To gain insight into the fine interfacial control mechanism exhibited by oxidant-coated Al powder to improve combustion performance,we prepared Al/AP and Al@AP composite fuels using ball milling and spray-drying techn...To gain insight into the fine interfacial control mechanism exhibited by oxidant-coated Al powder to improve combustion performance,we prepared Al/AP and Al@AP composite fuels using ball milling and spray-drying technology.The thermal reaction characteristics,AP decomposition behavior,and decomposition reaction pathways of Al/AP and Al@AP composite fuels were investigated using thermal analysis and Ab Initio Molecular Dynamics(AIMD)calculations.Under the influence of fine interfacial control,the low-temperature decomposition heat release peak of AP was delayed by 25.5℃,while the high-temperature decomposition peak was advanced by 36.2℃,leading to an increase in the decomposition heat release of AP from 410.7 J/g to 1068.7 J/g.Compared to the unclad structure,the apparent activation energy of AP in low-temperature decomposition increased,and slightly decreased during high-temperature decomposition in the Al@AP composite fuel.The physical model of AP decomposition shifted to the model with higher degrees of freedom and a faster diffusion rate,characterized by rapid bidirectional diffusion at the interface.Furthermore,due to fine interfacial control,the oxidation reaction pathway of Al has been altered,changing from the final products of AP decomposition(O_(2),Cl2,etc.)to the direct oxidation of AP decomposition intermediates(HClO,ClO_(2),etc.).This accelerated and strengthened the oxidation reaction process of Al.As a result of these performance improvements,the final combustion temperature of Al@AP in the Microcanonical Ensemble(NVE)system stabilized at 2370 K,which is significantly higher than 1400 K observed for Al/AP,indicating enhanced ignition and combustion performance.展开更多
The γ/γ' microstructural evolution in a nickel based single crystal superalloy during load-free thermal exposure at 900 ℃ has been further investigated in this paper. The growth characteristics of γ' precipitate...The γ/γ' microstructural evolution in a nickel based single crystal superalloy during load-free thermal exposure at 900 ℃ has been further investigated in this paper. The growth characteristics of γ' precipitates were discussed in detail. The generation of interfacial dislocations would accelerate the rate of coalescence in the dendrite arms. The average sizes of precipitates were used to compare interface with diffusion controlled growth mechanism and no mechanism seems obviously dominant, although the square rate law gives slightly better fit. The coarsening behavior may be controlled by diffusion through the ragged interface between the γ' precipitate and the y matrix.展开更多
基金co-supported by the National Natural Science Foundation of China(Nos.52176099 and 52306130)the Applied Basic Research Project of Changzhou City,China(No.CJ20235033)the High-Performance Computation Laboratory of Hefei and Changzhou University,China.
文摘To gain insight into the fine interfacial control mechanism exhibited by oxidant-coated Al powder to improve combustion performance,we prepared Al/AP and Al@AP composite fuels using ball milling and spray-drying technology.The thermal reaction characteristics,AP decomposition behavior,and decomposition reaction pathways of Al/AP and Al@AP composite fuels were investigated using thermal analysis and Ab Initio Molecular Dynamics(AIMD)calculations.Under the influence of fine interfacial control,the low-temperature decomposition heat release peak of AP was delayed by 25.5℃,while the high-temperature decomposition peak was advanced by 36.2℃,leading to an increase in the decomposition heat release of AP from 410.7 J/g to 1068.7 J/g.Compared to the unclad structure,the apparent activation energy of AP in low-temperature decomposition increased,and slightly decreased during high-temperature decomposition in the Al@AP composite fuel.The physical model of AP decomposition shifted to the model with higher degrees of freedom and a faster diffusion rate,characterized by rapid bidirectional diffusion at the interface.Furthermore,due to fine interfacial control,the oxidation reaction pathway of Al has been altered,changing from the final products of AP decomposition(O_(2),Cl2,etc.)to the direct oxidation of AP decomposition intermediates(HClO,ClO_(2),etc.).This accelerated and strengthened the oxidation reaction process of Al.As a result of these performance improvements,the final combustion temperature of Al@AP in the Microcanonical Ensemble(NVE)system stabilized at 2370 K,which is significantly higher than 1400 K observed for Al/AP,indicating enhanced ignition and combustion performance.
文摘The γ/γ' microstructural evolution in a nickel based single crystal superalloy during load-free thermal exposure at 900 ℃ has been further investigated in this paper. The growth characteristics of γ' precipitates were discussed in detail. The generation of interfacial dislocations would accelerate the rate of coalescence in the dendrite arms. The average sizes of precipitates were used to compare interface with diffusion controlled growth mechanism and no mechanism seems obviously dominant, although the square rate law gives slightly better fit. The coarsening behavior may be controlled by diffusion through the ragged interface between the γ' precipitate and the y matrix.