It was aim to investigate the interfacial microstructure and shear performance of Ti/Cu clad sheet produced by explosive welding and annealing. The experimental results demonstrate that the alternate distribution of i...It was aim to investigate the interfacial microstructure and shear performance of Ti/Cu clad sheet produced by explosive welding and annealing. The experimental results demonstrate that the alternate distribution of interfacial collision and vortex of flyer layer forms in the interface a few of solidification structure. TEM confirms that the interfacial interlayer contains obvious lattice distortion structure and intermetallic compounds. It interprets the explosive welding as the interfacial deformation and thermal diffusion process between dissimilar metals. The interfacial shear strength is very close to the Cu matrix strength, which is determined by the mixture of the mechanical bonding and metallurgical bonding. Several cracks exist on the shear fracture owing to the intermetallic compound in the interfacial solidifi cation structure and also the probable welding inclusion.展开更多
Mg/Al laminate with ZK60Mg and TiB2/6061Al as constitute layers was fabricated through the porthole die co-extrusion and hot rolling.The effects of rolling and roll temperatures on the microstructure,interfacial struc...Mg/Al laminate with ZK60Mg and TiB2/6061Al as constitute layers was fabricated through the porthole die co-extrusion and hot rolling.The effects of rolling and roll temperatures on the microstructure,interfacial structure,mechanical properties,and crack propagation paths were studied.The results show that the intermetallic compounds layer shows an intermittent form.The strong strain/dislocation hardening ability of Mg/Al laminate is attributed to the coupled effects of interlocking Al/βinterface,strain gradient,andβlayer with nanotwins and stacking faults.The complex dislocation structures such as network,loop,and array are found in the Al layer.Dislocation slip is the main deformation mode of the Al layer,while dislocation slip and dynamic recrystallization are the main deformation modes of the Mg layer.As roll temperature increases,prismatic〈a〉slip replaces the basal〈a〉slip as the most important slip mode.At a rolling temperature of 400℃ and a roll temperature of 150℃,an optimal synergy of mechanical properties is achieved,with ultimate tensile strength,shear strength,and elongation of 262.1 MPa,36.4 MPa,and 18.1%,respectively.As the rolling temperature increases,the fracture mode of Mg/Al laminate changes from discontinuous plastic shrinkage to transverse and longitudinal cracks.With increasing the roll temperature,the through cracks tend to form,indicating the plasticity and bonding quality of Mg/Al laminate are effectively enhanced.展开更多
基金Funded by the National Natural Science Foundation of China(Nos.U1332110 and 50971038)the Project of"Liaoning Bai Qian Wan Talents Program"of China(No.2013921071)
文摘It was aim to investigate the interfacial microstructure and shear performance of Ti/Cu clad sheet produced by explosive welding and annealing. The experimental results demonstrate that the alternate distribution of interfacial collision and vortex of flyer layer forms in the interface a few of solidification structure. TEM confirms that the interfacial interlayer contains obvious lattice distortion structure and intermetallic compounds. It interprets the explosive welding as the interfacial deformation and thermal diffusion process between dissimilar metals. The interfacial shear strength is very close to the Cu matrix strength, which is determined by the mixture of the mechanical bonding and metallurgical bonding. Several cracks exist on the shear fracture owing to the intermetallic compound in the interfacial solidifi cation structure and also the probable welding inclusion.
基金supported by the National Natural Science Foundation of China(Nos.52175338 and 52222510)Science Fund for Distinguished Young Scholars of Shandong Province(No.ZR2021JQ21)+1 种基金Key Research and Development Program of Shandong Province(No.2021ZLGX01)The Excellent Young Team Project of Central Universities(No.2023QNTD002).
文摘Mg/Al laminate with ZK60Mg and TiB2/6061Al as constitute layers was fabricated through the porthole die co-extrusion and hot rolling.The effects of rolling and roll temperatures on the microstructure,interfacial structure,mechanical properties,and crack propagation paths were studied.The results show that the intermetallic compounds layer shows an intermittent form.The strong strain/dislocation hardening ability of Mg/Al laminate is attributed to the coupled effects of interlocking Al/βinterface,strain gradient,andβlayer with nanotwins and stacking faults.The complex dislocation structures such as network,loop,and array are found in the Al layer.Dislocation slip is the main deformation mode of the Al layer,while dislocation slip and dynamic recrystallization are the main deformation modes of the Mg layer.As roll temperature increases,prismatic〈a〉slip replaces the basal〈a〉slip as the most important slip mode.At a rolling temperature of 400℃ and a roll temperature of 150℃,an optimal synergy of mechanical properties is achieved,with ultimate tensile strength,shear strength,and elongation of 262.1 MPa,36.4 MPa,and 18.1%,respectively.As the rolling temperature increases,the fracture mode of Mg/Al laminate changes from discontinuous plastic shrinkage to transverse and longitudinal cracks.With increasing the roll temperature,the through cracks tend to form,indicating the plasticity and bonding quality of Mg/Al laminate are effectively enhanced.