期刊文献+
共找到9篇文章
< 1 >
每页显示 20 50 100
Effect of microalloying on wettability and interface characteristics of Zr-based bulk metallic glasses with W substrate 被引量:1
1
作者 Zhen Zhang Lin-na Feng +5 位作者 Jin-he Wang Zheng-kun Li Hua-meng Fu Hong Li Zheng-wang Zhu Hai-feng Zhang 《China Foundry》 SCIE EI CAS CSCD 2024年第4期352-359,共8页
The infiltration casting method is widely employed for the preparation of ex-situ composite materials.However,the production of composite materials using this method must necessitates a comprehensive understanding of ... The infiltration casting method is widely employed for the preparation of ex-situ composite materials.However,the production of composite materials using this method must necessitates a comprehensive understanding of the wettability and interface characteristics between the reinforcing phase and the bulk metallic glasses(BMGs).This work optimized the composition of Zr-based BMGs through microalloying methods,resulting in a new set of Zr-based BMGs with excellent glass-forming ability.Wetting experiments between the Zr-based BMGs melts and W substrates were conducted using the traditional sessile drop method,and the interfaces were characterized utilizing a scanning electron microscope(SEM)equipped with energy dispersive X-ray spectroscopy(EDS).The work demonstrates that the microalloying method substantially enhances the wettability of the Zr-based BMGs melt.Additionally,the incorporation of Nb element impedes the formation of W-Zr phases,but the introduction of Nb element does not alter the extent of interdiffusion between the constituent elements of the amorphous matrix and W element,indicating that the influence of Nb element on the diffusion of individual elements is minute. 展开更多
关键词 Zr-based BMGs infiltration casting method WETTABILITY interface characteristics W-Zr phases
在线阅读 下载PDF
Interface Characteristics and Evolution Mechanism of W/CuCrZr in Hot Melt Explosion Welding
2
作者 Sun Yuling Liang Hanliang +5 位作者 Zhu Jiansheng Ma Honghao Wang Luqing ZhangBingyuan Luo Ning Shen Zhaowu 《稀有金属材料与工程》 SCIE EI CAS CSCD 北大核心 2024年第11期3077-3083,共7页
Explosion welding was carried out on the basis of vacuum hot melt W/CuCrZr composite plate.Metallurgical microscope,scanning electron microscope and energy dispersive X-ray spectroscope were used to observe the micros... Explosion welding was carried out on the basis of vacuum hot melt W/CuCrZr composite plate.Metallurgical microscope,scanning electron microscope and energy dispersive X-ray spectroscope were used to observe the microscopic morphology of the bonding interface.At the same time,combined with finite element calculations,the evolution mechanism of the interface of the hot melt explosion welded W/CuCrZr composite plate was explored.The results show that the interface bonding of the hot melt explosion welded W/CuCrZr composite plate is good and there is a cross-melting zone with 3–8μm in thickness,but cracks are developed on the W side.The numerical simulation reproduces the changes of pressure,stress,strain and internal energy at the bonding interface in the process of hot melt explosion welding.The location of the crack generated in the experiment coincides with the high stress position calculated by numerical simulation.The high pressure and high temperature near the hot melt explosion welding interface further promote the bonding of the interface. 展开更多
关键词 hot melt explosion welding W/CuCrZr interface characteristics numerical simulation evolution mechanisms
原文传递
Interface characteristic of friction stir welding lap joints of Ti/Al dissimilar alloys 被引量:12
3
作者 陈玉华 倪泉 柯黎明 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第2期299-304,共6页
Lap joints of TC1 Ti alloy and LF6 A1 alloy dissimilar materials were fabricated by friction stir welding and corresponding interface characteristics were investigated. Using the selected welding parameters, excellent... Lap joints of TC1 Ti alloy and LF6 A1 alloy dissimilar materials were fabricated by friction stir welding and corresponding interface characteristics were investigated. Using the selected welding parameters, excellent surface appearance forms, but the interface macrograph for each lap joint cross-section is different. With the increase of welding speed or the decrease of tool rotation rate, the amount of Ti alloy particles stirred into the stir zone by the force of tool pin decreases continuously. Moreover, the failure loads of the lap joints also decrease with increasing welding speed and the largest value is achieved at welding speed of 60 mm/min and tool rotation rate of 1500 r/min, where the interracial zone can be divided into 3 kinds of layers. The microhardness of the lap joint shows an uneven distribution and the maximum hardness of HV 502 is found in the middle of the stir zone. 展开更多
关键词 interface characteristic Ti/A1 dissimilar alloys friction stir welding lap joint
在线阅读 下载PDF
Evaluation on the interface characteristics,thermal conductivity,and annealing effect of a hot-forged Cu-Ti/diamond composite 被引量:7
4
作者 Lei Lei Yu Su +1 位作者 Leandro Bolzoni Fei Yang 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2020年第14期7-14,共8页
A Cu-1.5 wt.%Ti/Diamond(55 vol.%)composite was fabricated by hot forging from powder mixture of copper,titanium and diamond powders at 1050?C.A nano-thick TiC interfacial layer was formed between the diamond particle ... A Cu-1.5 wt.%Ti/Diamond(55 vol.%)composite was fabricated by hot forging from powder mixture of copper,titanium and diamond powders at 1050?C.A nano-thick TiC interfacial layer was formed between the diamond particle and copper matrix during forging,and it has an orientation relationship of(111)TiC//(002)Cu&[110]TiC//[110]Cuwith the copper matrix.HRTEM analysis suggests that TiC is semicoherently bond with copper matrix,which helps reduce phonon scattering at the TiC/Cu interface and facilitates the heat transfer,further leading to the hot-forged copper/diamond composite(referred as to Cu-Ti/Dia-0)has a thermal conductivity of 410 W/m K,and this is about 74%of theoretical thermal conductivity of hot-forged copper/composite(552 W/m K).However,the formation of thin amorphous carbon layer in diamond particle(next to the interfacial TiC layer)and deformed structure in the copper matrix have adverse effect on the thermal conductivity of Cu-Ti/Dia-0 composite.800℃-annealing eliminates the discrepancy in TiC interface morphology between the diamond-{100}and-{111}facets of Cu-Ti/Dia-0 composite,but causes TiC particles coarsening and agglomerating for the Cu-Ti/Dia-2 composite and interfacial layer cracking and spallation for the Cu-Ti/Dia-1 composite.In addition,a large amount of graphite was formed by titanium-induced diamond graphitization in the Cu-Ti/Dia-2 composite.All these factors deteriorate the heat transfer behavior for the annealed Cu-Ti/Dia composites.Appropriate heat treatment needs to be continually investigated to improve the thermal conductivity of hot-forged CuTi/Dia composite by eliminating deformed structure in the copper matrix with limit/without impacts on the formed TiC interfacial layer. 展开更多
关键词 Copper/diamond composite Hot forging interface characteristics Thermal conductivity Heat treatment
原文传递
Interface characteristics of textured composite solid lubricant coating to improve the tribological performance of TC4
5
作者 Shaoqian Qin Xiaoliang Shi +3 位作者 Yuchun Huang Kaipeng Zhang Qipeng Huang Chaohua Wu 《Friction》 2025年第5期45-63,共19页
For improving the tribological performance,the textured composite solid lubricant coating was prepared on the surface of Ti-6Al-4V(TC4).The effects of composite coating with different texture densities on the tribolog... For improving the tribological performance,the textured composite solid lubricant coating was prepared on the surface of Ti-6Al-4V(TC4).The effects of composite coating with different texture densities on the tribological properties of TC4 were studied.The results show that the coating improves the microhardness of TC4 surface,and appropriate texture density effectively suppresses the stress of contact interface so that the average friction coefficient of TC4-based composite solid lubricant coating with 25%wavy texture density sample(TCWs-SW25)is 50.24%lower than that of TC4,and the average wear loss is reduced by 97.66%.The enhancement of contact interface performance comes from the transfer effect of lubricants to reduce the number of interfacial asperities,thereby improves the friction and wear properties and inhibits vibration and noise of TC4. 展开更多
关键词 interface characteristics textured coating composite solid lubricants Ti-6Al-4V(TC4)
原文传递
Laboratory investigation into effect of bolt profiles on shear behaviors of bolt-grout interface under constant normal stiffness (CNS) conditions 被引量:6
6
作者 Guojian Cui Chuanqing Zhang +2 位作者 Yibin Pan Liang Deng Hui Zhou 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2020年第6期1234-1248,共15页
Rock bolts have been widely used for stabilizing rock mass in geotechnical engineering.It is acknowledged that the bolt profiles have a sound influence on the support effect of the rock bolting system.Previous studies... Rock bolts have been widely used for stabilizing rock mass in geotechnical engineering.It is acknowledged that the bolt profiles have a sound influence on the support effect of the rock bolting system.Previous studies have proposed some optimal rib parameters(e.g.rib spacing);unfortunately,the interface shear behaviors are generally ignored.Therefore,determination of radial stress and radial displacement on the bolt-grout interface using traditional pull-out tests is not possible.The load-bearing capacity and deformation capacity vary as bolt profiles differ,suggesting that the support effect of the bolting system can be enhanced by optimizing bolt profiles.The aim of this study is to investigate the effects of bolt profiles(with/without ribs,rib spacing,and rib height)on the shear behaviors between the rock bolt and grout material using direct shear tests.Thereby,systematic interfacial shear tests with different bolt profiles were performed under both constant normal load(CNL)and constant normal stiffness(CNS)boundary conditions.The results suggested that rib spacing has a more marked influence on the interface shear behavior than rib height does,in particular at the post-yield stage.The results could facilitate our understanding of bolt-grout interface shear behavior under CNS conditions,and optimize selection of rock bolts under in situ rock conditions. 展开更多
关键词 Bolt profile Constant normal stiffness(CNS) Shear test interface failure characteristics Shear behaviors
在线阅读 下载PDF
Evaluation Indices of Interaction Ability of Asphalt and Aggregate Based on Rheological Characteristics 被引量:2
7
作者 谭忆秋 李晓琳 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2012年第5期979-985,共7页
In order to find a parameter as the evaluation index that can capture the effect of the interaction between asphalt and aggregate, the rheological properties of asphalt mastics using two kinds of asphalts and four kin... In order to find a parameter as the evaluation index that can capture the effect of the interaction between asphalt and aggregate, the rheological properties of asphalt mastics using two kinds of asphalts and four kinds of aggregates under different filler-asphalt ratios were measured by a dynamic shear rheometer (DSR). Moreover, four rheological parameters of K.Ziegel-B, Luis Ibrarra-A, complex shear modulus ΔG*and complex viscosity Δη* for evaluating the interaction ability were studied. Results indicate that all the four parameters can characterize the interaction ability of asphalt and aggregate correctly and feasibly. Through the comparison of sensitivities and physical meanings of the four parameters, K.Ziegel-B with high sensitivity and exact physical meaning is finally selected as the evaluation index for interaction ability of asphalt and aggregate. 展开更多
关键词 asphalt mastic interface interactions evaluation index rheological characteristic
原文传递
Effect of atmosphere and basicity on softening-melting behavior of primary slag formation in cohesive zone 被引量:3
8
作者 Bin-bin Lyu Guang Wang +3 位作者 Lian-da Zhao Hai-bin Zuo Qing-guo Xue Jing-song Wang 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2023年第2期227-235,共9页
The softening-melting characteristics of ferrous burden play a crucial role in the thickness and position of the cohesive zone.The influence of the basicity and experimental atmosphere on the softening-melting behavio... The softening-melting characteristics of ferrous burden play a crucial role in the thickness and position of the cohesive zone.The influence of the basicity and experimental atmosphere on the softening-melting behavior of primary slag under slag-coke interaction was investigated using in situ visualization method.The mechanism was analyzed using the FactSage software,X-ray diffraction,and electron probe microanalysis.The softening and melting temperatures of the samples increased with increasing basicity under different atmospheres.The difference between softening and melting temperatures is smaller in a H_(2) atmosphere than in a CO atmosphere;in H_(2) atmosphere,the range of softening zone in the cohesive zone was significantly thinner.The formed low-melting-point FeO-bearing phases decrease when H_(2) was used as the reducing agent.In addition,according to FactSage calculations,the high content of metallic iron reduced in the H_(2) atmosphere raised the softening temperature of the primary slag.It also narrowed and moved downward the cohesive zone due to an increase in softening and melting temperatures.Meanwhile,the increase in basicity promoted the decrease in liquid ratio and improved the permeability of cohesive zone. 展开更多
关键词 Primary slag Cohesive zone Softening-melting behavior Coke bed interface characteristic
原文传递
Effect of Heat Input on Microstructure and Mechanical Properties of Joints Made by Bypass-Current MIG Welding–Brazing of Magnesium Alloy to Galvanized Steel 被引量:8
9
作者 Yugang Miao Bintao Wu +1 位作者 Xiangfang Xu Duanfeng Han 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2014年第6期1038-1045,共8页
Experiments were carried out with bypass-current MIG welding–brazing of magnesium alloy to galvanized steel to investigate the effect of heat input on the microstructure and mechanical properties of lap joints. Exper... Experiments were carried out with bypass-current MIG welding–brazing of magnesium alloy to galvanized steel to investigate the effect of heat input on the microstructure and mechanical properties of lap joints. Experimental results indicated that the joint efficiency tended to increase at first and then to reduce with the increase of heat input. The joint efficiency reached its maximum of about 70% when the heat input was 155 J/mm. The metallurgical bonding between magnesium alloy and steel was a thin continuous reaction layer, and the intermetallic compound layer consisted of Mg–Zn and slight Fe–Al phases. It is concluded that bypass-current MIG welding–brazing is a stable welding process, which can be used to achieve defect-free joining of magnesium alloy to steel with good weld appearances. 展开更多
关键词 Bypass-current MIG welding–brazing Dissimilar metals Joint characteristics interface analysis
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部