期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Double Side Interfacial Optimization for Low-Temperature Stable CsPbI_(2)Br Perovskite Solar Cells with High Efficiency Beyond 16%
1
作者 Jing Ma Jie Su +7 位作者 Zhenhua Lin Jian He Long Zhou Tao Li Jincheng Zhang Shengzhong Liu Jingjing Chang Yue Hao 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2022年第2期637-644,共8页
CsPbI_(2)Br perovskite solar cells have achieved rapid development owing to their exceptional optoelectronic properties and relatively outstanding stability.However,open-circuit voltage(Voc)loss caused by band mismatc... CsPbI_(2)Br perovskite solar cells have achieved rapid development owing to their exceptional optoelectronic properties and relatively outstanding stability.However,open-circuit voltage(Voc)loss caused by band mismatch and charge recombination between perovskite and charge transporting layer is one of the crucial obstacles to further improve the device performance.Here,we proposed a bilayer electron transport layer ZnO(bottom)/SnO_(2)(top)to reduce the Voc loss(Eloss)and promote device Voc by ZnO insert layer thickness modulation,which could improve the efficiency of charge carrier extraction/transfer and suppress the charge carrier recombination.In addition,guanidinium iodide top surface treatment is used to further reduce the trap density,stabilize the perovskite film and align the energy levels,which promotes the fill factor,short-circuit current density(Jsc),and stability of the device.As a result,the champion cell of double-side optimized CsPbI_(2)Br perovskite solar cells exhibits an extraordinary efficiency of 16.25%with the best Voc as high as 1.27 V and excellent thermal and storage stability. 展开更多
关键词 CsPbI_(2)Br dual interfacial optimization high performance low temperature perovskite solar cells
在线阅读 下载PDF
High-voltage LiCoO_(2)achieved by one-step in situ formed fast Li-ion and electron mixed conductor coating layer
2
作者 Yongzhi Shi Xiaoliang Ding +5 位作者 Dongxiao Wang Wei Su Li Zhou Xinran Zhang Yingchun Lyu Bingkun Guo 《Journal of Energy Chemistry》 2025年第5期166-175,共10页
Increasing the charging cut-off voltage can significantly enhance the energy density of LiCoO_(2).However,the continuous deterioration of interface structure and transport kinetics under high voltage poses challenges ... Increasing the charging cut-off voltage can significantly enhance the energy density of LiCoO_(2).However,the continuous deterioration of interface structure and transport kinetics under high voltage poses challenges to electrochemical stability.This work proposes to in-situ construct a uniform element gradient modification structure on the surface and subsurface of LiCoO_(2).The modification structure contains an Sb_(2)O_(3)&SbF_(x)composite coating layer and an Sb-F doped spinel-like transition layer,simultaneously.The modified sample maintains an initial discharge specific capacity of 221.2 mA h g^(-1)and a capacity retention of 86%after 200 cycles at 3–4.6 V and 0.5 C.Moreover,it has a discharge specific capacity of163.3 mA h g^(-1)at a high rate of 5 C.Meanwhile,combining highly electronegative Sb^(3+)&F^(-)that widen the Li^(+)transport channel with the amorphous coating of F^(-)doped Sb_(2)O_(3)with higher conductivity improves the interface transport kinetics.This breaks the stereotypical view in traditional concepts that fluorinated coatings or inert metal oxide coatings inhibit Li^(+)transport.Moreover,the inert composite coating combined with Sb–O–F with high bond energy stabilizes the surface structure.A series of characterizations confirm that the joint improvement of interface structure stability and transport kinetics significantly enhances the electrochemical performance of LiCoO_(2). 展开更多
关键词 High-voltage LiCoO_(2) In-situ construction Gradient doping Optimize the interfacial transmission Fast Li-ion and electron conductor
在线阅读 下载PDF
A weakly-solvated ether-based electrolyte for fast-charging graphite anode 被引量:1
3
作者 Xiao Zhu Yanbing Mo +3 位作者 Jiawei Chen Gaopan Liu Yonggang Wang Xiaoli Dong 《Chinese Chemical Letters》 SCIE CAS CSCD 2024年第8期526-532,共7页
Weakly-solvated electrolytes(WSEs)utilizing solvents with weak coordination ability offer advantages for low-potential graphite anode owing to their facile desolvation process and anions-derived inorganic-rich solid e... Weakly-solvated electrolytes(WSEs)utilizing solvents with weak coordination ability offer advantages for low-potential graphite anode owing to their facile desolvation process and anions-derived inorganic-rich solid electrolyte interphase(SEI)film.However,these electrolytes face challenges in achieving a balance between the weak solvation affinity and high ionic conductivity,as well as between rigid inorganic-rich SEI and flexible SEI for long-term stability.Herein,we introduce 1,3-dioxolane(DOL)and lithium bis(trifluoromethanesulfonyl)-imide(LiTFSI)as functional additives into a WSE based on nonpolar cyclic ether(1,4-dioxane).The well-formulated WSE not only preserves the weakly solvated features and anion-dominated solvation sheath,but also utilizes DOL to contribute organic species for stabilizing the SEI layer.Benefitting from these merits,the optimized electrolyte enables graphite anode with excellent fast-charging performance(210 mAh/g at 5 C)and outstanding cycling stability(600 cycles with a capacity retention of 82.0%at room temperature and 400 cycles with a capacity retention of 80.4%at high temper-ature).Furthermore,the fabricated LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)||graphite full cells demonstrate stable operation for 140 cycles with high capacity retention of 80.3%.This work highlights the potential of tailoring solvation sheath and interphase properties in WSEs for advanced electrolyte design in graphite-based lithium-ion batteries. 展开更多
关键词 Weakly-solvated solvent Bisalt ether-based electrolyte Graphite anode NCM||graphite battery interfacial optimization
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部