期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Theoretical investigation on axial cyclic performance of monopile in sands using interface constitutive models 被引量:1
1
作者 Pan Zhou Jingpei Li +2 位作者 Kaoshan Dai Stefan Vogt Seyedmohsen Miraei 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第7期2645-2662,共18页
Cyclic loads generated by environmental factors,such as winds,waves,and trains,will likely lead to performance degradation in pile foundations,resulting in issues like permanent displacement accumulation and bearing c... Cyclic loads generated by environmental factors,such as winds,waves,and trains,will likely lead to performance degradation in pile foundations,resulting in issues like permanent displacement accumulation and bearing capacity attenuation.This paper presents a semi-analytical solution for predicting the axial cyclic behavior of piles in sands.The solution relies on two enhanced nonlinear load-transfer models considering stress-strain hysteresis and cyclic degradation in the pile-soil interaction.Model parameters are calibrated through cyclic shear tests of the sand-steel interface and laboratory geotechnical testing of sands.A novel aspect involves the meticulous formulation of the shaft loadtransfer function using an interface constitutive model,which inherently inherits the interface model’s advantages,such as capturing hysteresis,hardening,degradation,and particle breakage.The semi-analytical solution is computed numerically using the matrix displacement method,and the calculated values are validated through model tests performed on non-displacement and displacement piles in sands.The results demonstrate that the predicted values show excellent agreement with the measured values for both the static and cyclic responses of piles in sands.The displacement pile response,including factors such as bearing capacity,mobilized shaft resistance,and convergence rate of permanent settlement,exhibit improvements compared to non-displacement piles attributed to the soil squeezing effect.This methodology presents an innovative analytical framework,allowing for integrating cyclic interface models into the theoretical investigation of pile responses. 展开更多
关键词 PILES Cyclic degradation Load-transfer models interface constitutive model Semi-analytical solution model tests
在线阅读 下载PDF
Development and application of an interface constitutive model for fully grouted rock-bolts and cable-bolts 被引量:3
2
作者 Emad Jahangir Laura Blanco-Martin +1 位作者 Faouzi Hadj-Hassen Michel Tijani 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2021年第4期811-819,共9页
This paper proposes a new interface constitutive model for fully grouted rock-bolts and cable-bolts based on pull-out test results.A database was created combining published experimental data with in-house tests.By me... This paper proposes a new interface constitutive model for fully grouted rock-bolts and cable-bolts based on pull-out test results.A database was created combining published experimental data with in-house tests.By means of a comprehensive framework,a Coulomb-type failure criterion accounting for friction mobilization was defined.During the elastic phase,in which the interface joint is not yet created,the proposed model provides zero radial displacement,and once the interface joint is created,interface dilatancy is modeled using a non-associated plastic potential inspired from the behavior of rock joints.The results predicted by the proposed model are in good agreement with experimental results.The model has been implemented in a finite element method(FEM)code and numerical simulations have been performed at the elementary and the structural scales.The results obtained provide confidence in the ability of the new model to assist in the design and optimization of bolting patterns. 展开更多
关键词 Fully grouted bolts interface constitutive model DILATANCY Pull-out tests Finite element method(FEM)modeling
在线阅读 下载PDF
Disturbed state concept as unified constitutive modeling approach 被引量:5
3
作者 Chandrakant S.Desai 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2016年第3期277-293,共17页
A unified constitutive modeling approach is highly desirable to characterize a wide range of engineeringmaterials subjected simultaneously to the effect of a number of factors such as elastic, plastic and creepdeforma... A unified constitutive modeling approach is highly desirable to characterize a wide range of engineeringmaterials subjected simultaneously to the effect of a number of factors such as elastic, plastic and creepdeformations, stress path, volume change, microcracking leading to fracture, failure and softening,stiffening, and mechanical and environmental forces. There are hardly available such unified models. Thedisturbed state concept (DSC) is considered to be a unified approach and is able to provide materialcharacterization for almost all of the above factors. This paper presents a description of the DSC, andstatements for determination of parameters based on triaxial, multiaxial and interface tests. Statementsof DSC and validation at the specimen level and at the boundary value problem levels are also presented.An extensive list of publications by the author and others is provided at the end. The DSC is considered tobe a unique and versatile procedure for modeling behaviors of engineering materials and interfaces. 2016 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting byElsevier B.V. This is an open access article under the CC BY-NC-ND license 展开更多
关键词 Disturbed state concept (DSC)constitutive model Parameters Soils interfaces Validations
在线阅读 下载PDF
A sophisticated simulation for the fracture behavior of concrete material using XFEM 被引量:3
4
作者 Zhai Changhai Wang Xiaomin +2 位作者 Kong Jingchang Li Shuang Xie Lili 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2017年第4期859-881,共23页
The development of a powerful numerical model to simulate the fracture behavior of concrete material has long been one of the dominant research areas in earthquake engineering. A reliable model should be able to adequ... The development of a powerful numerical model to simulate the fracture behavior of concrete material has long been one of the dominant research areas in earthquake engineering. A reliable model should be able to adequately represent the discontinuous characteristics of cracks and simulate various failure behaviors under complicated loading conditions. In this paper, a numerical formulation, which incorporates a sophisticated rigid-plastic interface constitutive model coupling cohesion softening, contact, friction and shear dilatation into the XFEM, is proposed to describe various crack behaviors of concrete material. An effective numerical integration scheme for accurately assembling the contribution to the weak form on both sides of the discontinuity is introduced. The effectiveness of the proposed method has been assessed by simulating several well-known experimental tests. It is concluded that the numerical method can successfully capture the crack paths and accurately predict the fracture behavior of concrete structures. The influence ofmode-Ⅱ parameters on the mixed-mode fracture behavior is further investigated to better determine these parameters. 展开更多
关键词 fracture behavior concrete material earthquake engineering interface constitutive model XFEM
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部