This paper focuses on the direct current-alternating current (DC-AC) interfaced microsource based H∞ robust control strategies in microgrids. It presents detail of a DC-AC interfaced microsource model which is conn...This paper focuses on the direct current-alternating current (DC-AC) interfaced microsource based H∞ robust control strategies in microgrids. It presents detail of a DC-AC interfaced microsource model which is connected to the power grid through a controllable switch. A double loop current-regulated voltage control scheme for the DC-AC interface is designed. In the case of the load disturbance and the model uncertainties, the inner voltage and current loop are produced based on the H∞ robust control strategies. The outer power loop uses the droop characteristic controller. Finally, the scheme is simulated using the Matlab/Simulink. The simulation results demonstrate that DC-AC interfaced microsource system can supply high quality power. Also, the proposed control scheme can make the system switch smoothly between the isolated mode and grid-connected mode. 更多展开更多
The coupling between open channel-based microchip electrophoresis and mass spectrometry via electrostatic spray ionization is proposed for in situ detection of fractionated analytes. Electrophoretic separation is perf...The coupling between open channel-based microchip electrophoresis and mass spectrometry via electrostatic spray ionization is proposed for in situ detection of fractionated analytes. Electrophoretic separation is performed in an open channel fabricated in a plastic substrate. The solvent of background electrolyte is evaporated from the open channel because of Joule heating during electrophoresis, leaving the dried electrophoretic bands to be directly analyzed by mass spectrometry via scanning electrostatic spray ionization. Proof-of-concept results are obtained with fluorescent dyes and antibiotics as the test samples, demonstrating an efficient on-chip detection platform based on the electrophoresis and electrostatic spray ionization mass spectrometry.展开更多
A multiple-time-scale algorithm is developed to numerically simulate certain structural components in civil structures where local defects inevitably exist. Spatially, the size of local defects is relatively small com...A multiple-time-scale algorithm is developed to numerically simulate certain structural components in civil structures where local defects inevitably exist. Spatially, the size of local defects is relatively small compared to the structural scale. Different length scales should be adopted considering the efficiency and computational cost. In the principle of physics, different length scales are stipulated to correspond to different time scales. This concept lays the foundation of the framework for this multiple-time-scale algorithm. A multiple-time-scale algorithm, which involves different time steps for different regions, while enforcing the compatibility of displacement, force and stress fields across the interface, is proposed. Furthermore, a defected beam component is studied as a numerical sample. The structural component is divided into two regions: a coarse one and a fine one; a micro-defect exists in the fine region and the finite element sizes of the two regions are diametrically different. Correspondingly, two different time steps are adopted. With dynamic load applied to the beam, stress and displacement distribution of the defected beam is investigated from the global and local perspectives. The numerical sample reflects that the proposed algorithm is physically rational and computationally efficient in the potential damage simulation of civil structures.展开更多
Sluggish kinetics of lithium/sulfur(Li/S)conversion chemistry and the ion channels formation in the cathode is still a bottleneck for developing future Li/S batteries with high-rate,long-cycling and high-energy.Here,a...Sluggish kinetics of lithium/sulfur(Li/S)conversion chemistry and the ion channels formation in the cathode is still a bottleneck for developing future Li/S batteries with high-rate,long-cycling and high-energy.Here,a rational cathode structure design of an oxygen(O)and nitrogen(N)tailoring carbon fiber aerogel(OCNF)as a host material integrated with platinum(Pt)electrocatalysis interface is employed to regulate Li/S conversion chemistry and ion channel.The Pt nanoparticles were uniformly sprayed onto the S surface to construct the electrocatalysis interface(Pt/S/OCNF)for generating ion channels to promote the effective penetration of electrolyte into the cathode.This Pt/S/OCNF gives the cathode a high sulfur utilization of 77.5%,an excellent rate capacity of 813.2 m Ah/g(2 C),and an outstanding long-cycling performance with a capacitance retention of 82.6%and a decay of 0.086%per cycle after 200 cycles at 0.5 C.Density functional theory(DFT)calculations reveal that the Pt electrocatalysis interface makes the cathode a high density of state(DOS)at Fermi level to facilitate the electrical conductivity,charge transfer kinetics and electrocatalysis to accelerate the lithium polysulfides(LiPSs)electrochemical conversion.Furthermore,the unique chemisorption structure and adsorption ability of Li2Sn(n=1,2,4,6,8)and S8on OCNF are attributed to the bridging effects of interfacial Pt and the bonding of N-Li.The Pt electrocatalysis interface combined with the unique 3D hierarchical porous structure and abundant functional active sites at OCNF guarantee strong adsorption confinement,fast Li/S electrocatalytic conversion and unblocked ion channels for electrolyte permeation in cathode.展开更多
The discovery of high temperature superconductivity in single unit cell(UC)FeSe on TiO2-δterminated perovskite SrTiO3(001)substrates[1]has attracted intensive attention on searching for new superconducting systems wi...The discovery of high temperature superconductivity in single unit cell(UC)FeSe on TiO2-δterminated perovskite SrTiO3(001)substrates[1]has attracted intensive attention on searching for new superconducting systems with engineered interfaces as well as understanding the mechanism of interface high temperature superconductivity.展开更多
Rapid advances in artificial intelligence,robotics,and remote healthcare have increased the demand for sustainable and highperformance wearable sensors.Triboelectric devices are gaining traction due to their self-powe...Rapid advances in artificial intelligence,robotics,and remote healthcare have increased the demand for sustainable and highperformance wearable sensors.Triboelectric devices are gaining traction due to their self-powered operation capability and potential as wearable energy harvesters.Skin-interfaced triboelectric sensors(SITSs)can detect various mechanical signals and monitor physiological signals in real-time.Biopolymer-based SITSs are ideal for skin-interfaced applications since they are biocompatible and biodegradable.This review focuses on the recent advancements of SITS made from biocompatible polymer materials,such as plant-based,animal-based,and synthetic polymers,and highlights their potential for various applications,including human–machine interface(HMI)and physiological sensing.In addition,the fundamentals,challenges,and prospects of SITS based on biocompatible polymers are discussed.展开更多
Selective reduction of CO_(2) into liquid products such as ethanol through electrochemical catalysis is promising in storing renewable energy in more deliverable chemicals and balancing the carbon footprint in the env...Selective reduction of CO_(2) into liquid products such as ethanol through electrochemical catalysis is promising in storing renewable energy in more deliverable chemicals and balancing the carbon footprint in the environment.However,the lack of efficient catalysts for electrochemical CO_(2) reduction reaction(eCO_(2)RR)makes the promise challenging because the formation of C2+alcohols requires coupling reactions between the shallow reduction intermediates and deep reduction intermediates that are usually difficult to form on uniform catalyst surfaces simultaneously with appropriate transient kinetics.Herein,we report a new strategy for synthesizing bimetallic nanostructures with high densities of interfaced Ag/Cu boundaries,which facilitate the coupling reaction of the high‐oxidation‐number intermediates(CO)formed on the Ag surface and the low‐oxidation‐number intermediates(CHx)formed on the Cu surface.The synthesis relies on the electrochemical reduction of bilayered nanoplates made of silver thiolate and copper thiolate,resulting in Ag/Cu nanostructures exposing Ag surface,Cu surface,and the Ag/Cu interfaced boundaries.Balancing the accessible surface areas of the Ag surface,Cu surface,and Ag/Cu boundaries is beneficial for maximizing the activity and selectivity of eCO_(2)RR towards ethanol production.Faradaic efficiency of forming ethanol has been observed as high as about 50%using the Ag/Cu nanostructure catalyst with molar ratio nAg:nCu of 1:1.Moreover,the promoted coupling reaction at the Ag/Cu boundaries and surface modification with thiolate anions significantly suppress the undesirable hydrogen evolution reaction,particularly at high cathodic potentials,maintaining high energy efficiency for eCO_(2)RR.展开更多
Neural machine interface technology is a pioneering approach that aims to address the complex challenges of neurological dysfunctions and disabilities resulting from conditions such as congenital disorders,traumatic i...Neural machine interface technology is a pioneering approach that aims to address the complex challenges of neurological dysfunctions and disabilities resulting from conditions such as congenital disorders,traumatic injuries,and neurological diseases.Neural machine interface technology establishes direct connections with the brain or peripheral nervous system to restore impaired motor,sensory,and cognitive functions,significantly improving patients'quality of life.This review analyzes the chronological development and integration of various neural machine interface technologies,including regenerative peripheral nerve interfaces,targeted muscle and sensory reinnervation,agonist–antagonist myoneural interfaces,and brain–machine interfaces.Recent advancements in flexible electronics and bioengineering have led to the development of more biocompatible and highresolution electrodes,which enhance the performance and longevity of neural machine interface technology.However,significant challenges remain,such as signal interference,fibrous tissue encapsulation,and the need for precise anatomical localization and reconstruction.The integration of advanced signal processing algorithms,particularly those utilizing artificial intelligence and machine learning,has the potential to improve the accuracy and reliability of neural signal interpretation,which will make neural machine interface technologies more intuitive and effective.These technologies have broad,impactful clinical applications,ranging from motor restoration and sensory feedback in prosthetics to neurological disorder treatment and neurorehabilitation.This review suggests that multidisciplinary collaboration will play a critical role in advancing neural machine interface technologies by combining insights from biomedical engineering,clinical surgery,and neuroengineering to develop more sophisticated and reliable interfaces.By addressing existing limitations and exploring new technological frontiers,neural machine interface technologies have the potential to revolutionize neuroprosthetics and neurorehabilitation,promising enhanced mobility,independence,and quality of life for individuals with neurological impairments.By leveraging detailed anatomical knowledge and integrating cutting-edge neuroengineering principles,researchers and clinicians can push the boundaries of what is possible and create increasingly sophisticated and long-lasting prosthetic devices that provide sustained benefits for users.展开更多
Invasive as well as non-invasive neurotechnologies conceptualized to interface the central and peripheral nervous system have been probed for the past decades,which refer to electroencephalography,electrocorticography...Invasive as well as non-invasive neurotechnologies conceptualized to interface the central and peripheral nervous system have been probed for the past decades,which refer to electroencephalography,electrocorticography and microelectrode arrays.The challenges of these mentioned approaches are characterized by the bandwidth of the spatiotemporal resolution,which in turn is essential for large-area neuron recordings(Abiri et al.,2019).展开更多
High-performance alloys are indispensable in modern engineering because of their exceptional strength,ductility,corrosion resistance,fatigue resistance,and thermal stability,which are all significantly influenced by t...High-performance alloys are indispensable in modern engineering because of their exceptional strength,ductility,corrosion resistance,fatigue resistance,and thermal stability,which are all significantly influenced by the alloy interface structures.Despite substantial efforts,a comprehensive overview of interface engineering of high-performance alloys has not been presented so far.In this study,the interfaces in high-performance alloys,particularly grain and phase boundaries,were systematically examined,with emphasis on their crystallographic characteristics and chemical element segregations.The effects of the interfaces on the electrical conductivity,mechanical strength,toughness,hydrogen embrittlement resistance,and thermal stability of the alloys were elucidated.Moreover,correlations among various types of interfaces and advanced experimental and computational techniques were examined using big data analytics,enabling robust design strategies.Challenges currently faced in the field of interface engineering and emerging opportunities in the field are also discussed.The study results would guide the development of next-generation high-performance alloys.展开更多
The growing global energy demand and worsening climate change highlight the urgent need for clean,efficient and sustainable energy solutions.Among emerging technologies,atomically thin two-dimensional(2D)materials off...The growing global energy demand and worsening climate change highlight the urgent need for clean,efficient and sustainable energy solutions.Among emerging technologies,atomically thin two-dimensional(2D)materials offer unique advantages in photovoltaics due to their tunable optoelectronic properties,high surface area and efficient charge transport capabilities.This review explores recent progress in photovoltaics incorporating 2D materials,focusing on their application as hole and electron transport layers to optimize bandgap alignment,enhance carrier mobility and improve chemical stability.A comprehensive analysis is presented on perovskite solar cells utilizing 2D materials,with a particular focus on strategies to enhance crystallization,passivate defects and improve overall cell efficiency.Additionally,the application of 2D materials in organic solar cells is examined,particularly for reducing recombination losses and enhancing charge extraction through work function modification.Their impact on dye-sensitized solar cells,including catalytic activity and counter electrode performance,is also explored.Finally,the review outlines key challenges,material limitations and performance metrics,offering insight into the future development of nextgeneration photovoltaic devices encouraged by 2D materials.展开更多
Composite polymer electrolytes(CPEs)offer a promising solution for all-solid-state lithium-metal batteries(ASSLMBs).However,conventional nanofillers with Lewis-acid-base surfaces make limited contribution to improving...Composite polymer electrolytes(CPEs)offer a promising solution for all-solid-state lithium-metal batteries(ASSLMBs).However,conventional nanofillers with Lewis-acid-base surfaces make limited contribution to improving the overall performance of CPEs due to their difficulty in achieving robust electrochemical and mechanical interfaces simultaneously.Here,by regulating the surface charge characteristics of halloysite nanotube(HNT),we propose a concept of lithium-ion dynamic interface(Li^(+)-DI)engineering in nano-charged CPE(NCCPE).Results show that the surface charge characteristics of HNTs fundamentally change the Li^(+)-DI,and thereof the mechanical and ion-conduction behaviors of the NCCPEs.Particularly,the HNTs with positively charged surface(HNTs+)lead to a higher Li^(+)transference number(0.86)than that of HNTs-(0.73),but a lower toughness(102.13 MJ m^(-3)for HNTs+and 159.69 MJ m^(-3)for HNTs-).Meanwhile,a strong interface compatibilization effect by Li^(+)is observed for especially the HNTs+-involved Li^(+)-DI,which improves the toughness by 2000%compared with the control.Moreover,HNTs+are more effective to weaken the Li^(+)-solvation strength and facilitate the formation of Li F-rich solid-electrolyte interphase of Li metal compared to HNTs-.The resultant Li|NCCPE|LiFePO4cell delivers a capacity of 144.9 m Ah g^(-1)after 400 cycles at 0.5 C and a capacity retention of 78.6%.This study provides deep insights into understanding the roles of surface charges of nanofillers in regulating the mechanical and electrochemical interfaces in ASSLMBs.展开更多
As sweat biomarker levels are continuously changing over metabolism and daily activities,pathological and physiological processes can be dynamically analyzed by wearable devices.The colorimetric skin-interfaced microf...As sweat biomarker levels are continuously changing over metabolism and daily activities,pathological and physiological processes can be dynamically analyzed by wearable devices.The colorimetric skin-interfaced microfluidic devices that do not have external circuit modules exhibit enhanced deformability with a small footprint.However,it is difficult to achieve sampling over time and self-feedback for closed-loop systems.This review summarizes recent advances in microfluidic valves for biofluid management and chrono-sampling,as well as active triggers in microfluidics self-feedback.After enumerating the current limitations in temporal resolution and reliability,we further point out a few potential feasible strategies for future developments.展开更多
The existence of a single topologically protected edge state in the first bulk bandgap for acoustic/elastic valley Hall insulators(VHIs)with zigzag interface configurations(ZICs)is well known.However,in this work,we s...The existence of a single topologically protected edge state in the first bulk bandgap for acoustic/elastic valley Hall insulators(VHIs)with zigzag interface configurations(ZICs)is well known.However,in this work,we show that an ultra-broadband edgestate pair in this bandgap can be created using the inverse design by topology optimization.The valley Hall insulator design increases the operational bandwidth 121%compared with an existing valley Hall insulator from recent literature and exhibits extreme field confinement,where more than 99%of the field intensity is concentrated within three unit-cells from the interface.One-way propagation and topological robustness towards small cavity defects are confirmed for the full bandwidth.The exploitation of such edge-state pairs of valley Hall insulators opens an avenue for realizing broadband confined edge modes.In tests for disorder and bend defects,we show that the additional ZIC,with a different operational frequency interval,encountered at the defects,degrades the transmission for bend and disorder defects which may prove significant for the application of VHIs.Through an alternative topology optimization method based on two ZICs,we further increase their common operational bandwidth.展开更多
Grid-forming(GFM)control is a key technology for ensuring the safe and stable operation of renewable power systems dominated by converter-interfaced generation(CIG),including wind power,photovoltaic,and battery energy...Grid-forming(GFM)control is a key technology for ensuring the safe and stable operation of renewable power systems dominated by converter-interfaced generation(CIG),including wind power,photovoltaic,and battery energy storage.In this paper,we challenge the traditional approach of emulating a synchronous generator by proposing a frequency-fixed GFM control strategy.The CIG endeavors to regulate itself as a constant voltage source without control dynamics due to its capability limitation,denoted as the frequency-fixed zone.With the proposed strategy,the system frequency is almost always fixed at its rated value,achieving system active power balance independent of frequency,and intentional power flow adjustments are implemented through direct phase angle control.This approach significantly reduces the frequency dynamics and safety issues associated with frequency variations.Furthermore,synchronization dynamics are significantly diminished,and synchronization stability is enhanced.The proposed strategy has the potential to realize a renewable power system with a fixed frequency and robust stability.展开更多
Currently,the demand for electromagnetic wave(EMW)absorbing materials with specific functions and capable of withstanding harsh environments is becoming increasingly urgent.Multi-component interface engineering is con...Currently,the demand for electromagnetic wave(EMW)absorbing materials with specific functions and capable of withstanding harsh environments is becoming increasingly urgent.Multi-component interface engineering is considered an effective means to achieve high-efficiency EMW absorption.However,interface modulation engineering has not been fully discussed and has great potential in the field of EMW absorption.In this study,multi-component tin compound fiber composites based on carbon fiber(CF)substrate were prepared by electrospinning,hydrothermal synthesis,and high-temperature thermal reduction.By utilizing the different properties of different substances,rich heterogeneous interfaces are constructed.This effectively promotes charge transfer and enhances interfacial polarization and conduction loss.The prepared SnS/SnS_(2)/SnO_(2)/CF composites with abundant heterogeneous interfaces have and exhibit excellent EMW absorption properties at a loading of 50 wt%in epoxy resin.The minimum reflection loss(RL)is−46.74 dB and the maximum effective absorption bandwidth is 5.28 GHz.Moreover,SnS/SnS_(2)/SnO_(2)/CF epoxy composite coatings exhibited long-term corrosion resistance on Q235 steel surfaces.Therefore,this study provides an effective strategy for the design of high-efficiency EMW absorbing materials in complex and harsh environments.展开更多
With vigorous developments in nanotechnology,the elaborate regulation of microstructure shows attractive potential in the design of electromagnetic wave absorbers.Herein,a hierarchical porous structure and composite h...With vigorous developments in nanotechnology,the elaborate regulation of microstructure shows attractive potential in the design of electromagnetic wave absorbers.Herein,a hierarchical porous structure and composite heterogeneous interface are constructed successfully to optimize the electromagnetic loss capacity.The macro–micro-synergistic graphene aerogel formed by the ice template‑assisted 3D printing strategy is cut by silicon carbide nanowires(SiC_(nws))grown in situ,while boron nitride(BN)interfacial structure is introduced on graphene nanoplates.The unique composite structure forces multiple scattering of incident EMWs,ensuring the combined effects of interfacial polarization,conduction networks,and magnetic-dielectric synergy.Therefore,the as-prepared composites present a minimum reflection loss value of−37.8 dB and a wide effective absorption bandwidth(EAB)of 9.2 GHz(from 8.8 to 18.0 GHz)at 2.5 mm.Besides,relying on the intrinsic high-temperature resistance of SiC_(nws) and BN,the EAB also remains above 5.0 GHz after annealing in air environment at 600℃ for 10 h.展开更多
Zirconium-titanium-steel composite plate with the size of 2500 mm×7800 mm×(3+0.7+22)mm was prepared by explosive welding+rolling method,and its properties were analyzed by ultrasonic nondestructive testing,p...Zirconium-titanium-steel composite plate with the size of 2500 mm×7800 mm×(3+0.7+22)mm was prepared by explosive welding+rolling method,and its properties were analyzed by ultrasonic nondestructive testing,phased array waveform shape,interface structure shape,electronic scanning,and mechanical property testing.Results show that the rolling temperature of zirconiumtitanium complex should be controlled at 760°C,and the rolling reduction of each pass should be controlled at 10%–25%.The explosive velocity to prepare zirconium-titanium-steel composite plates should be controlled at 2450–2500 m/s,the density should be 0.78 g/cm3,the stand-off height should be 12 mm,and the explosive height of Zone A and Zone B should be 45–50 mm.Explosive welding combined with rolling method reduces the impact of explosive welding and multiple heat treatment on material properties.Meanwhile,the problems of surface wrinkling and cracking,which occur during the preparation process of large-sized zirconiumtitanium-steel composite plate,can be solved.展开更多
Brain-computer interfaces(BCIs)represent an emerging technology that facilitates direct communication between the brain and external devices.In recent years,numerous review articles have explored various aspects of BC...Brain-computer interfaces(BCIs)represent an emerging technology that facilitates direct communication between the brain and external devices.In recent years,numerous review articles have explored various aspects of BCIs,including their fundamental principles,technical advancements,and applications in specific domains.However,these reviews often focus on signal processing,hardware development,or limited applications such as motor rehabilitation or communication.This paper aims to offer a comprehensive review of recent electroencephalogram(EEG)-based BCI applications in the medical field across 8 critical areas,encompassing rehabilitation,daily communication,epilepsy,cerebral resuscitation,sleep,neurodegenerative diseases,anesthesiology,and emotion recognition.Moreover,the current challenges and future trends of BCIs were also discussed,including personal privacy and ethical concerns,network security vulnerabilities,safety issues,and biocompatibility.展开更多
Friction stir lap welding of AA2195 Al-Li alloy and Ti alloy was conducted to investigate the formation,microstructure,and mechanical properties of the joints.Results show that under different welding parameters,with ...Friction stir lap welding of AA2195 Al-Li alloy and Ti alloy was conducted to investigate the formation,microstructure,and mechanical properties of the joints.Results show that under different welding parameters,with the decrease in welding heat input,the weld surface is smoother.The Ti/Al joint interface is flat without obvious Ti and Al mixed structure,and the hook structure is not formed under optimal parameters.Due to the enhanced breaking effect of the stirring head,the hook structural defects and intermetallic compounds are more likely to form at the Ti/Al interface at high rotational speed of 1000 r/min,thereby deteriorating the mechanical properties of joints.Decreasing the heat input is beneficial to hardness enhancement of the aluminum alloy in the weld nugget zone.Under the optimal parameters of rotation speed of 800 r/min and welding speed of 120 mm/min,the maximum tensile shear strength of joint is 289 N/mm.展开更多
基金supported by National Natural Science Foundation of China(No. 51177142)China Postdoctoral Science Foundation(Nos.2012T50019 and 20110490210)Hebei Provincial Natural Science Foundation of China(No.F2012203063)
文摘This paper focuses on the direct current-alternating current (DC-AC) interfaced microsource based H∞ robust control strategies in microgrids. It presents detail of a DC-AC interfaced microsource model which is connected to the power grid through a controllable switch. A double loop current-regulated voltage control scheme for the DC-AC interface is designed. In the case of the load disturbance and the model uncertainties, the inner voltage and current loop are produced based on the H∞ robust control strategies. The outer power loop uses the droop characteristic controller. Finally, the scheme is simulated using the Matlab/Simulink. The simulation results demonstrate that DC-AC interfaced microsource system can supply high quality power. Also, the proposed control scheme can make the system switch smoothly between the isolated mode and grid-connected mode. 更多
基金the Chinese Scholarship Council for financial support
文摘The coupling between open channel-based microchip electrophoresis and mass spectrometry via electrostatic spray ionization is proposed for in situ detection of fractionated analytes. Electrophoretic separation is performed in an open channel fabricated in a plastic substrate. The solvent of background electrolyte is evaporated from the open channel because of Joule heating during electrophoresis, leaving the dried electrophoretic bands to be directly analyzed by mass spectrometry via scanning electrostatic spray ionization. Proof-of-concept results are obtained with fluorescent dyes and antibiotics as the test samples, demonstrating an efficient on-chip detection platform based on the electrophoresis and electrostatic spray ionization mass spectrometry.
基金supports from NSFC(No.11302078)China Postdoctoral Science Foundation(No.2013M531139)Shanghai Postdoctoral Sustentation Fund(No.12R21412000)
文摘A multiple-time-scale algorithm is developed to numerically simulate certain structural components in civil structures where local defects inevitably exist. Spatially, the size of local defects is relatively small compared to the structural scale. Different length scales should be adopted considering the efficiency and computational cost. In the principle of physics, different length scales are stipulated to correspond to different time scales. This concept lays the foundation of the framework for this multiple-time-scale algorithm. A multiple-time-scale algorithm, which involves different time steps for different regions, while enforcing the compatibility of displacement, force and stress fields across the interface, is proposed. Furthermore, a defected beam component is studied as a numerical sample. The structural component is divided into two regions: a coarse one and a fine one; a micro-defect exists in the fine region and the finite element sizes of the two regions are diametrically different. Correspondingly, two different time steps are adopted. With dynamic load applied to the beam, stress and displacement distribution of the defected beam is investigated from the global and local perspectives. The numerical sample reflects that the proposed algorithm is physically rational and computationally efficient in the potential damage simulation of civil structures.
基金funding support from National Key R&D Program of China(No.2016YFB0100100)The National Natural Science Foundation of China(Nos.21961024,21961025,21433013,U1832218)+5 种基金Inner Mongolia Natural Science Foundation(No.2018JQ05)Supported by Incentive Funding from Nano Innovation Institute(NII)of Inner Mongolia University for Nationalities(IMUN)Inner Mongolia Autonomous Region Funding Project for Science&Technology Achievement Transformation(No.CGZH2018156)Inner Mongolia Autonomous Region Incentive Funding Guided Project for Science&Technology Innovation(2016)Inner Mongolia Autonomous Region Science&Technology Planning Project for Applied Technology Research and Development(No.2019GG261)Tongliao Funding Project for Application Technology Research&Development(2017)。
文摘Sluggish kinetics of lithium/sulfur(Li/S)conversion chemistry and the ion channels formation in the cathode is still a bottleneck for developing future Li/S batteries with high-rate,long-cycling and high-energy.Here,a rational cathode structure design of an oxygen(O)and nitrogen(N)tailoring carbon fiber aerogel(OCNF)as a host material integrated with platinum(Pt)electrocatalysis interface is employed to regulate Li/S conversion chemistry and ion channel.The Pt nanoparticles were uniformly sprayed onto the S surface to construct the electrocatalysis interface(Pt/S/OCNF)for generating ion channels to promote the effective penetration of electrolyte into the cathode.This Pt/S/OCNF gives the cathode a high sulfur utilization of 77.5%,an excellent rate capacity of 813.2 m Ah/g(2 C),and an outstanding long-cycling performance with a capacitance retention of 82.6%and a decay of 0.086%per cycle after 200 cycles at 0.5 C.Density functional theory(DFT)calculations reveal that the Pt electrocatalysis interface makes the cathode a high density of state(DOS)at Fermi level to facilitate the electrical conductivity,charge transfer kinetics and electrocatalysis to accelerate the lithium polysulfides(LiPSs)electrochemical conversion.Furthermore,the unique chemisorption structure and adsorption ability of Li2Sn(n=1,2,4,6,8)and S8on OCNF are attributed to the bridging effects of interfacial Pt and the bonding of N-Li.The Pt electrocatalysis interface combined with the unique 3D hierarchical porous structure and abundant functional active sites at OCNF guarantee strong adsorption confinement,fast Li/S electrocatalytic conversion and unblocked ion channels for electrolyte permeation in cathode.
基金supported by the National Natural Science Foundation of China (11574174, 11774193, 11790311, 11404183, 51522212, 51421002, and 51672307)the National Basic Research Program of China (2015CB921000 and 2014CB921002)the Strategic Priority Research Program of Chinese Academy of Sciences (XDB07030200)
文摘The discovery of high temperature superconductivity in single unit cell(UC)FeSe on TiO2-δterminated perovskite SrTiO3(001)substrates[1]has attracted intensive attention on searching for new superconducting systems with engineered interfaces as well as understanding the mechanism of interface high temperature superconductivity.
文摘Rapid advances in artificial intelligence,robotics,and remote healthcare have increased the demand for sustainable and highperformance wearable sensors.Triboelectric devices are gaining traction due to their self-powered operation capability and potential as wearable energy harvesters.Skin-interfaced triboelectric sensors(SITSs)can detect various mechanical signals and monitor physiological signals in real-time.Biopolymer-based SITSs are ideal for skin-interfaced applications since they are biocompatible and biodegradable.This review focuses on the recent advancements of SITS made from biocompatible polymer materials,such as plant-based,animal-based,and synthetic polymers,and highlights their potential for various applications,including human–machine interface(HMI)and physiological sensing.In addition,the fundamentals,challenges,and prospects of SITS based on biocompatible polymers are discussed.
文摘Selective reduction of CO_(2) into liquid products such as ethanol through electrochemical catalysis is promising in storing renewable energy in more deliverable chemicals and balancing the carbon footprint in the environment.However,the lack of efficient catalysts for electrochemical CO_(2) reduction reaction(eCO_(2)RR)makes the promise challenging because the formation of C2+alcohols requires coupling reactions between the shallow reduction intermediates and deep reduction intermediates that are usually difficult to form on uniform catalyst surfaces simultaneously with appropriate transient kinetics.Herein,we report a new strategy for synthesizing bimetallic nanostructures with high densities of interfaced Ag/Cu boundaries,which facilitate the coupling reaction of the high‐oxidation‐number intermediates(CO)formed on the Ag surface and the low‐oxidation‐number intermediates(CHx)formed on the Cu surface.The synthesis relies on the electrochemical reduction of bilayered nanoplates made of silver thiolate and copper thiolate,resulting in Ag/Cu nanostructures exposing Ag surface,Cu surface,and the Ag/Cu interfaced boundaries.Balancing the accessible surface areas of the Ag surface,Cu surface,and Ag/Cu boundaries is beneficial for maximizing the activity and selectivity of eCO_(2)RR towards ethanol production.Faradaic efficiency of forming ethanol has been observed as high as about 50%using the Ag/Cu nanostructure catalyst with molar ratio nAg:nCu of 1:1.Moreover,the promoted coupling reaction at the Ag/Cu boundaries and surface modification with thiolate anions significantly suppress the undesirable hydrogen evolution reaction,particularly at high cathodic potentials,maintaining high energy efficiency for eCO_(2)RR.
基金supported in part by the National Natural Science Foundation of China,Nos.81927804(to GL),82260456(to LY),U21A20479(to LY)Science and Technology Planning Project of Shenzhen,No.JCYJ20230807140559047(to LY)+3 种基金Key-Area Research and Development Program of Guangdong Province,No.2020B0909020004(to GL)Guangdong Basic and Applied Research Foundation,No.2023A1515011478(to LY)the Science and Technology Program of Guangdong Province,No.2022A0505090007(to GL)Ministry of Science and Technology,Shenzhen,No.QN2022032013L(to LY)。
文摘Neural machine interface technology is a pioneering approach that aims to address the complex challenges of neurological dysfunctions and disabilities resulting from conditions such as congenital disorders,traumatic injuries,and neurological diseases.Neural machine interface technology establishes direct connections with the brain or peripheral nervous system to restore impaired motor,sensory,and cognitive functions,significantly improving patients'quality of life.This review analyzes the chronological development and integration of various neural machine interface technologies,including regenerative peripheral nerve interfaces,targeted muscle and sensory reinnervation,agonist–antagonist myoneural interfaces,and brain–machine interfaces.Recent advancements in flexible electronics and bioengineering have led to the development of more biocompatible and highresolution electrodes,which enhance the performance and longevity of neural machine interface technology.However,significant challenges remain,such as signal interference,fibrous tissue encapsulation,and the need for precise anatomical localization and reconstruction.The integration of advanced signal processing algorithms,particularly those utilizing artificial intelligence and machine learning,has the potential to improve the accuracy and reliability of neural signal interpretation,which will make neural machine interface technologies more intuitive and effective.These technologies have broad,impactful clinical applications,ranging from motor restoration and sensory feedback in prosthetics to neurological disorder treatment and neurorehabilitation.This review suggests that multidisciplinary collaboration will play a critical role in advancing neural machine interface technologies by combining insights from biomedical engineering,clinical surgery,and neuroengineering to develop more sophisticated and reliable interfaces.By addressing existing limitations and exploring new technological frontiers,neural machine interface technologies have the potential to revolutionize neuroprosthetics and neurorehabilitation,promising enhanced mobility,independence,and quality of life for individuals with neurological impairments.By leveraging detailed anatomical knowledge and integrating cutting-edge neuroengineering principles,researchers and clinicians can push the boundaries of what is possible and create increasingly sophisticated and long-lasting prosthetic devices that provide sustained benefits for users.
文摘Invasive as well as non-invasive neurotechnologies conceptualized to interface the central and peripheral nervous system have been probed for the past decades,which refer to electroencephalography,electrocorticography and microelectrode arrays.The challenges of these mentioned approaches are characterized by the bandwidth of the spatiotemporal resolution,which in turn is essential for large-area neuron recordings(Abiri et al.,2019).
基金supported by the National Natural Science Foundation of China(Nos.52122408 and 52474397)the High-level Talent Research Start-up Project Funding of Henan Academy of Sciences(No.242017127)+1 种基金the financial support from the Fundamental Research Funds for the Central Universities(University of Science and Technology Beijing(USTB),Nos.FRF-TP-2021-04C1 and 06500135)supported by USTB MatCom of Beijing Advanced Innovation Center for Materials Genome Engineering。
文摘High-performance alloys are indispensable in modern engineering because of their exceptional strength,ductility,corrosion resistance,fatigue resistance,and thermal stability,which are all significantly influenced by the alloy interface structures.Despite substantial efforts,a comprehensive overview of interface engineering of high-performance alloys has not been presented so far.In this study,the interfaces in high-performance alloys,particularly grain and phase boundaries,were systematically examined,with emphasis on their crystallographic characteristics and chemical element segregations.The effects of the interfaces on the electrical conductivity,mechanical strength,toughness,hydrogen embrittlement resistance,and thermal stability of the alloys were elucidated.Moreover,correlations among various types of interfaces and advanced experimental and computational techniques were examined using big data analytics,enabling robust design strategies.Challenges currently faced in the field of interface engineering and emerging opportunities in the field are also discussed.The study results would guide the development of next-generation high-performance alloys.
基金supported by the IITP(Institute of Information & Communications Technology Planning & Evaluation)-ITRC(Information Technology Research Center) grant funded by the Korea government(Ministry of Science and ICT) (IITP-2025-RS-2024-00437191, and RS-2025-02303505)partly supported by the Korea Basic Science Institute (National Research Facilities and Equipment Center) grant funded by the Ministry of Education. (No. 2022R1A6C101A774)the Deanship of Research and Graduate Studies at King Khalid University, Saudi Arabia, through Large Research Project under grant number RGP-2/527/46
文摘The growing global energy demand and worsening climate change highlight the urgent need for clean,efficient and sustainable energy solutions.Among emerging technologies,atomically thin two-dimensional(2D)materials offer unique advantages in photovoltaics due to their tunable optoelectronic properties,high surface area and efficient charge transport capabilities.This review explores recent progress in photovoltaics incorporating 2D materials,focusing on their application as hole and electron transport layers to optimize bandgap alignment,enhance carrier mobility and improve chemical stability.A comprehensive analysis is presented on perovskite solar cells utilizing 2D materials,with a particular focus on strategies to enhance crystallization,passivate defects and improve overall cell efficiency.Additionally,the application of 2D materials in organic solar cells is examined,particularly for reducing recombination losses and enhancing charge extraction through work function modification.Their impact on dye-sensitized solar cells,including catalytic activity and counter electrode performance,is also explored.Finally,the review outlines key challenges,material limitations and performance metrics,offering insight into the future development of nextgeneration photovoltaic devices encouraged by 2D materials.
基金the financial support from the National Natural Science Foundation of China(52203123 and 52473248)State Key Laboratory of Polymer Materials Engineering(sklpme2024-2-04)+1 种基金the Fundamental Research Funds for the Central Universitiessponsored by the Double First-Class Construction Funds of Sichuan University。
文摘Composite polymer electrolytes(CPEs)offer a promising solution for all-solid-state lithium-metal batteries(ASSLMBs).However,conventional nanofillers with Lewis-acid-base surfaces make limited contribution to improving the overall performance of CPEs due to their difficulty in achieving robust electrochemical and mechanical interfaces simultaneously.Here,by regulating the surface charge characteristics of halloysite nanotube(HNT),we propose a concept of lithium-ion dynamic interface(Li^(+)-DI)engineering in nano-charged CPE(NCCPE).Results show that the surface charge characteristics of HNTs fundamentally change the Li^(+)-DI,and thereof the mechanical and ion-conduction behaviors of the NCCPEs.Particularly,the HNTs with positively charged surface(HNTs+)lead to a higher Li^(+)transference number(0.86)than that of HNTs-(0.73),but a lower toughness(102.13 MJ m^(-3)for HNTs+and 159.69 MJ m^(-3)for HNTs-).Meanwhile,a strong interface compatibilization effect by Li^(+)is observed for especially the HNTs+-involved Li^(+)-DI,which improves the toughness by 2000%compared with the control.Moreover,HNTs+are more effective to weaken the Li^(+)-solvation strength and facilitate the formation of Li F-rich solid-electrolyte interphase of Li metal compared to HNTs-.The resultant Li|NCCPE|LiFePO4cell delivers a capacity of 144.9 m Ah g^(-1)after 400 cycles at 0.5 C and a capacity retention of 78.6%.This study provides deep insights into understanding the roles of surface charges of nanofillers in regulating the mechanical and electrochemical interfaces in ASSLMBs.
基金supported by the National Natural Science Foundation of China(12172319 and 11872326)Natural Science Foundation of Hunan Province(2021JJ30648 and 2021JJ30641)+3 种基金Scientific Research Fund(22A0130)of Hunan Provincial Education Department,Furong Scholars Programme of Hunan Province,“Chunhui Program”Cooperative Research Fund(HZKY20220357)the Ministry of Education,and Postgraduate Scientific Research Innovation Project of Hunan Province(CX20230658)H.C.also acknowledges the support from the National Institutes of Health(Award Nos.R21EB030140,R21OH012220,and R61HL154215)the National Science Foundation(NSF)(Grant Nos.ECCS-2222654 and 1933072),and Penn State University.
文摘As sweat biomarker levels are continuously changing over metabolism and daily activities,pathological and physiological processes can be dynamically analyzed by wearable devices.The colorimetric skin-interfaced microfluidic devices that do not have external circuit modules exhibit enhanced deformability with a small footprint.However,it is difficult to achieve sampling over time and self-feedback for closed-loop systems.This review summarizes recent advances in microfluidic valves for biofluid management and chrono-sampling,as well as active triggers in microfluidics self-feedback.After enumerating the current limitations in temporal resolution and reliability,we further point out a few potential feasible strategies for future developments.
基金supported by the China Scholarship Council(CSC)the Danmarks Grundforskningsfond(Grant No.DNRF147)。
文摘The existence of a single topologically protected edge state in the first bulk bandgap for acoustic/elastic valley Hall insulators(VHIs)with zigzag interface configurations(ZICs)is well known.However,in this work,we show that an ultra-broadband edgestate pair in this bandgap can be created using the inverse design by topology optimization.The valley Hall insulator design increases the operational bandwidth 121%compared with an existing valley Hall insulator from recent literature and exhibits extreme field confinement,where more than 99%of the field intensity is concentrated within three unit-cells from the interface.One-way propagation and topological robustness towards small cavity defects are confirmed for the full bandwidth.The exploitation of such edge-state pairs of valley Hall insulators opens an avenue for realizing broadband confined edge modes.In tests for disorder and bend defects,we show that the additional ZIC,with a different operational frequency interval,encountered at the defects,degrades the transmission for bend and disorder defects which may prove significant for the application of VHIs.Through an alternative topology optimization method based on two ZICs,we further increase their common operational bandwidth.
基金supported by the National Key Research&Development Program of China under Grant 2024YFB2408900.
文摘Grid-forming(GFM)control is a key technology for ensuring the safe and stable operation of renewable power systems dominated by converter-interfaced generation(CIG),including wind power,photovoltaic,and battery energy storage.In this paper,we challenge the traditional approach of emulating a synchronous generator by proposing a frequency-fixed GFM control strategy.The CIG endeavors to regulate itself as a constant voltage source without control dynamics due to its capability limitation,denoted as the frequency-fixed zone.With the proposed strategy,the system frequency is almost always fixed at its rated value,achieving system active power balance independent of frequency,and intentional power flow adjustments are implemented through direct phase angle control.This approach significantly reduces the frequency dynamics and safety issues associated with frequency variations.Furthermore,synchronization dynamics are significantly diminished,and synchronization stability is enhanced.The proposed strategy has the potential to realize a renewable power system with a fixed frequency and robust stability.
基金financially supported by the National Natural Science Foundation of China(No.52377026 and No.52301192)Taishan Scholars and Young Experts Program of Shandong Province(No.tsqn202103057)+4 种基金Postdoctoral Fellowship Program of CPSF under Grant Number(No.GZB20240327)Shandong Postdoctoral Science Foundation(No.SDCXZG-202400275)Qingdao Postdoctoral Application Research Project(No.QDBSH20240102023)China Postdoctoral Science Foundation(No.2024M751563)the Qingchuang Talents Induction Program of Shandong Higher Education Institution(Research and Innovation Team of Structural-Functional Polymer Composites).
文摘Currently,the demand for electromagnetic wave(EMW)absorbing materials with specific functions and capable of withstanding harsh environments is becoming increasingly urgent.Multi-component interface engineering is considered an effective means to achieve high-efficiency EMW absorption.However,interface modulation engineering has not been fully discussed and has great potential in the field of EMW absorption.In this study,multi-component tin compound fiber composites based on carbon fiber(CF)substrate were prepared by electrospinning,hydrothermal synthesis,and high-temperature thermal reduction.By utilizing the different properties of different substances,rich heterogeneous interfaces are constructed.This effectively promotes charge transfer and enhances interfacial polarization and conduction loss.The prepared SnS/SnS_(2)/SnO_(2)/CF composites with abundant heterogeneous interfaces have and exhibit excellent EMW absorption properties at a loading of 50 wt%in epoxy resin.The minimum reflection loss(RL)is−46.74 dB and the maximum effective absorption bandwidth is 5.28 GHz.Moreover,SnS/SnS_(2)/SnO_(2)/CF epoxy composite coatings exhibited long-term corrosion resistance on Q235 steel surfaces.Therefore,this study provides an effective strategy for the design of high-efficiency EMW absorbing materials in complex and harsh environments.
基金sponsored by National Natural Science Foundation of China(No.52302121,No.52203386)Shanghai Sailing Program(No.23YF1454700)+1 种基金Shanghai Natural Science Foundation(No.23ZR1472700)Shanghai Post-doctoral Excellent Program(No.2022664).
文摘With vigorous developments in nanotechnology,the elaborate regulation of microstructure shows attractive potential in the design of electromagnetic wave absorbers.Herein,a hierarchical porous structure and composite heterogeneous interface are constructed successfully to optimize the electromagnetic loss capacity.The macro–micro-synergistic graphene aerogel formed by the ice template‑assisted 3D printing strategy is cut by silicon carbide nanowires(SiC_(nws))grown in situ,while boron nitride(BN)interfacial structure is introduced on graphene nanoplates.The unique composite structure forces multiple scattering of incident EMWs,ensuring the combined effects of interfacial polarization,conduction networks,and magnetic-dielectric synergy.Therefore,the as-prepared composites present a minimum reflection loss value of−37.8 dB and a wide effective absorption bandwidth(EAB)of 9.2 GHz(from 8.8 to 18.0 GHz)at 2.5 mm.Besides,relying on the intrinsic high-temperature resistance of SiC_(nws) and BN,the EAB also remains above 5.0 GHz after annealing in air environment at 600℃ for 10 h.
基金Key R&D Plan of Shaanxi Province(2021LLRH-05-09)Shaanxi Province Youth Talent Support Program Project(CLGC202234)Sponsored by Innovative Pilot Platform for Layered Metal Composite Materials(2024CX-GXPT-20)。
文摘Zirconium-titanium-steel composite plate with the size of 2500 mm×7800 mm×(3+0.7+22)mm was prepared by explosive welding+rolling method,and its properties were analyzed by ultrasonic nondestructive testing,phased array waveform shape,interface structure shape,electronic scanning,and mechanical property testing.Results show that the rolling temperature of zirconiumtitanium complex should be controlled at 760°C,and the rolling reduction of each pass should be controlled at 10%–25%.The explosive velocity to prepare zirconium-titanium-steel composite plates should be controlled at 2450–2500 m/s,the density should be 0.78 g/cm3,the stand-off height should be 12 mm,and the explosive height of Zone A and Zone B should be 45–50 mm.Explosive welding combined with rolling method reduces the impact of explosive welding and multiple heat treatment on material properties.Meanwhile,the problems of surface wrinkling and cracking,which occur during the preparation process of large-sized zirconiumtitanium-steel composite plate,can be solved.
基金supported by the National Key R&D Program of China(2021YFF1200602)the National Science Fund for Excellent Overseas Scholars(0401260011)+3 种基金the National Defense Science and Technology Innovation Fund of Chinese Academy of Sciences(c02022088)the Tianjin Science and Technology Program(20JCZDJC00810)the National Natural Science Foundation of China(82202798)the Shanghai Sailing Program(22YF1404200).
文摘Brain-computer interfaces(BCIs)represent an emerging technology that facilitates direct communication between the brain and external devices.In recent years,numerous review articles have explored various aspects of BCIs,including their fundamental principles,technical advancements,and applications in specific domains.However,these reviews often focus on signal processing,hardware development,or limited applications such as motor rehabilitation or communication.This paper aims to offer a comprehensive review of recent electroencephalogram(EEG)-based BCI applications in the medical field across 8 critical areas,encompassing rehabilitation,daily communication,epilepsy,cerebral resuscitation,sleep,neurodegenerative diseases,anesthesiology,and emotion recognition.Moreover,the current challenges and future trends of BCIs were also discussed,including personal privacy and ethical concerns,network security vulnerabilities,safety issues,and biocompatibility.
基金National Natural Science Foundation of China(52275349)Key Research and Development Program of Shandong Province(2021ZLGX01)。
文摘Friction stir lap welding of AA2195 Al-Li alloy and Ti alloy was conducted to investigate the formation,microstructure,and mechanical properties of the joints.Results show that under different welding parameters,with the decrease in welding heat input,the weld surface is smoother.The Ti/Al joint interface is flat without obvious Ti and Al mixed structure,and the hook structure is not formed under optimal parameters.Due to the enhanced breaking effect of the stirring head,the hook structural defects and intermetallic compounds are more likely to form at the Ti/Al interface at high rotational speed of 1000 r/min,thereby deteriorating the mechanical properties of joints.Decreasing the heat input is beneficial to hardness enhancement of the aluminum alloy in the weld nugget zone.Under the optimal parameters of rotation speed of 800 r/min and welding speed of 120 mm/min,the maximum tensile shear strength of joint is 289 N/mm.