interfacial coupling
在线阅读 下载PDF
Interfacial adsorption and reactivity of exact separation of sphalerite and pyrite by ferrophilic inhibitors in EX−Cu(Ⅱ)system
18
作者 Wen-chao DONG Run-qing LIU +2 位作者 Chang-tao WANG Zheng-qiang CAO Wei SUN 《Transactions of Nonferrous Metals Society of China》 2025年第5期1662-1678,共17页
Tetrasodium iminodisuccinate(IDS)was used as an inhibitor in the separation of sphalerite and pyrite in the EX−Cu(II)(ethyl xanthate and Cu2+)system.The flotation test results demonstrated that IDS can effectively sep... Tetrasodium iminodisuccinate(IDS)was used as an inhibitor in the separation of sphalerite and pyrite in the EX−Cu(II)(ethyl xanthate and Cu2+)system.The flotation test results demonstrated that IDS can effectively separate sphalerite and pyrite under low alkaline conditions.Furthermore,high-quality zinc concentrates with a Zn grade of 58.48%and a recovery of 91.24%through mixed mineral flotation were obtained.The fundamental mechanisms were investigated through surface wettability tests,adsorption capacity tests,LEIS,FTIR,and XPS.The results confirmed that IDS prevents the adsorption of EX on the surface of pyrite,thereby reducing the response and reactivity of pyrite.The introduction of IDS causes the detachment of Cu2+from the Cu-activated pyrite surface.This process allowed IDS to chelate with the Fe sites on the surface of pyrite through the-COO-and N-centered active groups.By contrast,IDS exhibits weaker adhesion on the surface of Cu-activated sphalerite,making it easily displaced by EX through competitive adsorption. 展开更多
关键词 interfacial adsorption REACTIVITY SEPARATION SPHALERITE PYRITE tetrasodium iminodisuccinate
在线阅读 下载PDF
Ionic exchange based intracellular self-assembly of pitaya-structured nanoparticles for tumor imaging
19
作者 Hao Zhang Hao Liu +5 位作者 Ke Huang Qingxiu Xia Hongjie Xiong Xiaohui Liu Hui Jiang Xuemei Wang 《Chinese Chemical Letters》 2025年第6期305-309,共5页
The potential of metal nanoclusters in biomedical applications is limited due to aggregation-caused quenching(ACQ).In this study,an in situ self-assembled pitaya structure was proposed to obtain stable fluorescence em... The potential of metal nanoclusters in biomedical applications is limited due to aggregation-caused quenching(ACQ).In this study,an in situ self-assembled pitaya structure was proposed to obtain stable fluorescence emission through protein coronas-controlled distance between gold nanoclusters(Au NCs).Interestingly,the gold ion complexes coated with proteins of low isoelectric point(pI)nucleate at the secondary structure of proteins with high p I through ionic exchange within cells,generating fluorescent Au NCs.It is worth noting that due to the steric hindrance formed by the protein coronas on the surface of Au NCs,the distance between Au NCs can be controlled,avoiding electron transfer caused by close proximity of Au NCs and inhibiting fluorescence ACQ.This strategy can achieve fluorescence imaging of clinical tissue samples without observable side effects.Therefore,this study proposes a distance-controllable self-assembled pitaya structure to provide a new approach for Au NCs with stable fluorescence. 展开更多
关键词 Fluorescence self-assembly BIOMINERALIZATION Au nanoclusters Protein coronas
原文传递
Swelling,Interfacial Behavior,and Rheology of Soft Core-Shell Microgels Introducing Acid Isomer for pH-Temperature Dualresponsiveness
20
作者 Li Zhang Xin-Rui Li +7 位作者 Xia-Hui Xiao Li-Dan Zhou Yu-Wei Zhu Jia-Yu Chen Hang Jiang Jie Han Wei Liu To Ngai 《Chinese Journal of Polymer Science》 2025年第5期745-755,共11页
In this study,a pair of dicarboxylic acids as cis-trans isomerism—citraconic acid(CA)and mesaconic acid(MA),was incorporated into polymeric networks of poly(N-isopropylacrylamide)(PNIPAM)-based core-shell microgels v... In this study,a pair of dicarboxylic acids as cis-trans isomerism—citraconic acid(CA)and mesaconic acid(MA),was incorporated into polymeric networks of poly(N-isopropylacrylamide)(PNIPAM)-based core-shell microgels via semi-batch precipitation polymerization.We demonstrated that the pH-temperature dual responsiveness of the core-shell microgels is highly correlated with the structure and position of the acid isomers.Both the cis-trans molecular structure and the crosslinking position of the dicarboxylic acids significantly influenced the hydration capacity and surface charge density of the core-shell microgels.These diverse properties first influenced the swelling behavior,further affecting the interfacial behavior of the microgels,including the oil-water dynamic interfacial tension and air-water compression isotherms.Furthermore,the rheological behavior of the microgel suspensions also displayed distinct dependences on the frequency and temperature,illustrating that the cis-trans molecular structure and crosslinked position of the dicarboxylic acids also significantly influenced the interparticle clustering in the bulk solution.Our results suggest that the pH sensitivity of the cis-trans dicarboxylic acid isomer affects the ionization and surface charge distribution of the core or shell layers of individual microgels,which further determines the interparticle interaction and cooperative rearrangement at interfaces and in the bulk. 展开更多
关键词 MICROGEL Core-shell structure Acid isomer interfacial behavior RHEOLOGY
原文传递
上一页 1 2 250 下一页 到第
使用帮助 返回顶部