Heterojunction photocatalysts have shown considerable activities for organic pollutants degradation.However,the faint connection interface and inferior charge shift efficiency critically block the property of heteroju...Heterojunction photocatalysts have shown considerable activities for organic pollutants degradation.However,the faint connection interface and inferior charge shift efficiency critically block the property of heterojunction photocatalysis.Herein,Bi_(2)O_(2)S/NiFe_(2)O_(4) nanosheets heterojunction with ultrastrong inter-face interaction and high internal electric field are designed by an in-situ growth method.Tentative and theoretical consequences prove that the interfacial interaction and internal electric field not only act as the electron flow bridge but also decrease the electrons shift energy obstacle,thus speeding up electrons transfer and achieving effective spatial electron-hole separation.Therefore,a large amount of·O_(2)^(-)and holes as active species were generated.Remarkably,Bi_(2)O_(2) S/NiFe_(2)O_(4) establishes a considerably boosted photocatalytic performance for tetracycline degradation(0.032 min^(-1)),which is about 14.2-fold and 7.8-fold of the pristine BOS and NFO,respectively.This work provides a promising motivation for modulating charge transfer by interface control and internal electric field to boost photocatalytic performance.展开更多
Atomically thin lubrication materials with anti-friction properties are crucial for reducing energy consumption and extending the servicelifeofmicro/nanoelectromechanical systems(MEMS/NEMS).However,achieving atomicall...Atomically thin lubrication materials with anti-friction properties are crucial for reducing energy consumption and extending the servicelifeofmicro/nanoelectromechanical systems(MEMS/NEMS).However,achieving atomically thin films with ultra-low friction properties at the atomic/nanoscale even at the micrometer scale presents significant challenges.In this study,large-size and high-quality monolayer MoS_(2)(ML MoS_(2))was grown on SiO2/Si substrate by chemical vapor deposition(CVD)method.Compared with mechanically exfoliated ML MoS_(2),the CVD-grown ML MoS,(CVD-MoS_(2))exhibits an ultra-lower friction coefficient(0.00904).Based on the stick-slip effect and Prandtl-Tomlinson(P-T)model,the reduction of puckering effect indicates stronger interaction and lower interface potential barrier in tip,CVD-MoS_(2),and SiO,/Si substrate system.Moreover,combining with the density functional theory calculations,the stronger interface adhesion and higher overall charge redistribution degree of CVD-MoS_(2)can also be used to explain its ultralow friction state.This work will provide theoretical guidance for designing ultra-thin lubricating materials with ultra-low friction properties.展开更多
The pre-wetting of aggregate surface is a means to improve the interface performance of SBS modified asphalt and aggregate.The effect of pre-wetting technology on the interaction between SBS modified asphalt and aggre...The pre-wetting of aggregate surface is a means to improve the interface performance of SBS modified asphalt and aggregate.The effect of pre-wetting technology on the interaction between SBS modified asphalt and aggregate was analyzed by molecular dynamics simulation.The diffusion coefficient and concentration distribution of SBS modified asphalt on aggregate surface are included.The simulation results show that the diffusion coefficient of the aggregate surface of SBS modified asphalt is increased by 47.6%and 70.5%respectively after 110#asphalt and 130#asphalt are pre-wetted.The concentration distribution of SBS modified asphalt on the aggregate surface after pre-wetting is more uniform.According to the results of interface energy calculation,the interface energy of SBS modified bitumen and aggregate can be increased by about 5%after pre-wetting.According to the results of molecular dynamics simulation,the pre-wetting technology can effectively improve the interface workability of SBS modified bitumen and aggregate,so as to improve the interface performance.展开更多
In an aging society,the interface design of smart home products is crucial to the quality of life of the elderly.This paper combines Quality Function Deployment(QFD)and Human-Computer Interaction(HCI)theories,taking s...In an aging society,the interface design of smart home products is crucial to the quality of life of the elderly.This paper combines Quality Function Deployment(QFD)and Human-Computer Interaction(HCI)theories,taking smart washing machines as an example,to explore new paths for the interface design of smart home products for the elderly.An interdisciplinary approach is adopted to construct a design process centered on elderly users,introduce the Kano model to classify requirements,realize the mapping and sorting of requirements to design parameters,and adopt the PUGH model for comprehensive evaluation.This study provides practical and theoretical support for the interface design of smart home products for the elderly.展开更多
Fe_x(SiC_2 )_(1 - x) nanocomposites prepared by using mechanical alloying method were reported. The mi-crostructure character and magnetic properties of Fex (SiO_2) 1 - x nanocomposite samples with different Fe conten...Fe_x(SiC_2 )_(1 - x) nanocomposites prepared by using mechanical alloying method were reported. The mi-crostructure character and magnetic properties of Fex (SiO_2) 1 - x nanocomposite samples with different Fe content and different ball milling time were studied by using X-ray diffraction (XRD), transmission electron microscopy (TEM), Mossbauer spectroscopy, and Faraday magnetic balance in a wide temperature range. The results indicate that the mi-crostructure and magnetic properties are closely related to ball milling time and Fe content. When Fe content is less than 20 wt% , the sample after 80-h ball milling has very complex microstructure. Small α-Fe grains and Fe cluster are implanted in SiO2 matrix. And there are not only isolated α-Fe granular and Fe cluster, but also nanometer scaled sandwich network-like structure. Fex (SiO_2) 1 - x nanocomposite samples display a rich variety of physical and chemical properties as a result of their unique nanostructure, strong interface interaction and inter-osmosis effect in Fe-SiO_2 boundaries, and the grain size effect.展开更多
Recently,lipid nanoparticles(LNPs)have been extensively investigated as non-viral carriers of nucleic acid vaccines due to their high transport efficiency,safety,and straightforward production and scalability.However,...Recently,lipid nanoparticles(LNPs)have been extensively investigated as non-viral carriers of nucleic acid vaccines due to their high transport efficiency,safety,and straightforward production and scalability.However,the molecular mechanism underlying the interactions between nucleic acids and phospholipid bilayers within LNPs remains elusive.In this study,we employed the all-atom molecular dynamics simulation to investigate the interactions between single-stranded nucleic acids and a phospholipid bilayer.Our findings revealed that hydrophilic bases,specifically G in single-stranded RNA(ssRNA)and single-stranded DNA(ssDNA),displayed a higher propensity to form hydrogen bonds with phospholipid head groups.Notably,ssRNA exhibited stronger binding energy than ssDNA.Furthermore,divalent ions,particularly Ca2+,facilitated the binding of ssRNA to phospholipids due to their higher binding energy and lower dissociation rate from phospholipids.Overall,our study provides valuable insights into the molecular mechanisms underlying nucleic acidphospholipid interactions,with potential implications for the nucleic acids in biotherapies,particularly in the context of lipid carriers.展开更多
Pockets in proteins have been known to be very important for the life process. There have been several studies in the past to automatically extract the pockets from the structure information of known proteins. However...Pockets in proteins have been known to be very important for the life process. There have been several studies in the past to automatically extract the pockets from the structure information of known proteins. However, it is difficult to find a study comparing the precision of the extracted pockets from known pockets on the protein. In this paper, we propose an algorithm for extracting pockets from structure data of proteins and analyze the quality of the algorithm by comparing the extracted pockets with some known pockets. These results in this paper can be used to set the parameter values of the pocket extraction algorithm for getting better results.展开更多
Knowledge on the interactions between engineered nanomaterials(ENMs) and biological systems is critical both for the assessment of biological effects of ENMs and for the rational design of ENM-based products. However,...Knowledge on the interactions between engineered nanomaterials(ENMs) and biological systems is critical both for the assessment of biological effects of ENMs and for the rational design of ENM-based products. However, probing the events that occur at the nano-bio interface remains extremely challenging due to their complex and dynamic nature. So far, the understanding of mechanisms underlying nano-bio interactions has been mainly limited by the lack of proper analytical techniques with sufficient sensitivity, selectivity and resolution for characterization of nano-bio interface events. Moreover, many classic bioanalytical methods are not suitable for direct measurement of nano-bio interface interactions. These have made establishing analytical methodologies for systematic and comprehensive study of nano-bio interface one of the most focused areas in nanobiology. In this review we have discussed some representative developments regarding analytical techniques for nano-bio interface characterization, including the improvements of traditional methods and the emergence of powerful new technologies. These developments have allowed ultrasensitive, real-time analysis of interactions between ENMs and biomolecules, transformations of ENMs in biological environment, and impacts of ENMs on living systems on molecular or cellular level.展开更多
Today’s product creative design has rendered many fe atures and has brought a great change in our everyday life, there are many new c hallenges in its traditional theory and principle. According to the traditional de...Today’s product creative design has rendered many fe atures and has brought a great change in our everyday life, there are many new c hallenges in its traditional theory and principle. According to the traditional design theory, the FBS design model pays more attention to the function and stru cture of the product. But this model still couldn’t strengthen the relation bet ween product appearance design and human-machine design effectively. This paper adopt converse design thinking and presents an improved design thinking methodo logy based on C: FBS for product appearance design and give a general summarizat ion for the features, methods and technology based on human-machine interaction and interface. Meanwhile it also combines with the behavior design of product r elated IT fields and constructs a new outline to improve the design of product a ppearance supported by the technology of computer aided design. So the new metho d about design thinking for computer aided design, the new abstract product design model and the key problem of design thinking based on human-machine inte raction and interface are addressed in this paper. This kind of creative design theory that is driven by human-machine interaction and interface will help the development of CAD software system and the research of product design and manufa cture. Additionally, this paper gives some beneficial characters to address the theory based on human-machine interaction and interface. Meanwhile, combining with the developing of computer technology, the trends of design thinking based on t he technology of human-machine interaction and interface are also analyzed and discussed at the end of this paper.展开更多
Interface dislocations may dramatically change the electric properties, such as polarization, of the piezoelectric crystals. In this paper, we study the linear interactions of two interface dislocation loops with arbi...Interface dislocations may dramatically change the electric properties, such as polarization, of the piezoelectric crystals. In this paper, we study the linear interactions of two interface dislocation loops with arbitrary shape in generally anisotropic piezoelectric bi-crystals. A simple formula for calculating the interaction energy of the interface dislocation loops is derived and given by a double line integral along two closed dislocation curves. Particularly, interactions between two straight segments of the interface dislocations are solved analytically, which can be applied to approximate any curved loop so that an analytical solution can be also achieved. Numerical results show the influence of the bi-crystal interface as well as the material orientation on the interaction of interface dislocation loops.展开更多
A valid strategy to tailor the properties of polylactic acid for more extensive applications was introducing filler.In this work,basalt fiber assembled with in-situ SiO_(2) nanoparticles on the surface was successfull...A valid strategy to tailor the properties of polylactic acid for more extensive applications was introducing filler.In this work,basalt fiber assembled with in-situ SiO_(2) nanoparticles on the surface was successfully prepared via hydrothermal method and it was further treated with coupling agent KH-550 to improve interfacial interaction between polylactic acid(PLA)and basalt fibers(BF).It was demonstrated that the introduction of BFS could increase the crystallization of PLA and resulted in forming trans-crystallization based on TG and DSC results.The tensile strength of PLA/BF composites raised from 39 MPa to 62.5 MPa with increasing the fiber loading from 1 wt%to 10 wt%.Furthermore,the interfacial interaction could be effectively improved by assembling SiO_(2)(especially with 250 nm in diameter)on BF surface to build mechanical locking,which could keep the PLA matrix in place during the mechanical deformation with the tensile strength value raised from 62.5 MPa to 74.0 MPa.It is noticeable that the impact and flexural properties were effectively increased with the incorporation of in-situ SiO_(2) nanoparticles.The further KH-550 treatment made a positive impact as well.For instance,the impact strength and flexural strength of the sample with SiO_(2) and KH-550 modification were improved to 22.49 k J/m^(2) and 146.83 MPa and it enhanced about 42.16%and 41.04%than those of neat PLA,respectively.Therefore,an efficient enhancement of mechanical performance was achieved and this concept of assembling in-situ SiO_(2) on silica-based fiber as a modifier was a novel and simple path to design the interfacial construction and properties of the polymer composites.展开更多
DNA-functionalized gold nanoparticles are one of the most versatile bionanomaterials for biomedical and clinical diagnosis. Herein, we discovered that the performance of DNAzyme cleaving the substrate is highly relate...DNA-functionalized gold nanoparticles are one of the most versatile bionanomaterials for biomedical and clinical diagnosis. Herein, we discovered that the performance of DNAzyme cleaving the substrate is highly related to its length. This intriguing phenomenon only appears at the interfaces of DNAfunctionalized gold nanoparticles. We systematically investigated the causes of this phenomenon. We conjectured that the DNAzyme with extended nucleotides that do not match its substrate strand is vulnerable to non-specific adsorption, electrostatic repulsion, and steric hindrance. Based on our improved understanding of this phenomenon, we have successfully developed a highly sensitive and specific amplifiable biosensor to detect human apurinic/apyrimidinic endonuclease 1.展开更多
Two-dimensional(2D) semiconductors have captured broad interest as light emitters, due to their unique excitonic effects. These layer-blocks can be integrated through van der Waals assembly, i.e., fabricating homo-or ...Two-dimensional(2D) semiconductors have captured broad interest as light emitters, due to their unique excitonic effects. These layer-blocks can be integrated through van der Waals assembly, i.e., fabricating homo-or heterojunctions, which show novel emission properties caused by interface engineering. In this review, we will first give an overview of the basic strategies that have been employed in interface engineering, including changing components, adjusting interlayer gap, and tuning twist angle. By modifying the interfacial factors, novel emission properties of emerging excitons are unveiled and discussed. Generally, well-tailored interfacial energy transfer and charge transfer within a 2D heterostructure cause static modulation of the brightness of intralayer excitons. As a special case, dynamically correlated dual-color emission in weakly-coupled bilayers will be introduced, which originates from intermittent interlayer charge transfer. For homobilayers and type Ⅱ heterobilayers, interlayer excitons with electrons and holes residing in neighboring layers are another important topic in this review. Moreover, the overlap of two crystal lattices forms moiré patterns with a relatively large period, taking effect on intralayer and interlayer excitons. Particularly, theoretical and experimental progresses on spatially modulated moiré excitons with ultra-sharp linewidth and quantum emission properties will be highlighted. Moiré quantum emitter provides uniform and integratable arrays of single photon emitters that are previously inaccessible, which is essential in quantum many-body simulation and quantum information processing. Benefiting from the optically addressable spin and valley indices, 2D heterostructures have become an indispensable platform for investigating exciton physics, designing and integrating novel concept emitters.展开更多
In order to find a parameter as the evaluation index that can capture the effect of the interaction between asphalt and aggregate, the rheological properties of asphalt mastics using two kinds of asphalts and four kin...In order to find a parameter as the evaluation index that can capture the effect of the interaction between asphalt and aggregate, the rheological properties of asphalt mastics using two kinds of asphalts and four kinds of aggregates under different filler-asphalt ratios were measured by a dynamic shear rheometer (DSR). Moreover, four rheological parameters of K.Ziegel-B, Luis Ibrarra-A, complex shear modulus ΔG*and complex viscosity Δη* for evaluating the interaction ability were studied. Results indicate that all the four parameters can characterize the interaction ability of asphalt and aggregate correctly and feasibly. Through the comparison of sensitivities and physical meanings of the four parameters, K.Ziegel-B with high sensitivity and exact physical meaning is finally selected as the evaluation index for interaction ability of asphalt and aggregate.展开更多
The membrane method based on adaptive wettability shows great advantages in oil-water separation.At present,researches focus on the excellent application performance of the membrane material,while the quantitative ana...The membrane method based on adaptive wettability shows great advantages in oil-water separation.At present,researches focus on the excellent application performance of the membrane material,while the quantitative analysis of interactions in oil-water separation is rarely recognized.Herein,we constructed an adaptable wettability membrane with multiple polymer networks by polydopamine(PDA)and mussel-inspired amphiphilic polymer.Based on the Owens three-probe liquid method,the surface energy of the modified membrane was verified to meet the adaptive wettability conditions,with surface energies(γ-8)of 147.6 mJ m^(−2)(superhydrophilic/underwater superoleophobic)and 49.87 mJ m^(−2)(superhydrophobic/superoleophobic),respectively.The adhesion or repulsion of the membrane to the oil phase under different conditions during the separation process was quantified by the chemical probe AFM technique.In addition,the oil-water selective separation mechanism was further analyzed in a simplified membrane microchannel model.The results show that the different wetting produces capillary additional pressure in opposite directions,resulting in different energies to be overcome when the oil or water passes through the microchannels,thus achieving selective separation.展开更多
The fusion of VlSI (visual identity system Internet), digital maps and Web GIS is presented. Web GIS interface interactive design with VISI needs to consider more new factors. VISI can provide the design principle, ...The fusion of VlSI (visual identity system Internet), digital maps and Web GIS is presented. Web GIS interface interactive design with VISI needs to consider more new factors. VISI can provide the design principle, elements and contents for the Web GIS. The design of the Wuhan Bus Search System is fulfilled to confirm the validity and practicability of the fusion.展开更多
It is difficult to achieve selective separation and enrichment of different rare earths from high abundance yttrium ores efficiently only dependent on their discrepancy in thermodynamic properties.The present work sug...It is difficult to achieve selective separation and enrichment of different rare earths from high abundance yttrium ores efficiently only dependent on their discrepancy in thermodynamic properties.The present work suggests a new strategy based on non-equilibrium kinetic separation of Er and Tm on the surface of freely rising oil droplets to control the separation order of Y.It is revealed that the mutual separation of Er/Tm is significantly promoted with the separation coefficient of 2.89 during the non-equilibrium extraction with the addition of diethylenetriaminepentaacetic acid(DTPA).The extraction sequence of Tm,Er and Y can be controlled as Tm>Y>Er,thus Y can be selectively enriched during the process of separation of Er and Tm,Such a sequence is subject to the controllable dissociation rates of RE(Ⅲ)-DTPA complexes and extraction abilities of P507 with the three RE(Ⅲ)ions.The dissociation rate is dependent on the stabilities of RE(Ⅲ)-DTPA complexes and follows the sequence ofY(Ⅲ)—DTPA Er>Y to Tm>Y>Er.展开更多
Submerged entry nozzle(SEN)clogging is a major problem affecting the production quality of rare earth steel,and finding a suitable refractory outlet can significantly reduce production costs.To explore the relationshi...Submerged entry nozzle(SEN)clogging is a major problem affecting the production quality of rare earth steel,and finding a suitable refractory outlet can significantly reduce production costs.To explore the relationship between refractory composition and interface interaction,unprotected coated Al_(2)O_(3)–MgO refractories and SiO2-coated Al_(2)O_(3)–MgO refractories were added to rare earth high-carbon heavy rail steel under laboratory conditions,and the Al_(2)O_(3)–MgO refractory was found to be more suitable.The results show that,from the epoxy resin side to the refractory side,the contour of the refractory interface reaction layer can be divided into two main layers:an iron-rich reaction layer and an iron-poor reaction layer.Calculations based on the spherical model suggest that the adhesion force is proportional to the size of the refractory particles and inclusions,and the same result applies to the surface tension.Controlling the inclusions at a smaller size has a specific effect on alleviating the erosion of refractories.Combined with the erosion mechanism of Al_(2)O_(3)–MgO refractories,the interface reaction mechanism between Al_(2)O_(3)–MgO refractories and molten steel was proposed,which provides ideas for solving SEN clogging.展开更多
The corrosion of steels in liquid metal lead (Pb) and bismuth (Bi) is a critical challenge in the development of accel-erator driven systems (ADS). Using a first-principles method with a slab model, we theoretic...The corrosion of steels in liquid metal lead (Pb) and bismuth (Bi) is a critical challenge in the development of accel-erator driven systems (ADS). Using a first-principles method with a slab model, we theoretically investigate the interaction between the Pb (Bi) atom and the iron (Fe) (100) surface to assess the fundamental corrosion properties. Our investigation demonstrates that both Pb and Bi atoms favorably adsorb on the (100) surface. Such an adsorption decreases the energy required for the dissociation of an Fe atom from the surface, enhancing the dissolution tendency significantly. The seg- regation of six common alloying elements (Cr, A1, Mn, Ni, Nb, and Si) to the surface and their impacts on the corrosion properties are also considered. The present results reveal that Si seems to have a relatively good performance to stabilize the surface and alleviate the dissolving trend caused by Pb and Bi.展开更多
A novel process for synthesizing nano-ceramics powders, named mechanical & therm al activation processing, is discussed in the present paper. It is a processing based on thermal activation in liquid phase (molten ...A novel process for synthesizing nano-ceramics powders, named mechanical & therm al activation processing, is discussed in the present paper. It is a processing based on thermal activation in liquid phase (molten salt) after mechanical activ ation. The nanometer-sized TiC particles (15-20nm) have been synthesized by the method, and analyzed by X-ray diffraction (XRD), transmission electron microscop e (TEM), scanning electron microscopy (SEM) and energy dispersion X-ray (EDX) sp ectroscopy. An interface interaction between liquid (molten salt) and solid (fin al product particles) phases plays a dominating role for the control of product particles size. The mechanism for the formation of nanometer-sized TiC particles has been discussed.展开更多
基金the financial support by the National Natural Science Foundation of China as general projects(Grant Nos.51779068,52070066,52211530084,42277059,and 22006029)Tianjin Commission of Science and Technology as key technologies R&D projects(No.21YFSNSN00250)+1 种基金Doctoral Inno-vation Project of Hebei Province(CXZZBS2023031)the Royal Society/International Exchanges 2021 Cost Share/NSFC(Grant No.IEC\NSFC\211142).
文摘Heterojunction photocatalysts have shown considerable activities for organic pollutants degradation.However,the faint connection interface and inferior charge shift efficiency critically block the property of heterojunction photocatalysis.Herein,Bi_(2)O_(2)S/NiFe_(2)O_(4) nanosheets heterojunction with ultrastrong inter-face interaction and high internal electric field are designed by an in-situ growth method.Tentative and theoretical consequences prove that the interfacial interaction and internal electric field not only act as the electron flow bridge but also decrease the electrons shift energy obstacle,thus speeding up electrons transfer and achieving effective spatial electron-hole separation.Therefore,a large amount of·O_(2)^(-)and holes as active species were generated.Remarkably,Bi_(2)O_(2) S/NiFe_(2)O_(4) establishes a considerably boosted photocatalytic performance for tetracycline degradation(0.032 min^(-1)),which is about 14.2-fold and 7.8-fold of the pristine BOS and NFO,respectively.This work provides a promising motivation for modulating charge transfer by interface control and internal electric field to boost photocatalytic performance.
基金support of the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDB 0470103)the National Natural Science Foundation of China(Nos.52205230 and 52305233)the Key Research and Development Program in Shandong Province(No.SYS202203).
文摘Atomically thin lubrication materials with anti-friction properties are crucial for reducing energy consumption and extending the servicelifeofmicro/nanoelectromechanical systems(MEMS/NEMS).However,achieving atomically thin films with ultra-low friction properties at the atomic/nanoscale even at the micrometer scale presents significant challenges.In this study,large-size and high-quality monolayer MoS_(2)(ML MoS_(2))was grown on SiO2/Si substrate by chemical vapor deposition(CVD)method.Compared with mechanically exfoliated ML MoS_(2),the CVD-grown ML MoS,(CVD-MoS_(2))exhibits an ultra-lower friction coefficient(0.00904).Based on the stick-slip effect and Prandtl-Tomlinson(P-T)model,the reduction of puckering effect indicates stronger interaction and lower interface potential barrier in tip,CVD-MoS_(2),and SiO,/Si substrate system.Moreover,combining with the density functional theory calculations,the stronger interface adhesion and higher overall charge redistribution degree of CVD-MoS_(2)can also be used to explain its ultralow friction state.This work will provide theoretical guidance for designing ultra-thin lubricating materials with ultra-low friction properties.
基金Funded by the Research Funds of China University of Mining and Technology(No.102523215)。
文摘The pre-wetting of aggregate surface is a means to improve the interface performance of SBS modified asphalt and aggregate.The effect of pre-wetting technology on the interaction between SBS modified asphalt and aggregate was analyzed by molecular dynamics simulation.The diffusion coefficient and concentration distribution of SBS modified asphalt on aggregate surface are included.The simulation results show that the diffusion coefficient of the aggregate surface of SBS modified asphalt is increased by 47.6%and 70.5%respectively after 110#asphalt and 130#asphalt are pre-wetted.The concentration distribution of SBS modified asphalt on the aggregate surface after pre-wetting is more uniform.According to the results of interface energy calculation,the interface energy of SBS modified bitumen and aggregate can be increased by about 5%after pre-wetting.According to the results of molecular dynamics simulation,the pre-wetting technology can effectively improve the interface workability of SBS modified bitumen and aggregate,so as to improve the interface performance.
文摘In an aging society,the interface design of smart home products is crucial to the quality of life of the elderly.This paper combines Quality Function Deployment(QFD)and Human-Computer Interaction(HCI)theories,taking smart washing machines as an example,to explore new paths for the interface design of smart home products for the elderly.An interdisciplinary approach is adopted to construct a design process centered on elderly users,introduce the Kano model to classify requirements,realize the mapping and sorting of requirements to design parameters,and adopt the PUGH model for comprehensive evaluation.This study provides practical and theoretical support for the interface design of smart home products for the elderly.
基金Project supported by the Foundation of State ScienceTechnology Commission of China the Natural Science Foundation of Anhui Province
文摘Fe_x(SiC_2 )_(1 - x) nanocomposites prepared by using mechanical alloying method were reported. The mi-crostructure character and magnetic properties of Fex (SiO_2) 1 - x nanocomposite samples with different Fe content and different ball milling time were studied by using X-ray diffraction (XRD), transmission electron microscopy (TEM), Mossbauer spectroscopy, and Faraday magnetic balance in a wide temperature range. The results indicate that the mi-crostructure and magnetic properties are closely related to ball milling time and Fe content. When Fe content is less than 20 wt% , the sample after 80-h ball milling has very complex microstructure. Small α-Fe grains and Fe cluster are implanted in SiO2 matrix. And there are not only isolated α-Fe granular and Fe cluster, but also nanometer scaled sandwich network-like structure. Fex (SiO_2) 1 - x nanocomposite samples display a rich variety of physical and chemical properties as a result of their unique nanostructure, strong interface interaction and inter-osmosis effect in Fe-SiO_2 boundaries, and the grain size effect.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12222506,12347102,and 12174184).
文摘Recently,lipid nanoparticles(LNPs)have been extensively investigated as non-viral carriers of nucleic acid vaccines due to their high transport efficiency,safety,and straightforward production and scalability.However,the molecular mechanism underlying the interactions between nucleic acids and phospholipid bilayers within LNPs remains elusive.In this study,we employed the all-atom molecular dynamics simulation to investigate the interactions between single-stranded nucleic acids and a phospholipid bilayer.Our findings revealed that hydrophilic bases,specifically G in single-stranded RNA(ssRNA)and single-stranded DNA(ssDNA),displayed a higher propensity to form hydrogen bonds with phospholipid head groups.Notably,ssRNA exhibited stronger binding energy than ssDNA.Furthermore,divalent ions,particularly Ca2+,facilitated the binding of ssRNA to phospholipids due to their higher binding energy and lower dissociation rate from phospholipids.Overall,our study provides valuable insights into the molecular mechanisms underlying nucleic acidphospholipid interactions,with potential implications for the nucleic acids in biotherapies,particularly in the context of lipid carriers.
基金Project supported by Creative Research Initiative from the Ministry of Science and Technology (MOST), Korea. BHAK Jonghwa is supported by Biogreen21 Fund and MOST Funds, Korea
文摘Pockets in proteins have been known to be very important for the life process. There have been several studies in the past to automatically extract the pockets from the structure information of known proteins. However, it is difficult to find a study comparing the precision of the extracted pockets from known pockets on the protein. In this paper, we propose an algorithm for extracting pockets from structure data of proteins and analyze the quality of the algorithm by comparing the extracted pockets with some known pockets. These results in this paper can be used to set the parameter values of the pocket extraction algorithm for getting better results.
基金supported by the National Natural Science Foundation of China (21320102003, 31200752, 31661130152, 11435002)the National Distinguished Young Scientists Program (31325010)
文摘Knowledge on the interactions between engineered nanomaterials(ENMs) and biological systems is critical both for the assessment of biological effects of ENMs and for the rational design of ENM-based products. However, probing the events that occur at the nano-bio interface remains extremely challenging due to their complex and dynamic nature. So far, the understanding of mechanisms underlying nano-bio interactions has been mainly limited by the lack of proper analytical techniques with sufficient sensitivity, selectivity and resolution for characterization of nano-bio interface events. Moreover, many classic bioanalytical methods are not suitable for direct measurement of nano-bio interface interactions. These have made establishing analytical methodologies for systematic and comprehensive study of nano-bio interface one of the most focused areas in nanobiology. In this review we have discussed some representative developments regarding analytical techniques for nano-bio interface characterization, including the improvements of traditional methods and the emergence of powerful new technologies. These developments have allowed ultrasensitive, real-time analysis of interactions between ENMs and biomolecules, transformations of ENMs in biological environment, and impacts of ENMs on living systems on molecular or cellular level.
文摘Today’s product creative design has rendered many fe atures and has brought a great change in our everyday life, there are many new c hallenges in its traditional theory and principle. According to the traditional design theory, the FBS design model pays more attention to the function and stru cture of the product. But this model still couldn’t strengthen the relation bet ween product appearance design and human-machine design effectively. This paper adopt converse design thinking and presents an improved design thinking methodo logy based on C: FBS for product appearance design and give a general summarizat ion for the features, methods and technology based on human-machine interaction and interface. Meanwhile it also combines with the behavior design of product r elated IT fields and constructs a new outline to improve the design of product a ppearance supported by the technology of computer aided design. So the new metho d about design thinking for computer aided design, the new abstract product design model and the key problem of design thinking based on human-machine inte raction and interface are addressed in this paper. This kind of creative design theory that is driven by human-machine interaction and interface will help the development of CAD software system and the research of product design and manufa cture. Additionally, this paper gives some beneficial characters to address the theory based on human-machine interaction and interface. Meanwhile, combining with the developing of computer technology, the trends of design thinking based on t he technology of human-machine interaction and interface are also analyzed and discussed at the end of this paper.
基金supports from the National Natural Science Foundation of China(11402133 and 11502128)
文摘Interface dislocations may dramatically change the electric properties, such as polarization, of the piezoelectric crystals. In this paper, we study the linear interactions of two interface dislocation loops with arbitrary shape in generally anisotropic piezoelectric bi-crystals. A simple formula for calculating the interaction energy of the interface dislocation loops is derived and given by a double line integral along two closed dislocation curves. Particularly, interactions between two straight segments of the interface dislocations are solved analytically, which can be applied to approximate any curved loop so that an analytical solution can be also achieved. Numerical results show the influence of the bi-crystal interface as well as the material orientation on the interaction of interface dislocation loops.
基金funded by China Postdoctoral Science Foundation(No.2018M643699)the Xi’an Science and Technology Bureau Innovation Leading Projects(No.201805037YD15CG21(23))+2 种基金the Natural Science Foundation of Shaanxi Province(No.2019JQ741)the Science and Technology Bureau of Beilin District,Xi’an(No.GX2035)the Postdoctoral Science Foundation of Shaanxi Province(No.2018BSHEDZZ101)。
文摘A valid strategy to tailor the properties of polylactic acid for more extensive applications was introducing filler.In this work,basalt fiber assembled with in-situ SiO_(2) nanoparticles on the surface was successfully prepared via hydrothermal method and it was further treated with coupling agent KH-550 to improve interfacial interaction between polylactic acid(PLA)and basalt fibers(BF).It was demonstrated that the introduction of BFS could increase the crystallization of PLA and resulted in forming trans-crystallization based on TG and DSC results.The tensile strength of PLA/BF composites raised from 39 MPa to 62.5 MPa with increasing the fiber loading from 1 wt%to 10 wt%.Furthermore,the interfacial interaction could be effectively improved by assembling SiO_(2)(especially with 250 nm in diameter)on BF surface to build mechanical locking,which could keep the PLA matrix in place during the mechanical deformation with the tensile strength value raised from 62.5 MPa to 74.0 MPa.It is noticeable that the impact and flexural properties were effectively increased with the incorporation of in-situ SiO_(2) nanoparticles.The further KH-550 treatment made a positive impact as well.For instance,the impact strength and flexural strength of the sample with SiO_(2) and KH-550 modification were improved to 22.49 k J/m^(2) and 146.83 MPa and it enhanced about 42.16%and 41.04%than those of neat PLA,respectively.Therefore,an efficient enhancement of mechanical performance was achieved and this concept of assembling in-situ SiO_(2) on silica-based fiber as a modifier was a novel and simple path to design the interfacial construction and properties of the polymer composites.
基金the National Natural Science Foundation of China (Nos. 82172372 and 21904045)COVID-19 Pneumonia Emergency Scientific Research Special Fund of Wuhan (No. EX20D03)the Fundamental Research Funds for the Central Universities (Nos. 2019kfy XJJS169 and 2021yjs CXCY127)。
文摘DNA-functionalized gold nanoparticles are one of the most versatile bionanomaterials for biomedical and clinical diagnosis. Herein, we discovered that the performance of DNAzyme cleaving the substrate is highly related to its length. This intriguing phenomenon only appears at the interfaces of DNAfunctionalized gold nanoparticles. We systematically investigated the causes of this phenomenon. We conjectured that the DNAzyme with extended nucleotides that do not match its substrate strand is vulnerable to non-specific adsorption, electrostatic repulsion, and steric hindrance. Based on our improved understanding of this phenomenon, we have successfully developed a highly sensitive and specific amplifiable biosensor to detect human apurinic/apyrimidinic endonuclease 1.
基金supported by the Natural Science Foundation of China(22203042,21873048 and 22173044)。
文摘Two-dimensional(2D) semiconductors have captured broad interest as light emitters, due to their unique excitonic effects. These layer-blocks can be integrated through van der Waals assembly, i.e., fabricating homo-or heterojunctions, which show novel emission properties caused by interface engineering. In this review, we will first give an overview of the basic strategies that have been employed in interface engineering, including changing components, adjusting interlayer gap, and tuning twist angle. By modifying the interfacial factors, novel emission properties of emerging excitons are unveiled and discussed. Generally, well-tailored interfacial energy transfer and charge transfer within a 2D heterostructure cause static modulation of the brightness of intralayer excitons. As a special case, dynamically correlated dual-color emission in weakly-coupled bilayers will be introduced, which originates from intermittent interlayer charge transfer. For homobilayers and type Ⅱ heterobilayers, interlayer excitons with electrons and holes residing in neighboring layers are another important topic in this review. Moreover, the overlap of two crystal lattices forms moiré patterns with a relatively large period, taking effect on intralayer and interlayer excitons. Particularly, theoretical and experimental progresses on spatially modulated moiré excitons with ultra-sharp linewidth and quantum emission properties will be highlighted. Moiré quantum emitter provides uniform and integratable arrays of single photon emitters that are previously inaccessible, which is essential in quantum many-body simulation and quantum information processing. Benefiting from the optically addressable spin and valley indices, 2D heterostructures have become an indispensable platform for investigating exciton physics, designing and integrating novel concept emitters.
基金the National Natural Science Foundation of China(Nos.51108138,51008099)the Program for New Century Excellent Talents in University by Ministry of Education(No.NCET-06–0340)
文摘In order to find a parameter as the evaluation index that can capture the effect of the interaction between asphalt and aggregate, the rheological properties of asphalt mastics using two kinds of asphalts and four kinds of aggregates under different filler-asphalt ratios were measured by a dynamic shear rheometer (DSR). Moreover, four rheological parameters of K.Ziegel-B, Luis Ibrarra-A, complex shear modulus ΔG*and complex viscosity Δη* for evaluating the interaction ability were studied. Results indicate that all the four parameters can characterize the interaction ability of asphalt and aggregate correctly and feasibly. Through the comparison of sensitivities and physical meanings of the four parameters, K.Ziegel-B with high sensitivity and exact physical meaning is finally selected as the evaluation index for interaction ability of asphalt and aggregate.
基金We gratefully acknowledge the financial support from National Key Research and Development Project,China(2019YFA0708700)the National Natural Science Foundation of China(52222403,52074333)the Innovation Fund Project for graduate students of China University of Petroleum(East China)(22CX04049A).
文摘The membrane method based on adaptive wettability shows great advantages in oil-water separation.At present,researches focus on the excellent application performance of the membrane material,while the quantitative analysis of interactions in oil-water separation is rarely recognized.Herein,we constructed an adaptable wettability membrane with multiple polymer networks by polydopamine(PDA)and mussel-inspired amphiphilic polymer.Based on the Owens three-probe liquid method,the surface energy of the modified membrane was verified to meet the adaptive wettability conditions,with surface energies(γ-8)of 147.6 mJ m^(−2)(superhydrophilic/underwater superoleophobic)and 49.87 mJ m^(−2)(superhydrophobic/superoleophobic),respectively.The adhesion or repulsion of the membrane to the oil phase under different conditions during the separation process was quantified by the chemical probe AFM technique.In addition,the oil-water selective separation mechanism was further analyzed in a simplified membrane microchannel model.The results show that the different wetting produces capillary additional pressure in opposite directions,resulting in different energies to be overcome when the oil or water passes through the microchannels,thus achieving selective separation.
基金Supported by the National Natural Science Foundation of China (No. 40071071).
文摘The fusion of VlSI (visual identity system Internet), digital maps and Web GIS is presented. Web GIS interface interactive design with VISI needs to consider more new factors. VISI can provide the design principle, elements and contents for the Web GIS. The design of the Wuhan Bus Search System is fulfilled to confirm the validity and practicability of the fusion.
基金Project supported by the National Natural Science Foundation of China(51904027,52074031,51574213)。
文摘It is difficult to achieve selective separation and enrichment of different rare earths from high abundance yttrium ores efficiently only dependent on their discrepancy in thermodynamic properties.The present work suggests a new strategy based on non-equilibrium kinetic separation of Er and Tm on the surface of freely rising oil droplets to control the separation order of Y.It is revealed that the mutual separation of Er/Tm is significantly promoted with the separation coefficient of 2.89 during the non-equilibrium extraction with the addition of diethylenetriaminepentaacetic acid(DTPA).The extraction sequence of Tm,Er and Y can be controlled as Tm>Y>Er,thus Y can be selectively enriched during the process of separation of Er and Tm,Such a sequence is subject to the controllable dissociation rates of RE(Ⅲ)-DTPA complexes and extraction abilities of P507 with the three RE(Ⅲ)ions.The dissociation rate is dependent on the stabilities of RE(Ⅲ)-DTPA complexes and follows the sequence ofY(Ⅲ)—DTPA Er>Y to Tm>Y>Er.
基金the State Key Laboratory of Rare Earth Resources Research and Comprehensive Utilization of Baiyun Obo for the open project(Grant No.2022(Kehe)00281)the Central Government Guidance Local Science and Technology Development Fund Project(Grant No.2022ZY0124)for supporting this worksupported by the National Natural Science Foundation of China(Grant No.52074179).
文摘Submerged entry nozzle(SEN)clogging is a major problem affecting the production quality of rare earth steel,and finding a suitable refractory outlet can significantly reduce production costs.To explore the relationship between refractory composition and interface interaction,unprotected coated Al_(2)O_(3)–MgO refractories and SiO2-coated Al_(2)O_(3)–MgO refractories were added to rare earth high-carbon heavy rail steel under laboratory conditions,and the Al_(2)O_(3)–MgO refractory was found to be more suitable.The results show that,from the epoxy resin side to the refractory side,the contour of the refractory interface reaction layer can be divided into two main layers:an iron-rich reaction layer and an iron-poor reaction layer.Calculations based on the spherical model suggest that the adhesion force is proportional to the size of the refractory particles and inclusions,and the same result applies to the surface tension.Controlling the inclusions at a smaller size has a specific effect on alleviating the erosion of refractories.Combined with the erosion mechanism of Al_(2)O_(3)–MgO refractories,the interface reaction mechanism between Al_(2)O_(3)–MgO refractories and molten steel was proposed,which provides ideas for solving SEN clogging.
基金Project supported by the Strategic Priority Research Program of Chinese Academy of Sciences(Grant Nos.KJCX2-YW-N35 and XDA03010303)the National Natural Science Foundation of China(Grant Nos.91026002 and 91126002)the National Magnetic Confinement Fusion Program,China(Grant No.2011GB108004)
文摘The corrosion of steels in liquid metal lead (Pb) and bismuth (Bi) is a critical challenge in the development of accel-erator driven systems (ADS). Using a first-principles method with a slab model, we theoretically investigate the interaction between the Pb (Bi) atom and the iron (Fe) (100) surface to assess the fundamental corrosion properties. Our investigation demonstrates that both Pb and Bi atoms favorably adsorb on the (100) surface. Such an adsorption decreases the energy required for the dissociation of an Fe atom from the surface, enhancing the dissolution tendency significantly. The seg- regation of six common alloying elements (Cr, A1, Mn, Ni, Nb, and Si) to the surface and their impacts on the corrosion properties are also considered. The present results reveal that Si seems to have a relatively good performance to stabilize the surface and alleviate the dissolving trend caused by Pb and Bi.
基金The project was supported by China Postdoctoral Science Foundation(No.2003034452)National Natural Science Foundation of China(No.50371027).
文摘A novel process for synthesizing nano-ceramics powders, named mechanical & therm al activation processing, is discussed in the present paper. It is a processing based on thermal activation in liquid phase (molten salt) after mechanical activ ation. The nanometer-sized TiC particles (15-20nm) have been synthesized by the method, and analyzed by X-ray diffraction (XRD), transmission electron microscop e (TEM), scanning electron microscopy (SEM) and energy dispersion X-ray (EDX) sp ectroscopy. An interface interaction between liquid (molten salt) and solid (fin al product particles) phases plays a dominating role for the control of product particles size. The mechanism for the formation of nanometer-sized TiC particles has been discussed.