期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Constructing zinc-tin alloy interface for highly stable alkaline zinc anode
1
作者 Wenjie Liu Chuanlin Li +6 位作者 Dingzheng Li Guangmeng Qu Mengzhen Kong Jing Zhang Xiao Wang Chenggang Wang Xijin Xu 《Chinese Chemical Letters》 2025年第7期608-612,共5页
Aqueous alkaline zinc batteries have received widespread attention owing to its higher electrode potential and faster reaction kinetics compared to in mild aqueous electrolyte.However,Zn metal anode in alkaline electr... Aqueous alkaline zinc batteries have received widespread attention owing to its higher electrode potential and faster reaction kinetics compared to in mild aqueous electrolyte.However,Zn metal anode in alkaline electrolyte usually suffers more severe corrosion,passivation,and hydrogen evolution reaction.Herein,an interface chemical regulation strategy employs to in-situ construct a Zn-Sn alloy layer during cycling.The K_(2)[Sn(OH)_(6)]has been introduced into the electrolyte as the deposition overpotential of Zn and Sn in alkaline electrolyte is approximate leading to their simultaneously plating.The Zn-Sn alloy layer not only prevents Zn anode corrosion and suppresses the dendrite growth but also promotes the reaction kinetics.Therefore,the Zn||Zn cell exhibits a long life of 400 h in alkaline electrolyte about 20 times of that in without K_(2)[Sn(OH)_(6)]electrolyte.Moreover,the N-NCP@PQ_(x)||Zn full cell displays a superior cycle performance of 4000 cycles with 93%capacity retention at 2 A/g. 展开更多
关键词 Zn anode Alkaline aqueous electrolyte Zn-Sn alloy interface protection ANTI-CORROSION
原文传递
The protective effect and its mechanism for electrolyte additives on the anode interface in aqueous zinc-based energy storage devices
2
作者 Xinyi Wang Chao Han +1 位作者 Shixue Dou Weijie Li 《Nano Materials Science》 2025年第6期847-861,共15页
Aqueous-electrolyte-based zinc-ion batteries(ZIBs),which have significant advantages over other batteries,including low cost,high safety,high ionic conductivity,and a natural abundance of zinc,have been regarded as a ... Aqueous-electrolyte-based zinc-ion batteries(ZIBs),which have significant advantages over other batteries,including low cost,high safety,high ionic conductivity,and a natural abundance of zinc,have been regarded as a potential alternative to lithium-ion batteries(LIBs).ZIBs still face some critical challenges,however,especially for building a reversible zinc anode.To address the reversibility of zinc anode,great efforts have been made on intrinsic anode engineering and anode interface modification.Less attention has been devoted to the electrolyte additives,however,which could not only significantly improve the reversibility of zinc anode,but also determine the viability and overall performance of ZIBs.This review aims to provide an overview of the two main functions of electrolyte additives,followed by details on six reasons why additives might improve the performance of ZIBs from the perspectives of creating new layers and regulating current plating/stripping processes.Furthermore,the remaining difficulties and potential directions for additives in aqueous ZIBs are also highlighted. 展开更多
关键词 Electrolyte additives Zn metal anode interface protection Aqueous zinc-ion batteries
在线阅读 下载PDF
Anode Interfacial Issues in Solid-State Li Batteries:Mechanistic Understanding and Mitigating Strategies 被引量:6
3
作者 Jiacheng Wang Liquan Chen +1 位作者 Hong Li Fan Wu 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第4期384-404,共21页
All-solid-state Li metal batteries(ASSLBs)using inorganic solid electrolyte(SE)are considered promising alternatives to conventional Li-ion batteries,offering improved safety and boosted energy density.While significa... All-solid-state Li metal batteries(ASSLBs)using inorganic solid electrolyte(SE)are considered promising alternatives to conventional Li-ion batteries,offering improved safety and boosted energy density.While significant progress has been made on improving the ionic conductivity of SEs,the degradation and instability of Li metal/inorganic SE interfaces have become the critical challenges that limit the coulombic efficiency,power performance,and cycling stability of ASSLBs.Understanding the mechanisms of complex/dynamic interfacial phenomena is of great importance in addressing these issues.Herein,recent studies on identifying,understanding,and solving interfacial issues on anode side in ASSLBs are comprehensively reviewed.Typical issues at Li metal/SE interface include Li dendrite growth/propagation,SE cracking,physical contact loss,and electrochemical reactions,which lead to high interfacial resistance and cell failure.The causes of these issues relating to the chemical,physical,and mechanical properties of Li metal and SEs are systematically discussed.Furthermore,effective mitigating strategies are summarized and their effects on suppressing interfacial reactions,improving interfacial Li-ion transport,maintaining interfacial contact,and stabilizing Li plating/stripping are highlighted.The in-depth mechanistic understanding of interfacial issues and complete investigations on current solutions provide foundations and guidance for future research and development to realize practical application of high-performance ASSLB. 展开更多
关键词 all-solid-state Li metal batteries anode interfacial issues interface protection and modification interfacial reaction and evolution li dendrite growth
在线阅读 下载PDF
Synergistic bulk-interface engineering enables high-performance of O3-type NaNi_(1/3)Fe_(1/3)Mn_(1/3)O_(2) cathodes under high voltage
4
作者 Xuanning Chen Zhiwei Wang +8 位作者 Junwu Tian Tian Gao Junhui Li Yulin Zhang Mingbo Zheng Jianyu Shi Zhenming Xu Zhenhui Liu Laifa Shen 《Nano Research》 2025年第12期289-298,共10页
The O3-type NaNi_(1/3)Fe_(1/3)Mn_(1/3)O_(2)(NFM)has emerged as a highly promising cathode material for sodiumion batteries due to its facile synthesis and high theoretical capacity.However,it suffers from severe capac... The O3-type NaNi_(1/3)Fe_(1/3)Mn_(1/3)O_(2)(NFM)has emerged as a highly promising cathode material for sodiumion batteries due to its facile synthesis and high theoretical capacity.However,it suffers from severe capacity and rate capability degradation caused by multiple coupled failure mechanisms,including irreversible phase transitions,structural deterioration at high voltages,and electrolyte-induced surface corrosion.This work addresses the challenge of high-voltage stability in NFM cathodes via a synergistic bulk-phase and interface engineering strategy.Firstly,Li,Ti,and Co are codoped into the bulk lattice structure to suppress the Mn^(3+)-induced Jahn-Teller distortion and improve Na^(+)diffusion kinetics.And then,an AlPO_(4) protective coating layer is fabricated to mitigate electrolyte corrosion and interfacial side reactions.Consequently,the as-designed composite cathode(AP@NFMLTC)can effectively suppress the P3 to O3’phase transition within the voltage range of 2.0 to 4.2 V,resulting in a highly reversible sodium storage mechanism.After 100 cycles at a rate of 1 C,the capacity retention rate significantly improves from 45.6%to 83.6%,with a minimal voltage decay of just 0.08 V.The dual bulk-interface synergistic strategy in this work provides valuable insights into achieving high stable operation for sodium-ion batteries(SIBs)cathodes under enhanced voltage. 展开更多
关键词 sodium-ion battery O3-type cathode phase transition CO-DOPING interface protective layer
原文传递
Garnet/polymer hybrid ion-conducting protective layer for stable lithium metal anode 被引量:6
5
作者 Chunpeng Yang Boyang Liu +4 位作者 Feng Jiang Ying Zhang Hua Xie Emily Hitz Liangbing Hu 《Nano Research》 SCIE EI CAS CSCD 2017年第12期4256-4265,共10页
Rechargeable Li metal batteries using Li metal anodes have attracted worldwide interest because of their high energy density. The critical barriers limiting their commercial application include uncontrolled dendritic ... Rechargeable Li metal batteries using Li metal anodes have attracted worldwide interest because of their high energy density. The critical barriers limiting their commercial application include uncontrolled dendritic Li growth and the unstable Li-electrolyte interface. Considerable efforts have been directed towards solving these problems, e.g., modifying the electrolyte, creating artificial interfacial layers for the Li metal, and constructing three-dimensional structures for the Li metal. However, stabilizing the Li metal interface remains challenging because of the highly reactive nature of the Li metal. In this study, we utilize a Li-ion conducting hybrid film comprising a garnet-type ion conductor and a poly(ethylene oxide)-based polymer electrolyte as a protective layer to stabilize the Li-electrolyte interface and mitigate the growth of Li dendrites. The hybrid ion-conducting layer can block Li dendrites from proliferating and accommodate Li volume expansion because of its robust mechanical properties. Moreover, the ion-conducting layer allows Li deposition only underneath it, rather than on the surface, functioning as a permanent protective layer to ensure the stability of the Li metal over a long cycling life. The dendrite-inhibiting effect of the ion-conducting protective layer is visually evidenced by in situ microscopy using planar batteries. The protective Li metal anode exhibits excellent cycling stability and low voltage hysteresis (-15 mV at 0.2 mA-cm-2) for a cycle life as long as 1,000 h. It also shows a high Coulombic efficiency (-99.5%) in a full cell against a LiFePO4 cathode, exhibiting promise for application in Li metal batteries. Our results imply that the ion-conducting protective layer markedly improves the metal anode, yielding safe, long-life, and high-energy-density batteries. 展开更多
关键词 Li metal battery Li dendrites garnet solid-state electrolyte interface protection ion-conductingmembrane
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部