在万物互联的云时代,云应用程序编程接口(API)是数字经济建设和服务化软件开发的关键数字基础设施。然而,云API数量的持续增长给用户决策和推广带来挑战,设计有效的推荐方法成为亟待解决的重要问题。现有研究多利用调用偏好、搜索关键...在万物互联的云时代,云应用程序编程接口(API)是数字经济建设和服务化软件开发的关键数字基础设施。然而,云API数量的持续增长给用户决策和推广带来挑战,设计有效的推荐方法成为亟待解决的重要问题。现有研究多利用调用偏好、搜索关键词或二者结合进行建模,主要解决为给定Mashup推荐合适云API的问题,未考虑开发者对个性化高阶互补云API的实际需求。该文提出一种基于个性化张量分解的高阶互补云API推荐方法(Personalized Tensor Decomposition based High-order Complementary cloud API Recommendation,PTDHCR)。首先,将Mashup与云API之间的调用关系,以及云API与云API之间的互补关系建模为三维张量,并利用RECAL张量分解技术对这两种关系进行共同学习,以挖掘云API之间的个性化非对称互补关系。然后,考虑到不同互补关系对推荐结果的影响程度不同,构建个性化高阶互补感知网络,充分利用Mashup、查询云API以及候选云API的多模态特征,动态计算Mashup对不同查询和候选云API之间互补关系的关注程度。在此基础上,将个性化互补关系拓展到高阶,得到候选云API与查询云API集合的整体个性化互补性。最后,利用两个真实云API数据集进行实验,结果表明,相较于传统方法,PTDHCR在挖掘个性化互补关系和推荐方面具有较大的优势。展开更多
Understanding frictional anisotropy,which refers to the variation in frictional resistance based on the shear direction,is crucial for optimizing the friction angle between a bio-inspired structure and the surrounding...Understanding frictional anisotropy,which refers to the variation in frictional resistance based on the shear direction,is crucial for optimizing the friction angle between a bio-inspired structure and the surrounding soil.Previous studies focused on estimating the interface frictional anisotropy mobilized by snakeskin-inspired textured surfaces and sand under monotonic shear loading conditions.However,there is a need to estimate interface frictional anisotropy under repetitive shear loads.In this study,a series of repetitive direct shear(DS)tests are performed with snakeskin-inspired textured surfaces under a constant vertical stress and two shear directions(cranial first half→caudal second half or caudal first half→cranial second half).The results show that(1)mobilized shear stress increases with the number of shearing cycles,(2)cranial shearing(shearing against the scales)consistently produces a higher shear resistance and less contractive behavior than caudal shearing(shearing along the scales),and(3)a higher scale height or smaller scale length of the surface yields a higher interface friction angle across all shearing cycles.Further analysis reveals that the gap between the cranial and caudal shear zones of the interface friction angle as a function of L/H(i.e.the ratio of scale length L to scale height H)continues to decrease as the number of shearing cycles approaches asymptotic values.The directional frictional resistance(DFR)decreases as the number of shearing cycles increases.Furthermore,the discussion covers the impact of initial relative density,vertical stress,and the number of shearing cycles on interface frictional anisotropy.展开更多
Interface chemical modulation strategies are considered as promising method to prepare electrocatalysts for the urea oxidation reaction(UOR).However,conventional interface catalysts are generally limited by the inhere...Interface chemical modulation strategies are considered as promising method to prepare electrocatalysts for the urea oxidation reaction(UOR).However,conventional interface catalysts are generally limited by the inherent activity and incompatibility of the individual components themselves,and the irregular charge distribution and slow charge transfer ability between interfaces severely limit the activity of UOR.Therefore,we optimized and designed a Ni_(2)P/CoP interface with modulated surface charge distribution and directed charge transfer to promote UOR activity.Density functional theorycalculations first predict a regular charge transfer from CoP to Ni_(2)P,which creates a built-in electric field between Ni_(2)P and CoP interface.Optimization of the adsorption/desorption process of UOR/HER reaction intermediates leads to the improvement of catalytic activity.Electrochemical impedance spectroscopy and ex situ X-ray photoelectron spectroscopy characterization confirm the unique mechanism of facilitated reaction at the Ni_(2)P/CoP interface.Electrochemical tests further validated the prediction with excellent UOR/HER activities of 1.28 V and 19.7 mV vs.RHE,at 10 mA cm^(-2),respectively.Furthermore,Ni_(2)P/CoP achieves industrial-grade current densities(500 mA cm^(−2))at 1.75 V and 1.87 V in the overall urea electrolyzer(UOR||HER)and overall human urine electrolyzer(HUOR||HER),respectively,and demonstrates considerable durability.展开更多
Ransomware,particularly crypto-ransomware,remains a significant cybersecurity challenge,encrypting victim data and demanding a ransom,often leaving the data irretrievable even if payment is made.This study proposes an...Ransomware,particularly crypto-ransomware,remains a significant cybersecurity challenge,encrypting victim data and demanding a ransom,often leaving the data irretrievable even if payment is made.This study proposes an early detection approach to mitigate such threats by identifying ransomware activity before the encryption process begins.The approach employs a two-tiered approach:a signature-based method using hashing techniques to match known threats and a dynamic behavior-based analysis leveraging Cuckoo Sandbox and machine learning algorithms.A critical feature is the integration of the most effective Application Programming Interface call monitoring,which analyzes system-level interactions such as file encryption,key generation,and registry modifications.This enables the detection of both known and zero-day ransomware variants,overcoming limitations of traditional methods.The proposed technique was evaluated using classifiers such as Random Forest,Support Vector Machine,and K-Nearest Neighbors,achieving a detection accuracy of 98%based on 26 key ransomware attributes with an 80:20 training-to-testing ratio and 10-fold cross-validation.By combining minimal feature sets with robust behavioral analysis,the proposed method outperforms existing solutions and addresses current challenges in ransomware detection,thereby enhancing cybersecurity resilience.展开更多
In the direct drive inertial confinement fusion(ICF)scheme,a rippled interface between the ablator and the deuterium–tritium ice fuel can feed out and form perturbation seeds for the ablative Rayleigh–Taylor instabi...In the direct drive inertial confinement fusion(ICF)scheme,a rippled interface between the ablator and the deuterium–tritium ice fuel can feed out and form perturbation seeds for the ablative Rayleigh–Taylor instability,with undesirable effects.However,the evolution of this instability remains insufficiently studied,and the effects of high-Z dopant on this instability remain unclear.In this paper,we develop a theoretical model to calculate the feedout seeds and describe this instability.Our theory suggests that the feedout seeds are determined by the ablation pressure and the adiabatic index,while the subsequent growth depends mainly on the ablation velocity.Two-dimensional radiation hydrodynamic simulations confirm our theory.It is shown that targets with high-Z dopant in the outer ablator exhibit more severe feedout seeds,because of their higher ionization compared with undoped targets.The X-ray pre-ablation in high-Z doped targets significantly suppresses subsequent growth,leading to suppression of short-wavelength perturbations.However,for long-wavelength perturbations,this suppression is weakened,resulting in increased instability in high-Z doped targets.The results are helpful for understanding the innerinterface-initiated instability and the influence of high-Z dopant on it,providing valuable insights for target design and instability control in ICF.展开更多
The diversity of interface morphologies is observed for directionally solidified Sn-0.65%Cd alloy under a travelling magnetic field (TMF) in the 4 mm-diameter sample. Under an upward TMF, planar and cellular interfa...The diversity of interface morphologies is observed for directionally solidified Sn-0.65%Cd alloy under a travelling magnetic field (TMF) in the 4 mm-diameter sample. Under an upward TMF, planar and cellular interface morphologies transform alternately with increasing magnetic flux density (B≤10.3 mT). The interface morphology transforms from shallow cellular to deep cellular morphology under a weak downward TMF (B=3.2 mT). When the magnetic flux density increases further, both sides of the interface morphology appear to be slightly inconsistent, but they roughly tend to be planar under a strong downward TMF (BS10.3 mT). The interface instability may be attributed to the flow driven by the TMF. Moreover, the shape of interface appears to be almost flat under an upward TMF, but deflective under a downward TMF.展开更多
文摘在万物互联的云时代,云应用程序编程接口(API)是数字经济建设和服务化软件开发的关键数字基础设施。然而,云API数量的持续增长给用户决策和推广带来挑战,设计有效的推荐方法成为亟待解决的重要问题。现有研究多利用调用偏好、搜索关键词或二者结合进行建模,主要解决为给定Mashup推荐合适云API的问题,未考虑开发者对个性化高阶互补云API的实际需求。该文提出一种基于个性化张量分解的高阶互补云API推荐方法(Personalized Tensor Decomposition based High-order Complementary cloud API Recommendation,PTDHCR)。首先,将Mashup与云API之间的调用关系,以及云API与云API之间的互补关系建模为三维张量,并利用RECAL张量分解技术对这两种关系进行共同学习,以挖掘云API之间的个性化非对称互补关系。然后,考虑到不同互补关系对推荐结果的影响程度不同,构建个性化高阶互补感知网络,充分利用Mashup、查询云API以及候选云API的多模态特征,动态计算Mashup对不同查询和候选云API之间互补关系的关注程度。在此基础上,将个性化互补关系拓展到高阶,得到候选云API与查询云API集合的整体个性化互补性。最后,利用两个真实云API数据集进行实验,结果表明,相较于传统方法,PTDHCR在挖掘个性化互补关系和推荐方面具有较大的优势。
基金the funding supported from the National Research Foundation of Korea(NRF)grant funded by the Korea Government MSIT(No.2021R1C1C1006003).
文摘Understanding frictional anisotropy,which refers to the variation in frictional resistance based on the shear direction,is crucial for optimizing the friction angle between a bio-inspired structure and the surrounding soil.Previous studies focused on estimating the interface frictional anisotropy mobilized by snakeskin-inspired textured surfaces and sand under monotonic shear loading conditions.However,there is a need to estimate interface frictional anisotropy under repetitive shear loads.In this study,a series of repetitive direct shear(DS)tests are performed with snakeskin-inspired textured surfaces under a constant vertical stress and two shear directions(cranial first half→caudal second half or caudal first half→cranial second half).The results show that(1)mobilized shear stress increases with the number of shearing cycles,(2)cranial shearing(shearing against the scales)consistently produces a higher shear resistance and less contractive behavior than caudal shearing(shearing along the scales),and(3)a higher scale height or smaller scale length of the surface yields a higher interface friction angle across all shearing cycles.Further analysis reveals that the gap between the cranial and caudal shear zones of the interface friction angle as a function of L/H(i.e.the ratio of scale length L to scale height H)continues to decrease as the number of shearing cycles approaches asymptotic values.The directional frictional resistance(DFR)decreases as the number of shearing cycles increases.Furthermore,the discussion covers the impact of initial relative density,vertical stress,and the number of shearing cycles on interface frictional anisotropy.
文摘Interface chemical modulation strategies are considered as promising method to prepare electrocatalysts for the urea oxidation reaction(UOR).However,conventional interface catalysts are generally limited by the inherent activity and incompatibility of the individual components themselves,and the irregular charge distribution and slow charge transfer ability between interfaces severely limit the activity of UOR.Therefore,we optimized and designed a Ni_(2)P/CoP interface with modulated surface charge distribution and directed charge transfer to promote UOR activity.Density functional theorycalculations first predict a regular charge transfer from CoP to Ni_(2)P,which creates a built-in electric field between Ni_(2)P and CoP interface.Optimization of the adsorption/desorption process of UOR/HER reaction intermediates leads to the improvement of catalytic activity.Electrochemical impedance spectroscopy and ex situ X-ray photoelectron spectroscopy characterization confirm the unique mechanism of facilitated reaction at the Ni_(2)P/CoP interface.Electrochemical tests further validated the prediction with excellent UOR/HER activities of 1.28 V and 19.7 mV vs.RHE,at 10 mA cm^(-2),respectively.Furthermore,Ni_(2)P/CoP achieves industrial-grade current densities(500 mA cm^(−2))at 1.75 V and 1.87 V in the overall urea electrolyzer(UOR||HER)and overall human urine electrolyzer(HUOR||HER),respectively,and demonstrates considerable durability.
基金funded by the National University of Sciences and Technology(NUST)supported by the Basic Science Research Program through the National Research Foundation of Korea(NRF),funded by the Ministry of Education(2021R1IIA3049788).
文摘Ransomware,particularly crypto-ransomware,remains a significant cybersecurity challenge,encrypting victim data and demanding a ransom,often leaving the data irretrievable even if payment is made.This study proposes an early detection approach to mitigate such threats by identifying ransomware activity before the encryption process begins.The approach employs a two-tiered approach:a signature-based method using hashing techniques to match known threats and a dynamic behavior-based analysis leveraging Cuckoo Sandbox and machine learning algorithms.A critical feature is the integration of the most effective Application Programming Interface call monitoring,which analyzes system-level interactions such as file encryption,key generation,and registry modifications.This enables the detection of both known and zero-day ransomware variants,overcoming limitations of traditional methods.The proposed technique was evaluated using classifiers such as Random Forest,Support Vector Machine,and K-Nearest Neighbors,achieving a detection accuracy of 98%based on 26 key ransomware attributes with an 80:20 training-to-testing ratio and 10-fold cross-validation.By combining minimal feature sets with robust behavioral analysis,the proposed method outperforms existing solutions and addresses current challenges in ransomware detection,thereby enhancing cybersecurity resilience.
基金supported by the Strategic Priority Research Program of the Chinese Academy of Science(Grant Nos.XDA25050200 and XDA25010100)the National Natural Science Foundation of China(Grant Nos.12175309,12475252,and 12275356)+2 种基金the Defense Industrial Technology Development Program(Grant No.JCKYS2023212807)the Natural Science Foundation of Hunan Province,China(Grant No.2025JJ20007)the Postgraduate Scientific Research Innovation Project of Hunan Province,China(Grant No.CX20230005).
文摘In the direct drive inertial confinement fusion(ICF)scheme,a rippled interface between the ablator and the deuterium–tritium ice fuel can feed out and form perturbation seeds for the ablative Rayleigh–Taylor instability,with undesirable effects.However,the evolution of this instability remains insufficiently studied,and the effects of high-Z dopant on this instability remain unclear.In this paper,we develop a theoretical model to calculate the feedout seeds and describe this instability.Our theory suggests that the feedout seeds are determined by the ablation pressure and the adiabatic index,while the subsequent growth depends mainly on the ablation velocity.Two-dimensional radiation hydrodynamic simulations confirm our theory.It is shown that targets with high-Z dopant in the outer ablator exhibit more severe feedout seeds,because of their higher ionization compared with undoped targets.The X-ray pre-ablation in high-Z doped targets significantly suppresses subsequent growth,leading to suppression of short-wavelength perturbations.However,for long-wavelength perturbations,this suppression is weakened,resulting in increased instability in high-Z doped targets.The results are helpful for understanding the innerinterface-initiated instability and the influence of high-Z dopant on it,providing valuable insights for target design and instability control in ICF.
基金Project(50774061) supported by the National Natural Science Foundation of ChinaProject(28-TP-2009) supported by the Research Fund of State Key Laboratory of Solidification Processing(NWPU),China
文摘The diversity of interface morphologies is observed for directionally solidified Sn-0.65%Cd alloy under a travelling magnetic field (TMF) in the 4 mm-diameter sample. Under an upward TMF, planar and cellular interface morphologies transform alternately with increasing magnetic flux density (B≤10.3 mT). The interface morphology transforms from shallow cellular to deep cellular morphology under a weak downward TMF (B=3.2 mT). When the magnetic flux density increases further, both sides of the interface morphology appear to be slightly inconsistent, but they roughly tend to be planar under a strong downward TMF (BS10.3 mT). The interface instability may be attributed to the flow driven by the TMF. Moreover, the shape of interface appears to be almost flat under an upward TMF, but deflective under a downward TMF.