期刊文献+
共找到56,423篇文章
< 1 2 250 >
每页显示 20 50 100
Multiple Tin Compounds Modified Carbon Fibers to Construct Heterogeneous Interfaces for Corrosion Prevention and Electromagnetic Wave Absorption 被引量:1
1
作者 Zhiqiang Guo Di Lan +6 位作者 Zirui Jia Zhenguo Gao Xuetao Shi Mukun He Hua Guo Guanglei Wu Pengfei Yin 《Nano-Micro Letters》 SCIE EI CAS 2025年第1期507-527,共21页
Currently,the demand for electromagnetic wave(EMW)absorbing materials with specific functions and capable of withstanding harsh environments is becoming increasingly urgent.Multi-component interface engineering is con... Currently,the demand for electromagnetic wave(EMW)absorbing materials with specific functions and capable of withstanding harsh environments is becoming increasingly urgent.Multi-component interface engineering is considered an effective means to achieve high-efficiency EMW absorption.However,interface modulation engineering has not been fully discussed and has great potential in the field of EMW absorption.In this study,multi-component tin compound fiber composites based on carbon fiber(CF)substrate were prepared by electrospinning,hydrothermal synthesis,and high-temperature thermal reduction.By utilizing the different properties of different substances,rich heterogeneous interfaces are constructed.This effectively promotes charge transfer and enhances interfacial polarization and conduction loss.The prepared SnS/SnS_(2)/SnO_(2)/CF composites with abundant heterogeneous interfaces have and exhibit excellent EMW absorption properties at a loading of 50 wt%in epoxy resin.The minimum reflection loss(RL)is−46.74 dB and the maximum effective absorption bandwidth is 5.28 GHz.Moreover,SnS/SnS_(2)/SnO_(2)/CF epoxy composite coatings exhibited long-term corrosion resistance on Q235 steel surfaces.Therefore,this study provides an effective strategy for the design of high-efficiency EMW absorbing materials in complex and harsh environments. 展开更多
关键词 Electrostatic spinning Component regulation Heterogeneous interfaces Electromagnetic wave absorption Corrosion protection
在线阅读 下载PDF
Catalysis-Induced Highly-Stable Interface on Porous Silicon for High-Rate Lithium-Ion Batteries 被引量:1
2
作者 Zhuobin Han Phornphimon Maitarad +11 位作者 Nuttapon Yodsin Baogang Zhao Haoyu Ma Kexin Liu Yongfeng Hu Siriporn Jungsuttiwong Yumei Wang Li Lu Liyi Shi Shuai Yuan Yongyao Xia Yingying Lv 《Nano-Micro Letters》 2025年第8期548-563,共16页
Silicon stands as a key anode material in lithium-ion battery ascribing to its high energy density.Nevertheless,the poor rate performance and limited cycling life remain unresolved through conventional approaches that... Silicon stands as a key anode material in lithium-ion battery ascribing to its high energy density.Nevertheless,the poor rate performance and limited cycling life remain unresolved through conventional approaches that involve carbon composites or nanostructures,primarily due to the un-controllable effects arising from the substantial formation of a solid electrolyte interphase(SEI)during the cycling.Here,an ultra-thin and homogeneous Ti doping alumina oxide catalytic interface is meticulously applied on the porous Si through a synergistic etching and hydrolysis process.This defect-rich oxide interface promotes a selective adsorption of fluoroethylene carbonate,leading to a catalytic reaction that can be aptly described as“molecular concentration-in situ conversion”.The resultant inorganic-rich SEI layer is electrochemical stable and favors ion-transport,particularly at high-rate cycling and high temperature.The robustly shielded porous Si,with a large surface area,achieves a high initial Coulombic efficiency of 84.7%and delivers exceptional high-rate performance at 25 A g^(−1)(692 mAh g^(−1))and a high Coulombic efficiency of 99.7%over 1000 cycles.The robust SEI constructed through a precious catalytic layer promises significant advantages for the fast development of silicon-based anode in fast-charging batteries. 展开更多
关键词 Catalytic interface MESOPOROUS Inorganic-rich SEI Silicon anode Lithium-ion batteries
在线阅读 下载PDF
Co-regulation effect of solvation and interface of pyridine derivative enabling highly reversible zinc anode 被引量:1
3
作者 Binrui Xu Guangbin Wang +3 位作者 Yong Liu Quanan Li Fengzhang Ren Jianmin Ma 《Journal of Materials Science & Technology》 2025年第1期1-9,共9页
The poor reversibility and stability of Zn anodes greatly restrict the practical application of aqueous Zn-ion batteries(AZIBs),resulting from the uncontrollable dendrite growth and H_(2)O-induced side reactions durin... The poor reversibility and stability of Zn anodes greatly restrict the practical application of aqueous Zn-ion batteries(AZIBs),resulting from the uncontrollable dendrite growth and H_(2)O-induced side reactions during cycling.Electrolyte additive modification is considered one of the most effective and simplest methods for solving the aforementioned problems.Herein,the pyridine derivatives(PD)including 2,4-dihydroxypyridine(2,4-DHP),2,3-dihydroxypyridine(2,3-DHP),and 2-hydroxypyrdine(2-DHP),were em-ployed as novel electrolyte additives in ZnSO_(4)electrolyte.Both density functional theory calculation and experimental findings demonstrated that the incorporation of PD additives into the electrolyte effectively modulates the solvation structure of hydrated Zn ions,thereby suppressing side reactions in AZIBs.Ad-ditionally,the adsorption of PD molecules on the zinc anode surface contributed to uniform Zn deposi-tion and dendrite growth inhibition.Consequently,a 2,4-DHP-modified Zn/Zn symmetrical cell achieved an extremely long cyclic stability up to 5650 h at 1 mA cm^(-2).Furthermore,the Zn/NH_(4)V_(4)O_(10)full cell with 2,4-DHP-containing electrolyte exhibited an outstanding initial capacity of 204 mAh g^(-1),with a no-table capacity retention of 79%after 1000 cycles at 5 A g^(-1).Hence,this study expands the selection of electrolyte additives for AZIBs,and the working mechanism of PD additives provides new insights for electrolyte modification enabling highly reversible zinc anode. 展开更多
关键词 Zn anode Pyridine derivative Electrolyte additive Solvation regulation interface modification
原文传递
Pore-scale investigation of forced imbibition in porous rocks through interface curvature and pore topology analysis 被引量:1
4
作者 Jianchao Cai Xiangjie Qin +2 位作者 Han Wang Yuxuan Xia Shuangmei Zou 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第1期245-257,共13页
Forced imbibition,the invasion of a wetting fluid into porous rocks,plays an important role in the effective exploitation of hydrocarbon resources and the geological sequestration of carbon dioxide.However,the interfa... Forced imbibition,the invasion of a wetting fluid into porous rocks,plays an important role in the effective exploitation of hydrocarbon resources and the geological sequestration of carbon dioxide.However,the interface dynamics influenced by complex topology commonly leads to non-wetting fluid trapping.Particularly,the underlying mechanisms under viscously unfavorable conditions remain unclear.This study employs a direct numerical simulation method to simulate forced imbibition through the reconstructed digital rocks of sandstone.The interface dynamics and fluid–fluid interactions are investigated through transient simulations,while the pore topology metrics are introduced to analyze the impact on steady-state residual fluid distribution obtained by a pseudo-transient scheme.The results show that the cooperative pore-filling process promoted by corner flow is dominant at low capillary numbers.This leads to unstable inlet pressure,mass flow,and interface curvature,which correspond to complicated interface dynamics and higher residual fluid saturation.During forced imbibition,the interface curvature gradually increases,with the pore-filling mechanisms involving the cooperation of main terminal meniscus movement and arc menisci filling.Complex topology with small diameter pores may result in the destabilization of interface curvature.The residual fluid saturation is negatively correlated with porosity and pore throat size,and positively correlated with tortuosity and aspect ratio.A large mean coordination number characterizing global connectivity promotes imbibition.However,high connectivity characterized by the standardized Euler number corresponding to small pores is associated with a high probability of non-wetting fluid trapping. 展开更多
关键词 Forced imbibition Porous rocks interface dynamics Pore topology Residual fluid distribution
在线阅读 下载PDF
Analysis of Micromechanical Properties at the Interface of Pre-wet SBS Modified Asphalt Mixture Based on Molecular Simulation Technology
5
作者 CHEN Wuxing CHEN Shuang +3 位作者 YU Yan ZHANG Jiangyi XU Haiyang GUO Wei 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2025年第1期103-113,共11页
The pre-wetting of aggregate surface is a means to improve the interface performance of SBS modified asphalt and aggregate.The effect of pre-wetting technology on the interaction between SBS modified asphalt and aggre... The pre-wetting of aggregate surface is a means to improve the interface performance of SBS modified asphalt and aggregate.The effect of pre-wetting technology on the interaction between SBS modified asphalt and aggregate was analyzed by molecular dynamics simulation.The diffusion coefficient and concentration distribution of SBS modified asphalt on aggregate surface are included.The simulation results show that the diffusion coefficient of the aggregate surface of SBS modified asphalt is increased by 47.6%and 70.5%respectively after 110#asphalt and 130#asphalt are pre-wetted.The concentration distribution of SBS modified asphalt on the aggregate surface after pre-wetting is more uniform.According to the results of interface energy calculation,the interface energy of SBS modified bitumen and aggregate can be increased by about 5%after pre-wetting.According to the results of molecular dynamics simulation,the pre-wetting technology can effectively improve the interface workability of SBS modified bitumen and aggregate,so as to improve the interface performance. 展开更多
关键词 pre-wet oil-stone interface interface interaction interface mechanics molecular dynamics simulation
原文传递
Recent applications of EEG-based brain-computer-interface in the medical field 被引量:1
6
作者 Xiu-Yun Liu Wen-Long Wang +39 位作者 Miao Liu Ming-Yi Chen Tânia Pereira Desta Yakob Doda Yu-Feng Ke Shou-Yan Wang Dong Wen Xiao-Guang Tong Wei-Guang Li Yi Yang Xiao-Di Han Yu-Lin Sun Xin Song Cong-Ying Hao Zi-Hua Zhang Xin-Yang Liu Chun-Yang Li Rui Peng Xiao-Xin Song Abi Yasi Mei-Jun Pang Kuo Zhang Run-Nan He Le Wu Shu-Geng Chen Wen-Jin Chen Yan-Gong Chao Cheng-Gong Hu Heng Zhang Min Zhou Kun Wang Peng-Fei Liu Chen Chen Xin-Yi Geng Yun Qin Dong-Rui Gao En-Ming Song Long-Long Cheng Xun Chen Dong Ming 《Military Medical Research》 2025年第8期1283-1322,共40页
Brain-computer interfaces(BCIs)represent an emerging technology that facilitates direct communication between the brain and external devices.In recent years,numerous review articles have explored various aspects of BC... Brain-computer interfaces(BCIs)represent an emerging technology that facilitates direct communication between the brain and external devices.In recent years,numerous review articles have explored various aspects of BCIs,including their fundamental principles,technical advancements,and applications in specific domains.However,these reviews often focus on signal processing,hardware development,or limited applications such as motor rehabilitation or communication.This paper aims to offer a comprehensive review of recent electroencephalogram(EEG)-based BCI applications in the medical field across 8 critical areas,encompassing rehabilitation,daily communication,epilepsy,cerebral resuscitation,sleep,neurodegenerative diseases,anesthesiology,and emotion recognition.Moreover,the current challenges and future trends of BCIs were also discussed,including personal privacy and ethical concerns,network security vulnerabilities,safety issues,and biocompatibility. 展开更多
关键词 Brain-computer interfaces(BCIs) Medical applications REHABILITATION COMMUNICATION Brain monitoring DIAGNOSIS
原文传递
Bulging Performance and Quality Control of Aluminum Alloy Tailor-welded Overlapping Sheets Based on Interface Friction
7
作者 GAO Tiejun GAO Bowen +1 位作者 LI Weijie ZHANG Jiabin 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2025年第1期258-264,共7页
In order to solve the problem of poor formability caused by different materials and properties in the process of tailor-welded sheets forming,a forming method was proposed to change the stress state of tailor-welded s... In order to solve the problem of poor formability caused by different materials and properties in the process of tailor-welded sheets forming,a forming method was proposed to change the stress state of tailor-welded sheets by covering the tailor-welded sheets with better plastic properties overlapping sheets.At the same time,the interface friction effect between the overlapping and tailor-welded sheets was utilized to control the stress magnitude and further improve the formability and quality of the tailor-welded sheets.In this work,the bulging process of the tailor-welded overlapping sheets was taken as the research object.Aluminum alloy tailor-welded overlapping sheets bulging specimens were studied by a combination of finite element analysis and experimental verification.The results show that the appropriate use of interface friction between tailor-welded and overlapping sheets can improve the formability of tailor-welded sheets and control the flow of weld seam to improve the forming quality.When increasing the interface friction coefficient on the side of tailor-welded sheets with higher strength and decreasing that on the side of tailor-welded sheets with lower strength,the deformation of the tailor-welded sheets are more uniform,the offset of the weld seam is minimal,the limit bulging height is maximal,and the forming quality is optimal. 展开更多
关键词 tailor-welded sheets overlapping sheet BULGING interface friction weld seam stress
原文传递
Advanced Functional Electromagnetic Shielding Materials:A Review Based on Micro‑Nano Structure Interface Control of Biomass Cell Walls
8
作者 Yang Shi Mingjun Wu +14 位作者 Shengbo Ge Jianzhang Li Anoud Saud Alshammari Jing Luo Mohammed A.Amin Hua Qiu Jinxuan Jiang Yazeed M.Asiri Runzhou Huang Hua Hou Zeinhom M.El‑Bahy Zhanhu Guo Chong Jia Kaimeng Xu Xiangmeng Chen 《Nano-Micro Letters》 SCIE EI CAS 2025年第1期98-134,共37页
Research efforts on electromagnetic interference(EMI)shielding materials have begun to converge on green and sustainable biomass materials.These materials offer numerous advantages such as being lightweight,porous,and... Research efforts on electromagnetic interference(EMI)shielding materials have begun to converge on green and sustainable biomass materials.These materials offer numerous advantages such as being lightweight,porous,and hierarchical.Due to their porous nature,interfacial compatibility,and electrical conductivity,biomass materials hold significant potential as EMI shielding materials.Despite concerted efforts on the EMI shielding of biomass materials have been reported,this research area is still relatively new compared to traditional EMI shielding materials.In particular,a more comprehensive study and summary of the factors influencing biomass EMI shielding materials including the pore structure adjustment,preparation process,and micro-control would be valuable.The preparation methods and characteristics of wood,bamboo,cellulose and lignin in EMI shielding field are critically discussed in this paper,and similar biomass EMI materials are summarized and analyzed.The composite methods and fillers of various biomass materials were reviewed.this paper also highlights the mechanism of EMI shielding as well as existing prospects and challenges for development trends in this field. 展开更多
关键词 Biomass materials Electromagnetic interference shielding Micro-nano structure interface control CONDUCTIVITY
在线阅读 下载PDF
Research status and prospects of the fractal analysis of metal material surfaces and interfaces
9
作者 Qinjin Dai Xuefeng Liu +2 位作者 Xin Ma Shaojie Tian Qinghe Cui 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS 2025年第1期20-38,共19页
As a mathematical analysis method,fractal analysis can be used to quantitatively describe irregular shapes with self-similar or self-affine properties.Fractal analysis has been used to characterize the shapes of metal... As a mathematical analysis method,fractal analysis can be used to quantitatively describe irregular shapes with self-similar or self-affine properties.Fractal analysis has been used to characterize the shapes of metal materials at various scales and dimensions.Conventional methods make it difficult to quantitatively describe the relationship between the regular characteristics and properties of metal material surfaces and interfaces.However,fractal analysis can be used to quantitatively describe the shape characteristics of metal materials and to establish the quantitative relationships between the shape characteristics and various properties of metal materials.From the perspective of two-dimensional planes and three-dimensional curved surfaces,this paper reviews the current research status of the fractal analysis of metal precipitate interfaces,metal grain boundary interfaces,metal-deposited film surfaces,metal fracture surfaces,metal machined surfaces,and metal wear surfaces.The relationship between the fractal dimensions and properties of metal material surfaces and interfaces is summarized.Starting from three perspectives of fractal analysis,namely,research scope,image acquisition methods,and calculation methods,this paper identifies the direction of research on fractal analysis of metal material surfaces and interfaces that need to be developed.It is believed that revealing the deep influence mechanism between the fractal dimensions and properties of metal material surfaces and interfaces will be the key research direction of the fractal analysis of metal materials in the future. 展开更多
关键词 metal material surfaces and interfaces fractal analysis fractal dimension HOMOGENEITY
在线阅读 下载PDF
Effects of Thermal Aging on Microstructure and Mechanical Properties of Interface of Hot Isostatic Pressing Densified Low Alloy Steel with Inconel 690 Cladding
10
作者 Yu Lei Cao Rui +3 位作者 Ma Jinyuan Yan Yingjie Dong Hao Wang Caiqin 《稀有金属材料与工程》 北大核心 2025年第4期879-885,共7页
The microstructure,micro-hardness,and tensile properties of interface between hot isostatic pressing densified low alloy steel and Inconel 690 cladding were investigated during the aging process at 600℃.The results s... The microstructure,micro-hardness,and tensile properties of interface between hot isostatic pressing densified low alloy steel and Inconel 690 cladding were investigated during the aging process at 600℃.The results show that the interface region can be divided into four zones from base metal to deposited metal:carbon-depleted zone(CDZ),partial melting zone(PMZ),planar growth zone(PGZ),and brownish feature zone(BFZ).Dimensions of these zones do not significantly change during aging.However,type I carbides noticeably increase in size in the PMZ,and precipitates clearly occur in the PGZ.The main reason for their growth and occurrence is continuous carbon migration.The highest micro-hardness appears in the PGZ and BFZ regions,which is related to carbon accumulation and precipitates in these regions.Tensile failure occurs on the base metal side due to the high strength mismatch between these two materials.The CDZ,composed of only ferrite,has lower strength and fractures at the boundary between CDZ and base metal.The ultimate tensile strength decreases by only 50 MPa after aging for 1500 h,and the interface region maintains high strength without significant deformation. 展开更多
关键词 interface thermal aging microstructure mechanical properties hot isostatic pressing densification
原文传递
Designing Conformal Electrode-electrolyte Interface by Semi-solid NaK Anode for Sodium Metal Batteries
11
作者 YIN Chunsen CHEN Zeyuan WANG Xiuli 《材料科学与工程学报》 北大核心 2025年第2期191-201,共11页
Solid-state Na metal batteries(SSNBs),known for the low cost,high safety,and high energy density,hold a significant position in the next generation of rechargeable batteries.However,the urgent challenge of poor interf... Solid-state Na metal batteries(SSNBs),known for the low cost,high safety,and high energy density,hold a significant position in the next generation of rechargeable batteries.However,the urgent challenge of poor interfacial contact in solid-state electrolytes has hindered the commercialization of SSNBs.Driven by the concept of intimate electrode-electrolyte interface design,this study employs a combination of sodium-potassium(NaK)alloy and carbon nanotubes to prepare a semi-solid NaK(NKC)anode.Unlike traditional Na anodes,the paintable paste-like NKC anode exhibits superior adhesion and interface compatibility with both current collectors and gel electrolytes,significantly enhancing the physical contact of the electrode-electrolyte interface.Additionally,the filling of SiO_(2) nanoparticles improves the wettability of NaK alloy on gel polymer electrolytes,further achieving a conformal interface contact.Consequently,the overpotential of the NKC symmetric cell is markedly lower than that of the Na symmetric cell when subjected to a long cycle of 300 hrs.The full cell coupled with Na_(3)V_(2)(PO_(4))_(2) cathodes had an initial discharge capacity of 106.8 mAh·g^(-1) with a capacity retention of 89.61%after 300 cycles,and a high discharge capacity of 88.1 mAh·g^(-1) even at a high rate of 10 C.The outstanding electrochemical performance highlights the promising application potential of the NKC electrode. 展开更多
关键词 Solid-state Na metal battery NaK alloy Gel electrolyte Electrode-electrolyte interface dendrite free anode
在线阅读 下载PDF
Dual-site Doping of Tungsten and Fluorine Enhances the Interface Stability of Na3SbS4 in All-solid-state Sodium Metal Batteries
12
作者 GUO Yihao HU Xiaoyu YUAN Yongfeng 《材料科学与工程学报》 北大核心 2025年第5期743-756,共14页
Practical application of Na3SbS4(NSS)solid-state electrolyte in sodium metal batteries has been significantly hindered by poor interfacial stability and insufficient ionic conductivity.In this study,a series of dual-s... Practical application of Na3SbS4(NSS)solid-state electrolyte in sodium metal batteries has been significantly hindered by poor interfacial stability and insufficient ionic conductivity.In this study,a series of dual-site doped Na_(3-2x)Sb_(1-x)W_(x)S_(4-x)F_(x)(x=0,0.12,0.24,0.36)electrolytes through high-energy ball milling followed by high-temperature sintering is prepared,where tungsten(W)substitutes for antimony(Sb)and fluorine(F)replaces sulfur(S)in the NSS lattice.The co-doping of W and F not only broadens the interplanar spacing of NSS but also promotes the stable formation of the cubic phase of NSS,thereby effectively enhancing the transport ability of sodium ions within NSS.Among them,Na_(2.52)Sb|_(0.76)W_(0.24)S_(3.76)F_(0.24) exhibits the highest ionic conductivity of 4.45 mS·cm^(-1).Furthermore,F doping facilitates the in-situ formation of NaF between the electrolyte and metallic sodium,significantly improving interfacial stability.Electrochemical evaluation shows that the Na/Na_(2.52)Sb|_(0.76)W_(0.24)S_(3.76)F_(0.24)/Na symmetric cell achieves a high critical current density of 1.65 mA·cm^(-2) and maintains stable sodium plating/stripping cycling for 500 h at 0.1 mA·cm^(-2).Additionally,the TiS2/Na_(2.52)Sb|_(0.76)W_(0.24)S_(3.76)F_(0.24)/Na full cell exhibits outstanding cycling stability and rate capability. 展开更多
关键词 Tungsten and fluorine co-doping Ionic conductivity interface stability Allsolid-state sodium metal batteries
在线阅读 下载PDF
Novel thermal interface materials based on mesocarbon microbeads with a high through-plane thermal conductivity
13
作者 SUN Zhi-peng MA Cheng +2 位作者 WANG Ji-tong QIAO Wen-ming LING Li-cheng 《新型炭材料(中英文)》 北大核心 2025年第2期440-455,共16页
The rapid development of the information era has led to in-creased power consumption,which generates more heat.This requires more efficient thermal management systems,with the most direct ap-proach being the developme... The rapid development of the information era has led to in-creased power consumption,which generates more heat.This requires more efficient thermal management systems,with the most direct ap-proach being the development of su-perior thermal interface materials(TIMs).Mesocarbon microbeads(MCMBs)have several desirable properties for this purpose,includ-ing high thermal conductivity and excellent thermal stability.Although their thermal conductivity(K)may not be exceptional among all carbon materials,their ease of production and low cost make them ideal filler materials for developing a new generation of carbon-based TIMs.We report the fabrication of high-performance TIMs by incorporating MCMBs in a polyimide(PI)framework,producing highly graphitized PI/MCMB(PM)foams and anisotropic polydimethylsiloxane/PM(PDMS/PM)composites with a high thermal conductivity using directional freezing and high-temperature thermal annealing.The resulting materials had a high through-plane(TP)K of 15.926 W·m^(−1)·K^(−1),4.83 times that of conventional thermally conductive silicone pads and 88.5 times higher than that of pure PDMS.The composites had excellent mechanical properties and thermal stability,meeting the de-mands of modern electronic products for integration,multi-functionality,and miniaturization. 展开更多
关键词 Thermal interface material Mesocarbon microbeads Through-plane thermal conductivity
在线阅读 下载PDF
Constructing graphite-CeO_(2)interfaces to enhance the photothermal activity for solar-driven dry reforming of methane
14
作者 LI Ruitao GONG Kun +3 位作者 DAI Yuanyuan NIU Qiang LIN Tiejun ZHONG Liangshu 《燃料化学学报(中英文)》 北大核心 2025年第8期1137-1147,共11页
CeO_(2) based semiconductor are widely used in solar-driven photothermal catalytic dry reforming of methane(DRM)reaction,but still suffer from low activity and low light utilization efficiency.This study developed gra... CeO_(2) based semiconductor are widely used in solar-driven photothermal catalytic dry reforming of methane(DRM)reaction,but still suffer from low activity and low light utilization efficiency.This study developed graphite-CeO_(2) interfaces to enhance solar-driven photothermal catalytic DRM.Compared with carbon nanotubes-modified CeO_(2)(CeO_(2)-CNT),graphite-modified CeO_(2)(CeO_(2)-GRA)constructed graphite-CeO_(2) interfaces with distortion in CeO_(2),leading to the formation abundant oxygen vacancies.These graphite-CeO_(2) interfaces with oxygen vacancies enhanced optical absorption and promoted the generation and separation of photogenerated carriers.The high endothermic capacity of graphite elevated the catalyst surface temperature from 592.1−691.3℃,boosting light-to-thermal conversion.The synergy between photogenerated carriers and localized heat enabled Ni/CeO_(2)-GRA to achieve a CO production rate of 9985.6 mmol/(g·h)(vs 7192.4 mmol/(g·h)for Ni/CeO_(2))and a light-to-fuel efficiency of 21.8%(vs 13.8%for Ni/CeO_(2)).This work provides insights for designing graphite-semiconductor interfaces to advance photothermal catalytic efficiency. 展开更多
关键词 dry reforming of methane photothermal catalysis CeO_(2) GRAPHITE interfaceS
在线阅读 下载PDF
Interface Shear Behavior Between Bio-Inspired Sidewall of a Scaled Suction Caisson and Sand Under Pull-out Load
15
作者 LI Da-yong LIANG Hao +1 位作者 ZHAO Ji-peng ZHANG Yu-kun 《China Ocean Engineering》 2025年第4期708-717,共10页
The scaled suction caisson repre sents an innovative design featuring a bio-inspired sidewall modeled after snake skin,commonly utilized in offshore mooring platforms.In comparison with traditional suction caissons,th... The scaled suction caisson repre sents an innovative design featuring a bio-inspired sidewall modeled after snake skin,commonly utilized in offshore mooring platforms.In comparison with traditional suction caissons,this bio-inspired design demonstrates reduced penetration resistance and enhanced pull-out capacity due to the anisotropic shear behaviors of its sidewall.To investigate the shear behavior of the bio-inspired sidewall under pull-out load,direct shear tests were conducted between the bio-inspired surface and sand.The research demonstrates that the interface shear strength of the bio-inspired surface significantly surpasses that of the smooth surface due to interlocking effects.Additionally,the interface shear strength correlates with the aspect ratio of the bio-inspired surface,shear angle,and particle diameter distribution,with values increasing as the uniformity coefficient Cudecreases,while initially increasing and subsequently decreasing with increases in both aspect ratio and shear angle.The ratio between the interface friction angleδand internal friction angle δ_(s) defines the interface effect factor k.For the bio-inspired surface,the interface effect factor k varies with shear angleβ,ranging from 0.9 to 1.12.The peak value occurs at a shear angleβof 60°,substantially exceeding that of the smooth surface.A method for calculating the relative roughness R_(N) is employed to evaluate the interface roughness of the bio-inspired surface,taking into account scale dimension and particle diameter distribution effects. 展开更多
关键词 scaled suction caisson interface shear test shear strength interface friction angle bio-inspired surface pull-out load
在线阅读 下载PDF
Understanding Electrolytes and Interface Chemistry for Sustainable Nonaqueous Metal-CO_(2)Batteries
16
作者 Bijiao He Yunnian Ge +4 位作者 Fang Zhang Huajun Tian Yan Xin Yong Lei Yang Yang 《Nano-Micro Letters》 2025年第12期74-107,共34页
Metal-carbon dioxide(CO_(2))batteries hold great promise for reducing greenhouse gas emissions and are regarded as one of the most promising energy storage techniques due to their efficiency advantages in CO_(2)recove... Metal-carbon dioxide(CO_(2))batteries hold great promise for reducing greenhouse gas emissions and are regarded as one of the most promising energy storage techniques due to their efficiency advantages in CO_(2)recovery and conversion.Moreover,rechargeable nonaqueous metal-CO_(2)batteries have attracted much attention due to their high theoretical energy density.However,the stability issues of the electrode-electrolyte interfaces of nonaqueous metal-CO_(2)(lithium(Li)/sodium(Na)/potassium(K)-CO_(2))batteries have been troubling its development,and a large number of related research in the field of electrolytes have conducted in recent years.This review retraces the short but rapid research history of nonaqueous metal-CO_(2)batteries with a detailed electrochemical mechanism analysis.Then it focuses on the basic characteristics and design principles of electrolytes,summarizes the latest achievements of various types of electrolytes in a timely manner and deeply analyzes the construction strategies of stable electrode-electrolyte interfaces for metal-CO_(2)batteries.Finally,the key issues related to electrolytes and interface engineering are fully discussed and several potential directions for future research are proposed.This review enriches a comprehensive understanding of electrolytes and interface engineering toward the practical applications of next-generation metal-CO_(2)batteries. 展开更多
关键词 Nonaqueous metal-CO_(2)battery Electrolytes and interface chemistry Mechanism interface engineering Solid electrolyte interface chemistry
在线阅读 下载PDF
Droplet-Enabled Controllable Manipulation of Tribo-Charges from Liquid-Solid Interface
17
作者 Xunjia Li Jianjun Luo +1 位作者 Jianfeng Ping Zhong Lin Wang 《Engineering》 2025年第2期132-142,共11页
Efficient utilization of electrostatic charges is paramount for numerous applications,from printing to kinetic energy harvesting.However,existing technologies predominantly focus on the static qualities of these charg... Efficient utilization of electrostatic charges is paramount for numerous applications,from printing to kinetic energy harvesting.However,existing technologies predominantly focus on the static qualities of these charges,neglecting their dynamic capabilities as carriers for energy conversion.Herein,we report a paradigm-shifting strategy that orchestrates the swift transit of surface charges,generated through contact electrification,via a freely moving droplet.This technique ingeniously creates a bespoke charged surface which,in tandem with a droplet acting as a transfer medium to the ground,facilitates targeted charge displacement and amplifies electrical energy collection.The spontaneously generated electric field between the charged surface and needle tip,along with the enhanced water ionization under the electric field,proves pivotal in facilitating controlled charge transfer.By coupling the effects of charge self-transfer,contact electrification,and electrostatic induction,a dual-electrode droplet-driven(DD)triboelectric nanogenerator(TENG)is designed to harvest the water-related energy,exhibiting a two-orderof-magnitude improvement in electrical output compared to traditional single-electrode systems.Our strategy establishes a fundamental groundwork for efficient water drop energy acquisition,offering deep insights and substantial utility for future interdisciplinary research and applications in energy science. 展开更多
关键词 Solid-liquid interface engineering Energy harvesting device Triboelectric nanogenertor interface charge utilization Water energy
在线阅读 下载PDF
Designing cost-performance porous thermoelectric materials by interface engineering through atomic layer deposition
18
作者 Shuankui Li Wenguang Zhao +8 位作者 Xiao-Lei Shi Liangliang Wang Shusheng Pan Guofeng Cheng Wei-Di Liu Meng Li Kai Guo Zhi-Gang Chen Feng Pan 《Journal of Materials Science & Technology》 2025年第11期194-203,共10页
The bismuth-telluride-based alloy is the only thermoelectric material commercialized for the applications of refrigeration and energy harvesting,but its low cost-effectiveness severely restricts its large-scale ap-pli... The bismuth-telluride-based alloy is the only thermoelectric material commercialized for the applications of refrigeration and energy harvesting,but its low cost-effectiveness severely restricts its large-scale ap-plication.The introduction of a porous structure in bulk thermoelectric materials has been theoretically proven to effectively reduce thermal conductivity and cost.However,the electrical properties of highly porous materials are considerably suppressed due to the strong carrier scattering at the interface be-tween the matrix and pores,ultimately leading to decreased figure of merit,ZT.Here,we use an atomic layer deposition strategy to introduce some hollow glass bubbles with nano-oxide layers into commercial Bi_(0.5)Sb_(1.5)Te_(3)for preparing high-performance porous thermoelectric materials.Experimental results indi-cate that the nano-oxide layers weaken carrier scattering at the interface between pores and matrix while maintaining high-strength phonon scattering,thereby optimizing carrier/phonon transport behaviors,and effectively increasing the ZT by 23.2%(from 0.99 to 1.22 at 350 K).Besides,our strategy has excellent universality confirmed by its effectiveness in improving the ZT of Bi_(2)Te_(2.7)Se_(0.3),therefore demonstrating great potential for developing low-cost and high-performance thermoelectric materials. 展开更多
关键词 THERMOELECTRIC Bismuth telluride POROSITY Atomic layer deposition interface PERFORMANCE
原文传递
Dual-scale insights of two-phase flow in inter-cleats based on microfluidics:Interface jumps and energy dissipation
19
作者 Jicheng Zhang Dawei Lv +3 位作者 Jon Jincai Zhang Feng Wang Dawei Yin Haiyang Yu 《International Journal of Mining Science and Technology》 2025年第3期451-465,共15页
Cleat serves as the primary flow pathway for coalbed methane(CBM)and water.However,few studies consider the impact of local contact on two-phase flow within cleats.A visual generalized model of endogenous cleats was c... Cleat serves as the primary flow pathway for coalbed methane(CBM)and water.However,few studies consider the impact of local contact on two-phase flow within cleats.A visual generalized model of endogenous cleats was constructed based on microfluidics.A microscopic and mesoscopic observation technique was proposed to simultaneously capture gas-liquid interface morphology of pores and throat and the two-phase flow characteristics in entire cleat system.The local contact characteristics of cleats reduced absolute permeability,which resulted in a sharp increase in the starting pressure.The reduced gas flow capacity narrowed the co-infiltration area and decreased water saturation at the isotonic point in a hydrophilic environment.The increased local contact area of cleats weakened gas phase flow capacity and narrowed the co-infiltration area.Jumping events occurred in methane-water flow due to altered porosity caused by local contact in cleats.The distribution of residual phases changed the jumping direction on the micro-scale as well as the dominant channel on the mesoscale.Besides,jumping events caused additional energy dissipation,which was ignored in traditional two-phase flow models.This might contribute to the overestimation of relative permeability.The work provides new methods and insights for investigating unsaturated flow in complex porous media. 展开更多
关键词 Inter-cleat MICROFLUIDICS Two-phase flow Dual-scale interface jump Inertial effect
在线阅读 下载PDF
Construction of Ni_(2)P/CoP interface for highly efficient electrolysis of urea-assisted hydrogen production at industrial current densities
20
作者 Borong Lu Chunmei Lv +3 位作者 Ying Xie Kai Zhu Ke Ye Xiaojin Li 《Chinese Journal of Catalysis》 2025年第2期163-175,共13页
Interface chemical modulation strategies are considered as promising method to prepare electrocatalysts for the urea oxidation reaction(UOR).However,conventional interface catalysts are generally limited by the inhere... Interface chemical modulation strategies are considered as promising method to prepare electrocatalysts for the urea oxidation reaction(UOR).However,conventional interface catalysts are generally limited by the inherent activity and incompatibility of the individual components themselves,and the irregular charge distribution and slow charge transfer ability between interfaces severely limit the activity of UOR.Therefore,we optimized and designed a Ni_(2)P/CoP interface with modulated surface charge distribution and directed charge transfer to promote UOR activity.Density functional theorycalculations first predict a regular charge transfer from CoP to Ni_(2)P,which creates a built-in electric field between Ni_(2)P and CoP interface.Optimization of the adsorption/desorption process of UOR/HER reaction intermediates leads to the improvement of catalytic activity.Electrochemical impedance spectroscopy and ex situ X-ray photoelectron spectroscopy characterization confirm the unique mechanism of facilitated reaction at the Ni_(2)P/CoP interface.Electrochemical tests further validated the prediction with excellent UOR/HER activities of 1.28 V and 19.7 mV vs.RHE,at 10 mA cm^(-2),respectively.Furthermore,Ni_(2)P/CoP achieves industrial-grade current densities(500 mA cm^(−2))at 1.75 V and 1.87 V in the overall urea electrolyzer(UOR||HER)and overall human urine electrolyzer(HUOR||HER),respectively,and demonstrates considerable durability. 展开更多
关键词 interface chemical strategy Theoretical predictions Advanced interface construction Directed charge transfer Urea oxidation reaction
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部