In order to solve the problem of poor formability caused by different materials and properties in the process of tailor-welded sheets forming,a forming method was proposed to change the stress state of tailor-welded s...In order to solve the problem of poor formability caused by different materials and properties in the process of tailor-welded sheets forming,a forming method was proposed to change the stress state of tailor-welded sheets by covering the tailor-welded sheets with better plastic properties overlapping sheets.At the same time,the interface friction effect between the overlapping and tailor-welded sheets was utilized to control the stress magnitude and further improve the formability and quality of the tailor-welded sheets.In this work,the bulging process of the tailor-welded overlapping sheets was taken as the research object.Aluminum alloy tailor-welded overlapping sheets bulging specimens were studied by a combination of finite element analysis and experimental verification.The results show that the appropriate use of interface friction between tailor-welded and overlapping sheets can improve the formability of tailor-welded sheets and control the flow of weld seam to improve the forming quality.When increasing the interface friction coefficient on the side of tailor-welded sheets with higher strength and decreasing that on the side of tailor-welded sheets with lower strength,the deformation of the tailor-welded sheets are more uniform,the offset of the weld seam is minimal,the limit bulging height is maximal,and the forming quality is optimal.展开更多
Fluid channeling caused by seal failure at the cement sheath-formation interface during fracturing is a severe problem in oil gas wells.In this study,a novel model was developed to evaluate interface sealing integrity...Fluid channeling caused by seal failure at the cement sheath-formation interface during fracturing is a severe problem in oil gas wells.In this study,a novel model was developed to evaluate interface sealing integrity.The model's accuracy was verified based on a self-developed interface seal evaluation device and an experiment.Subsequently,the interface seal under different formation conditions was investigated using this model.The theoretical calculation showed that for a cement sheath-carbonate formation interface,the channeling of acid-fracturing fluid caused interface seal failure and sustained casing pressure in the annulus space between the technical casing and formation.Mutual channeling between the fracturing sections occurred at the cement sheathshale formation interface during fracturing.For a sandstone formation,the interface seal failure caused the channeling between a water-bearing formation and a sandstone formation.Aiming at different formation conditions,the mechanical properties requirements of Young's modulus and Poisson's ratio of cement sheath were proposed respectively to ensure its seal integrity.The proposed model and method can be used to evaluate and optimize sealing integrity during fracturing.展开更多
Objective To develop a multimodal imaging atlas of a rat brain-computer interface(BCI)that incorporates brain,arterial,bone tissue and a BCI device using mixed reality(MR)for three-dimensional(3D)visualization.Methods...Objective To develop a multimodal imaging atlas of a rat brain-computer interface(BCI)that incorporates brain,arterial,bone tissue and a BCI device using mixed reality(MR)for three-dimensional(3D)visualization.Methods An invasive BCI was implanted in the left visual cortex of 4-week-old Sprague–Dawley rats.Multimodal imaging techniques,including micro-CT and 9.0 T MRI,were used to acquire images of the rat cranial bone structure,vascular distribution,brain tissue functional zones,and BCI device before and after implantation.Using 3D-slicer software,the images were fused through spatial transformations,followed by image segmentation and 3D model reconstruction.The HoloLens platform was employed for MR visualization.Results This study constructed a multimodal imaging atlas for rats that included the skull,brain tissue,arterial tissue,and BCI device coupled with MR technology to create an interactive 3D anatomical model.Conclusions This multimodal 3D atlas provides an objective and stable reference for exploring complex relationships between brain tissue structure and function,enhancing the understanding of the operational principles of BCIs.This is the first multimodal 3D imaging atlas related to a BCI created using Sprague–Dawley rats.展开更多
Surface passivation with organic ammoniums improves perovskite solar cell performance by forming 2D/quasi-2D structures or adsorbing onto surfaces.However,complexity from mixed phases can trigger phase transitions,com...Surface passivation with organic ammoniums improves perovskite solar cell performance by forming 2D/quasi-2D structures or adsorbing onto surfaces.However,complexity from mixed phases can trigger phase transitions,compromising stability.The control of surface dimensionality after organic ammonium passivation presents significant importance to device stability.In this study,we developed a poly-fluorination strategy for surface treatment in perovskite solar cells,which enabled a high and durable interfacial phase purity after surface passivation.The locked surface dimensionality of perovskite was achieved through robust interaction between the poly-fluorinated ammoniums and the perovskite surface,along with the steric hindrance imparted by fluorine atoms,reducing its reactivity and penetration capabilities.The high hydrophobicity of the poly-fluorinated surface also aids in moisture resistance of the perovskite layer.The champion device achieved a power conversion efficiency(PCE)of 25.2% with certified 24.6%,with 90% of its initial PCE retained after approximately 1200 h under continuous 1-sun illumination,and over 14,400 h storage stability and superior stability under high-temperature operation.展开更多
Aqueous alkaline zinc batteries have received widespread attention owing to its higher electrode potential and faster reaction kinetics compared to in mild aqueous electrolyte.However,Zn metal anode in alkaline electr...Aqueous alkaline zinc batteries have received widespread attention owing to its higher electrode potential and faster reaction kinetics compared to in mild aqueous electrolyte.However,Zn metal anode in alkaline electrolyte usually suffers more severe corrosion,passivation,and hydrogen evolution reaction.Herein,an interface chemical regulation strategy employs to in-situ construct a Zn-Sn alloy layer during cycling.The K_(2)[Sn(OH)_(6)]has been introduced into the electrolyte as the deposition overpotential of Zn and Sn in alkaline electrolyte is approximate leading to their simultaneously plating.The Zn-Sn alloy layer not only prevents Zn anode corrosion and suppresses the dendrite growth but also promotes the reaction kinetics.Therefore,the Zn||Zn cell exhibits a long life of 400 h in alkaline electrolyte about 20 times of that in without K_(2)[Sn(OH)_(6)]electrolyte.Moreover,the N-NCP@PQ_(x)||Zn full cell displays a superior cycle performance of 4000 cycles with 93%capacity retention at 2 A/g.展开更多
Bismuth oxyselenide(Bi_(2)O_(2)Se),a novel quasi-two-dimensional charge-carrying semiconductor,is recognized as one of the most promising emerging platforms for next-generation semiconductor devices.Recent advancement...Bismuth oxyselenide(Bi_(2)O_(2)Se),a novel quasi-two-dimensional charge-carrying semiconductor,is recognized as one of the most promising emerging platforms for next-generation semiconductor devices.Recent advancements in the development of diverse Bi_(2)O_(2)Se heterojunctions have unveiled extensive potential applications in both electronics and optoelectronics.However,achieving an in-depth understanding of band alignment and particularly interface dynamics remains a significant challenge.In this study,we conduct a comprehensive experimental investigation into band alignment utilizing high-resolution X-ray photoelectron spectroscopy(HRXPS),while also thoroughly discussing the properties of interface states.Our findings reveal that ultrathin films of Bi_(2)O_(2)Se grown on SrTiO_(3)(with TiO_(2)(001)termination)exhibit Type-I(straddling gap)band alignment characterized by a valence band offset(VBO)of approximately 1.77±0.04 eV and a conduction band offset(CBO)around 0.68±0.04 eV.Notably,when accounting for the influence of interface states,the bands at the interface display a herringbone configuration due to substantial built-in electric fields,which markedly deviate from conventional band alignments.Thus,our results provide valuable insights for advancing high-efficiency electronic and optoelectronic devices,particularly those where charge transfer is highly sensitive to interface states.展开更多
Halide solid-state electrolytes(SSEs)have become a new research focus for all-solid-state batteries because of their significant safety advantages,high ionic conductivity,high-voltage stability,and good ductility.None...Halide solid-state electrolytes(SSEs)have become a new research focus for all-solid-state batteries because of their significant safety advantages,high ionic conductivity,high-voltage stability,and good ductility.Nonetheless,stability issues are a key barrier to their practical application.In past reports,the analysis of halide electrolyte stability and its enhancement methods lacked relevance,which limited the design and optimization of halide solid electrolytes.This review focus on stability issues from a chemical,electrochemical,and interfacial point of view,with particular emphasis on the interaction of halide SSEs with anode and cathode interfaces.By focusing on innovative strategies to address the stability issue,this paper aims to further deepen the understanding and development of halide all-solid-state batteries by proposing to focus research efforts on improving their stability in order to address their inherent challenges and match higher voltage cathodes,paving the way for their wider application in the next generation of energy storage technologies.展开更多
Intelligent polymers have garnered significant attention for enhancing component safety,but there are still obstacles to achieving rapid self-healing at room temperature.Here,inspired by the microscopic layered struct...Intelligent polymers have garnered significant attention for enhancing component safety,but there are still obstacles to achieving rapid self-healing at room temperature.Here,inspired by the microscopic layered structure of mother-of-pearl,we have developed a biomimetic composite with high strength and self-repairing capabilities,achieved by the ordered arrangement of pearl-like structures within a flexible polyurethane matrix and GO nanosheets functionalized by in situ polymerization of carbon dots(CDs),this biomimetic interface design approach results in a material strength of 8 MPa and toughness(162 MJ m^(-3)),exceptional ductile properties(2697%elongation at break),and a world-record the fast and high-efficient self-healing ability at room temperature(96%at 25℃for 60 min).Thereby these composites overcome the limitations of dynamic composite networks of graphene that struggle to balance repair capability and robustness,and the CDs in situ loaded in the interfacial layer inhibit corrosion and prevent damage to the metal substrate during the repair process.(TheƵ_(f=0.01Hz)was 1.81×10^(9)Ωcm^(2)after 2 h of healing).Besides,the material can be intelligently actuated and shape memory repaired,which provides reliable protection for developments in smart and flexible devices such as robots and electronic skins.展开更多
As-rolled titanium/steel composite plate has poor plastic deformation ability,and it is difficult to achieve synergistic deformation,especially for dissimilar metals with very different plastic deformation abilities.T...As-rolled titanium/steel composite plate has poor plastic deformation ability,and it is difficult to achieve synergistic deformation,especially for dissimilar metals with very different plastic deformation abilities.The 304/TC4 composite plate with corrugated interface was manufactured using the asymmetric rolling with local strong stress method.The changing rules of bonding strength and synergistic deformation ability of corrugated interface under different annealing process parameters were studied.The results show that in the range of 550–850℃,especially after the temperature exceeds 650℃,with increasing the annealing temperature and time,the difference of microstructure between peak and trough positions increases,and the bonding strength of the composite plate decreases gradually.Especially,the interfacial bonding strength of the plate sharply decreases at 750℃ due to the rapid growth of intermetallic compounds at the interface and the diffusion holes caused by the difference of element diffusion.The 304/TC4 composite plate has the best synergistic deformation ability when annealing at 650℃/2 h,with the elongation reaching 35%and the tensile strength decreasing to 852 MPa.High interfacial bonding strength and moderate matrix recovery are important prerequisites for synergistic deformation of composite plates.展开更多
In order to maximize the advantages of high energy density in Li metal batteries,it is necessary to match cathode materials with high specific capacities.Ni-rich layered oxides have been shown to reversibly embed more...In order to maximize the advantages of high energy density in Li metal batteries,it is necessary to match cathode materials with high specific capacities.Ni-rich layered oxides have been shown to reversibly embed more Li+during charge and discharge processes due to the increased Ni content in their crystal structure,thereby providing higher energy density.However,a significant challenge associated with Ni-rich layered oxide cathodes is the crossover effect,which arises from the dissolution of Ni^(2+)from the cathode,leading to a rapid decline in battery capacity.Through the delocalization-induced effect of solvent molecules,Ni^(2+)is transformed into a fluorinated transition metal inorganic phase layer,thereby forming a corrosion-resistant Li metal interface.This prevents solvent molecules from being reduced and degraded by Li metal anode.The surface of the Li metal anode exhibits a smooth and flat deposition morphology after long-term cycling.Furthermore,the introduction of Ni^(2+)can enhance the concentration gradient of transition metal ions near the cathode,thereby suppressing the dissolution process of transition metal ions.Even the NCM955 cathode with a mass load of 22 mg cm^(−2)also has great capacity retention after cycling.The Ni^(2+)induced by high electronegative functional groups of solvent under the electron delocalization effect,preventing the Ni ions dissolution of cathode and constructing a corrosion-resistant Li metal interface layer.This work provides new insights into suppressing crossover effects in Li metal batteries with high nickel cathodes.展开更多
Invasive as well as non-invasive neurotechnologies conceptualized to interface the central and peripheral nervous system have been probed for the past decades,which refer to electroencephalography,electrocorticography...Invasive as well as non-invasive neurotechnologies conceptualized to interface the central and peripheral nervous system have been probed for the past decades,which refer to electroencephalography,electrocorticography and microelectrode arrays.The challenges of these mentioned approaches are characterized by the bandwidth of the spatiotemporal resolution,which in turn is essential for large-area neuron recordings(Abiri et al.,2019).展开更多
High-performance alloys are indispensable in modern engineering because of their exceptional strength,ductility,corrosion resistance,fatigue resistance,and thermal stability,which are all significantly influenced by t...High-performance alloys are indispensable in modern engineering because of their exceptional strength,ductility,corrosion resistance,fatigue resistance,and thermal stability,which are all significantly influenced by the alloy interface structures.Despite substantial efforts,a comprehensive overview of interface engineering of high-performance alloys has not been presented so far.In this study,the interfaces in high-performance alloys,particularly grain and phase boundaries,were systematically examined,with emphasis on their crystallographic characteristics and chemical element segregations.The effects of the interfaces on the electrical conductivity,mechanical strength,toughness,hydrogen embrittlement resistance,and thermal stability of the alloys were elucidated.Moreover,correlations among various types of interfaces and advanced experimental and computational techniques were examined using big data analytics,enabling robust design strategies.Challenges currently faced in the field of interface engineering and emerging opportunities in the field are also discussed.The study results would guide the development of next-generation high-performance alloys.展开更多
Composite polymer electrolytes(CPEs)offer a promising solution for all-solid-state lithium-metal batteries(ASSLMBs).However,conventional nanofillers with Lewis-acid-base surfaces make limited contribution to improving...Composite polymer electrolytes(CPEs)offer a promising solution for all-solid-state lithium-metal batteries(ASSLMBs).However,conventional nanofillers with Lewis-acid-base surfaces make limited contribution to improving the overall performance of CPEs due to their difficulty in achieving robust electrochemical and mechanical interfaces simultaneously.Here,by regulating the surface charge characteristics of halloysite nanotube(HNT),we propose a concept of lithium-ion dynamic interface(Li^(+)-DI)engineering in nano-charged CPE(NCCPE).Results show that the surface charge characteristics of HNTs fundamentally change the Li^(+)-DI,and thereof the mechanical and ion-conduction behaviors of the NCCPEs.Particularly,the HNTs with positively charged surface(HNTs+)lead to a higher Li^(+)transference number(0.86)than that of HNTs-(0.73),but a lower toughness(102.13 MJ m^(-3)for HNTs+and 159.69 MJ m^(-3)for HNTs-).Meanwhile,a strong interface compatibilization effect by Li^(+)is observed for especially the HNTs+-involved Li^(+)-DI,which improves the toughness by 2000%compared with the control.Moreover,HNTs+are more effective to weaken the Li^(+)-solvation strength and facilitate the formation of Li F-rich solid-electrolyte interphase of Li metal compared to HNTs-.The resultant Li|NCCPE|LiFePO4cell delivers a capacity of 144.9 m Ah g^(-1)after 400 cycles at 0.5 C and a capacity retention of 78.6%.This study provides deep insights into understanding the roles of surface charges of nanofillers in regulating the mechanical and electrochemical interfaces in ASSLMBs.展开更多
The matrix accumulative roll bonding technology (MARB) can improve the matrix performance of metal composite and strengthen the bonding quality of the interface./n this research, for the fwst time, the technology of...The matrix accumulative roll bonding technology (MARB) can improve the matrix performance of metal composite and strengthen the bonding quality of the interface./n this research, for the fwst time, the technology of MARB was proposed. A sound Cu/AI bonding composite was obtained using the MARB process and the bonding characteristic of the interface was studied using scanning electricity microscope (SEM) and energy-dispersive spectroscopy (EDS). The result indicated that accumulation cycles and diffusion annealing temperature were the most important factors for fabricating a Cu/AI composite material. The substrate aluminum was strengthened by MARB, and a high quality Cu/AI composite with sound interface was obtained as well.展开更多
To work efficiently with DSS, most users need assistance in representation conversion, i. e., translating the specific outcome from the DSS into the universal language of visual. In generally, it is much easier to und...To work efficiently with DSS, most users need assistance in representation conversion, i. e., translating the specific outcome from the DSS into the universal language of visual. In generally, it is much easier to understand the results from the DSS if they are translated into charts, maps, and other scientific displays, because visualization exploits human natural ability to recognize and understand visual pattern. In this paper we discuss the concept of visualization for DSS. AniGraftool, a software system, is introduced as an example of Visualized User Interface for DSS.展开更多
A core shell structured C@MoxTi1-xO2-δnanocrystal with a functionalized interface(C@MTNC-FI)was fabricated via the hydrothermal method with subsequent annealing derived from tetrabutyl orthotitanate.The formation of ...A core shell structured C@MoxTi1-xO2-δnanocrystal with a functionalized interface(C@MTNC-FI)was fabricated via the hydrothermal method with subsequent annealing derived from tetrabutyl orthotitanate.The formation of anatase TiO2 was inhibited by the simultaneous presence of the hydrothermal etching/regrowth process,infiltration of Mo dopants and carbon coating,which endows the C@MTNC-FI with an ultrafine crystalline architecture that has a Mo-functionalized interface and carbon-coated shell.Pt Ru nanoparticles(NPs)were supported on C@MTNC-FI by employing a microwave-assisted polyol process(MAPP).The obtained Pt Ru/C@MTNC-FI catalyst has 2.68 times higher mass activity towards methanol electrooxidation than that of the un-functionalized catalyst(Pt Ru/C@TNC)and 1.65 times higher mass activity than that of Pt Ru/C catalyst with over 25%increase in durability.The improved catalytic performance is due to several aspects including ultrafine crystals of TiO2 with abundant grain boundaries,Mofunctionalized interface with enhanced electron interactions,and core shell architecture with excellent electrical transport properties.This work suggests the potential application of an interface-functionalized crystalline material as a sustainable and clean energy solution.展开更多
To break through the bottle-neck of quantum yield in upconversion (UC) core-shell system, we elucidated that the energy transfer efficiency in core-shell system had an evident contribution from the charge transfer o...To break through the bottle-neck of quantum yield in upconversion (UC) core-shell system, we elucidated that the energy transfer efficiency in core-shell system had an evident contribution from the charge transfer of interface with related to two factors: (i) band offsets and (2) binding energy area density. These two variables were determined by material intrinsic properties and core-shell thickness ratio. We further unraveled the mechanism of non-radiative energy transfer by charge transfer induced dipole at the inter- face, based on a quasi-classical derivation from F6rster type resonant energy transfer (FRET) model. With stable bonding across the interface, the contributions on energy transfer in both radiative and non-radiative energy transfer should also be accounted together in Auzel's energy transfer (ETU) model in core-shell system. Based on the discussion about interface bonding, band offsets, and forma- tion energies, we figured out the significance of interface bonding induced gap states (IBIGS) that played a significant role for influ- encing the charge transfer and radiative type energy transfer. The interface band offsets were a key factor in dominating the non-radiative energy transfer, which was also correlated to core-shell thickness ratio. We found that the energy area density with re- lated to core/shell thickness ratio followed the trend of Boltzman sigmoidal growth function. By the physical trend, this work contrib- uted a reference how the multi-layered core-shell structure was formed starting from the very beginning within minimum size. A route was paved towards a systematic study of the interface to unveil the energy transfer mechanism in core-shell systems.展开更多
Effects of NH3 rapid thermal annealing (RTA) on the interface and electrical properties of Gd-doped HfO2 (GDH)/Si stack were investigated. The process of NH3 annealing could significantly affect the crystallizatio...Effects of NH3 rapid thermal annealing (RTA) on the interface and electrical properties of Gd-doped HfO2 (GDH)/Si stack were investigated. The process of NH3 annealing could significantly affect the crystallization, stoichiometric properties of GDH film and the interface characteristic of GDH/Si system. NH3 annealing also led to the decrease of interface layer thickness. The leakage current density of Pt/GDH/p-Si MOS capacitor without RTA was 2× 10-3 A/cm2. After NH3 annealing, the leakage current density was about one order of magnitude lower (3.9× 104 A/cm2). The effective permittivity extracted from the C-V curves was -14.1 and 13.1 for samples without and with RTA, respectively.展开更多
A Cu-1.5 wt.%Ti/Diamond(55 vol.%)composite was fabricated by hot forging from powder mixture of copper,titanium and diamond powders at 1050?C.A nano-thick TiC interfacial layer was formed between the diamond particle ...A Cu-1.5 wt.%Ti/Diamond(55 vol.%)composite was fabricated by hot forging from powder mixture of copper,titanium and diamond powders at 1050?C.A nano-thick TiC interfacial layer was formed between the diamond particle and copper matrix during forging,and it has an orientation relationship of(111)TiC//(002)Cu&[110]TiC//[110]Cuwith the copper matrix.HRTEM analysis suggests that TiC is semicoherently bond with copper matrix,which helps reduce phonon scattering at the TiC/Cu interface and facilitates the heat transfer,further leading to the hot-forged copper/diamond composite(referred as to Cu-Ti/Dia-0)has a thermal conductivity of 410 W/m K,and this is about 74%of theoretical thermal conductivity of hot-forged copper/composite(552 W/m K).However,the formation of thin amorphous carbon layer in diamond particle(next to the interfacial TiC layer)and deformed structure in the copper matrix have adverse effect on the thermal conductivity of Cu-Ti/Dia-0 composite.800℃-annealing eliminates the discrepancy in TiC interface morphology between the diamond-{100}and-{111}facets of Cu-Ti/Dia-0 composite,but causes TiC particles coarsening and agglomerating for the Cu-Ti/Dia-2 composite and interfacial layer cracking and spallation for the Cu-Ti/Dia-1 composite.In addition,a large amount of graphite was formed by titanium-induced diamond graphitization in the Cu-Ti/Dia-2 composite.All these factors deteriorate the heat transfer behavior for the annealed Cu-Ti/Dia composites.Appropriate heat treatment needs to be continually investigated to improve the thermal conductivity of hot-forged CuTi/Dia composite by eliminating deformed structure in the copper matrix with limit/without impacts on the formed TiC interfacial layer.展开更多
Aqueous zinc ion batteries show prospects for next-generation renewable energy storage devices.However,the practical applications have been limited by the issues derived from Zn anode.As one of serious problems,Zn den...Aqueous zinc ion batteries show prospects for next-generation renewable energy storage devices.However,the practical applications have been limited by the issues derived from Zn anode.As one of serious problems,Zn dendrite growth caused from the uncontrollable Zn deposition is unfavorable.Herein,with the aim to regulate Zn deposition,an artificial solid–electrolyte interface is subtly engineered with a perovskite type material,BaTiO3,which can be polarized,and its polarization could be switched under the external electric field.Resulting from the aligned dipole in BaTiO3 layer,zinc ions could move in order during cycling process.Regulated Zn migration at the anode/electrolyte interface contributes to the even Zn stripping/plating and confined Zn dendrite growth.As a result,the reversible Zn plating/stripping processes for over 2000 h have been achieved at 1 mA cm^(−2) with capacity of 1 mAh cm−2.Furthermore,this anode endowing the electric dipoles shows enhanced cycling stability for aqueous Zn-MnO2 batteries.The battery can deliver nearly 100%Coulombic efficiency at 2 Ag^(−1) after 300 cycles.展开更多
基金Funded by the National Natural Science Foundation of China(Nos.52075347,51575364)and the Natural Science Foundation of Liaoning Provincial(No.2022-MS-295)。
文摘In order to solve the problem of poor formability caused by different materials and properties in the process of tailor-welded sheets forming,a forming method was proposed to change the stress state of tailor-welded sheets by covering the tailor-welded sheets with better plastic properties overlapping sheets.At the same time,the interface friction effect between the overlapping and tailor-welded sheets was utilized to control the stress magnitude and further improve the formability and quality of the tailor-welded sheets.In this work,the bulging process of the tailor-welded overlapping sheets was taken as the research object.Aluminum alloy tailor-welded overlapping sheets bulging specimens were studied by a combination of finite element analysis and experimental verification.The results show that the appropriate use of interface friction between tailor-welded and overlapping sheets can improve the formability of tailor-welded sheets and control the flow of weld seam to improve the forming quality.When increasing the interface friction coefficient on the side of tailor-welded sheets with higher strength and decreasing that on the side of tailor-welded sheets with lower strength,the deformation of the tailor-welded sheets are more uniform,the offset of the weld seam is minimal,the limit bulging height is maximal,and the forming quality is optimal.
基金the financial support provide by the National Natural Science Foundation of China(No.52304009)the Natural Science Foundation of Sichuan(No.2023NSFSC0927)the Sichuan Province Innovative Talent Funding Project for Postdoctoral Fellows(No.BX202305)。
文摘Fluid channeling caused by seal failure at the cement sheath-formation interface during fracturing is a severe problem in oil gas wells.In this study,a novel model was developed to evaluate interface sealing integrity.The model's accuracy was verified based on a self-developed interface seal evaluation device and an experiment.Subsequently,the interface seal under different formation conditions was investigated using this model.The theoretical calculation showed that for a cement sheath-carbonate formation interface,the channeling of acid-fracturing fluid caused interface seal failure and sustained casing pressure in the annulus space between the technical casing and formation.Mutual channeling between the fracturing sections occurred at the cement sheathshale formation interface during fracturing.For a sandstone formation,the interface seal failure caused the channeling between a water-bearing formation and a sandstone formation.Aiming at different formation conditions,the mechanical properties requirements of Young's modulus and Poisson's ratio of cement sheath were proposed respectively to ensure its seal integrity.The proposed model and method can be used to evaluate and optimize sealing integrity during fracturing.
基金supported by the National Natural Science Foundation of China(No.82172524 and No.81974355)National Innovation Platform Development Program(No.2020021105012440),China+3 种基金Major Program of Hubei Province(No.2021BEA161),ChinaMajor Key Project of Hubei Province(No.JD2023BAA005),ChinaWuhan Union Hospital Free Innovation Preliminary Research Fund(No.2024XHYN047),ChinaJoint Funds for the Innovation of Science and Technology(No.2024Y9062),Fujian Province,China.
文摘Objective To develop a multimodal imaging atlas of a rat brain-computer interface(BCI)that incorporates brain,arterial,bone tissue and a BCI device using mixed reality(MR)for three-dimensional(3D)visualization.Methods An invasive BCI was implanted in the left visual cortex of 4-week-old Sprague–Dawley rats.Multimodal imaging techniques,including micro-CT and 9.0 T MRI,were used to acquire images of the rat cranial bone structure,vascular distribution,brain tissue functional zones,and BCI device before and after implantation.Using 3D-slicer software,the images were fused through spatial transformations,followed by image segmentation and 3D model reconstruction.The HoloLens platform was employed for MR visualization.Results This study constructed a multimodal imaging atlas for rats that included the skull,brain tissue,arterial tissue,and BCI device coupled with MR technology to create an interactive 3D anatomical model.Conclusions This multimodal 3D atlas provides an objective and stable reference for exploring complex relationships between brain tissue structure and function,enhancing the understanding of the operational principles of BCIs.This is the first multimodal 3D imaging atlas related to a BCI created using Sprague–Dawley rats.
基金grants(grant numbers LR24F040001,LD24E020001 and LD22E020002)from the Natural Science Foundation of Zhejiang Province of Chinathe National Natural Science Foundation of China(grant number 62274146)+1 种基金the support of Key R&D Program of Zhejiang(2024SSYS0061)supported by the Fundamental Research Funds for the Central Universities(226-2022-00200).
文摘Surface passivation with organic ammoniums improves perovskite solar cell performance by forming 2D/quasi-2D structures or adsorbing onto surfaces.However,complexity from mixed phases can trigger phase transitions,compromising stability.The control of surface dimensionality after organic ammonium passivation presents significant importance to device stability.In this study,we developed a poly-fluorination strategy for surface treatment in perovskite solar cells,which enabled a high and durable interfacial phase purity after surface passivation.The locked surface dimensionality of perovskite was achieved through robust interaction between the poly-fluorinated ammoniums and the perovskite surface,along with the steric hindrance imparted by fluorine atoms,reducing its reactivity and penetration capabilities.The high hydrophobicity of the poly-fluorinated surface also aids in moisture resistance of the perovskite layer.The champion device achieved a power conversion efficiency(PCE)of 25.2% with certified 24.6%,with 90% of its initial PCE retained after approximately 1200 h under continuous 1-sun illumination,and over 14,400 h storage stability and superior stability under high-temperature operation.
基金supported by Joint Funds of the National Natural Science Foundation of China(No.U22A20140)University of Jinan Disciplinary Cross-Convergence Construction Project 2023(No.XKJC-202309)+3 种基金Jinan City-School Integration Development Strategy Project(No.JNSX2023015)Independent Cultivation Program of Innovation Team of Ji’nan City(No.202333042)the Youth Innovation Group Plan of Shandong Province(No.2022KJ095)Special thanks to the Optical microscopy(Yuescope,YM710R).
文摘Aqueous alkaline zinc batteries have received widespread attention owing to its higher electrode potential and faster reaction kinetics compared to in mild aqueous electrolyte.However,Zn metal anode in alkaline electrolyte usually suffers more severe corrosion,passivation,and hydrogen evolution reaction.Herein,an interface chemical regulation strategy employs to in-situ construct a Zn-Sn alloy layer during cycling.The K_(2)[Sn(OH)_(6)]has been introduced into the electrolyte as the deposition overpotential of Zn and Sn in alkaline electrolyte is approximate leading to their simultaneously plating.The Zn-Sn alloy layer not only prevents Zn anode corrosion and suppresses the dendrite growth but also promotes the reaction kinetics.Therefore,the Zn||Zn cell exhibits a long life of 400 h in alkaline electrolyte about 20 times of that in without K_(2)[Sn(OH)_(6)]electrolyte.Moreover,the N-NCP@PQ_(x)||Zn full cell displays a superior cycle performance of 4000 cycles with 93%capacity retention at 2 A/g.
基金supported by the National Natural Science Foundation of China(Nos.52072059,12304078,12274061 and 11774044)the Natural Science Foundation of Sichuan Province(No.2024NSFSC1384).
文摘Bismuth oxyselenide(Bi_(2)O_(2)Se),a novel quasi-two-dimensional charge-carrying semiconductor,is recognized as one of the most promising emerging platforms for next-generation semiconductor devices.Recent advancements in the development of diverse Bi_(2)O_(2)Se heterojunctions have unveiled extensive potential applications in both electronics and optoelectronics.However,achieving an in-depth understanding of band alignment and particularly interface dynamics remains a significant challenge.In this study,we conduct a comprehensive experimental investigation into band alignment utilizing high-resolution X-ray photoelectron spectroscopy(HRXPS),while also thoroughly discussing the properties of interface states.Our findings reveal that ultrathin films of Bi_(2)O_(2)Se grown on SrTiO_(3)(with TiO_(2)(001)termination)exhibit Type-I(straddling gap)band alignment characterized by a valence band offset(VBO)of approximately 1.77±0.04 eV and a conduction band offset(CBO)around 0.68±0.04 eV.Notably,when accounting for the influence of interface states,the bands at the interface display a herringbone configuration due to substantial built-in electric fields,which markedly deviate from conventional band alignments.Thus,our results provide valuable insights for advancing high-efficiency electronic and optoelectronic devices,particularly those where charge transfer is highly sensitive to interface states.
基金supported by the National Natural Science Foundation of China(nos.22309027 and 52374301)the Shijiazhuang Basic Research Project(nos.241790667A and 241790907A)+3 种基金the Fundamental Research Funds for the Central Universities(no.N2523050)the Natural Science Foundation of Hebei Province(no.E2024501010)the Performance subsidy fund for Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province(no.22567627H)the 2024 Hebei Provincial Postgraduate Student Innovation Ability Training Funding Project(no.CXZZSS2025162)。
文摘Halide solid-state electrolytes(SSEs)have become a new research focus for all-solid-state batteries because of their significant safety advantages,high ionic conductivity,high-voltage stability,and good ductility.Nonetheless,stability issues are a key barrier to their practical application.In past reports,the analysis of halide electrolyte stability and its enhancement methods lacked relevance,which limited the design and optimization of halide solid electrolytes.This review focus on stability issues from a chemical,electrochemical,and interfacial point of view,with particular emphasis on the interaction of halide SSEs with anode and cathode interfaces.By focusing on innovative strategies to address the stability issue,this paper aims to further deepen the understanding and development of halide all-solid-state batteries by proposing to focus research efforts on improving their stability in order to address their inherent challenges and match higher voltage cathodes,paving the way for their wider application in the next generation of energy storage technologies.
基金support of the Jiangsu Provincial Department of Science and Technology Innovation Support Program(No.BK20222004)the National Natural Science Foundation of China(No.52201077).
文摘Intelligent polymers have garnered significant attention for enhancing component safety,but there are still obstacles to achieving rapid self-healing at room temperature.Here,inspired by the microscopic layered structure of mother-of-pearl,we have developed a biomimetic composite with high strength and self-repairing capabilities,achieved by the ordered arrangement of pearl-like structures within a flexible polyurethane matrix and GO nanosheets functionalized by in situ polymerization of carbon dots(CDs),this biomimetic interface design approach results in a material strength of 8 MPa and toughness(162 MJ m^(-3)),exceptional ductile properties(2697%elongation at break),and a world-record the fast and high-efficient self-healing ability at room temperature(96%at 25℃for 60 min).Thereby these composites overcome the limitations of dynamic composite networks of graphene that struggle to balance repair capability and robustness,and the CDs in situ loaded in the interfacial layer inhibit corrosion and prevent damage to the metal substrate during the repair process.(TheƵ_(f=0.01Hz)was 1.81×10^(9)Ωcm^(2)after 2 h of healing).Besides,the material can be intelligently actuated and shape memory repaired,which provides reliable protection for developments in smart and flexible devices such as robots and electronic skins.
基金supported by the Major Program of National Natural Science Foundation of China(U22A20188)the Natural Science Foundation of Shanxi Province(202303021224002)+1 种基金the special fund for Science and Technology Innovation Teams of Shanxi Province(202304051001025)the Open Research Fund from the Hai’an and Taiyuan University of Technology Advanced Manufacturing and Intelligent Equipment Industrial Research Institute(2023HA-TYUTKFYF036).
文摘As-rolled titanium/steel composite plate has poor plastic deformation ability,and it is difficult to achieve synergistic deformation,especially for dissimilar metals with very different plastic deformation abilities.The 304/TC4 composite plate with corrugated interface was manufactured using the asymmetric rolling with local strong stress method.The changing rules of bonding strength and synergistic deformation ability of corrugated interface under different annealing process parameters were studied.The results show that in the range of 550–850℃,especially after the temperature exceeds 650℃,with increasing the annealing temperature and time,the difference of microstructure between peak and trough positions increases,and the bonding strength of the composite plate decreases gradually.Especially,the interfacial bonding strength of the plate sharply decreases at 750℃ due to the rapid growth of intermetallic compounds at the interface and the diffusion holes caused by the difference of element diffusion.The 304/TC4 composite plate has the best synergistic deformation ability when annealing at 650℃/2 h,with the elongation reaching 35%and the tensile strength decreasing to 852 MPa.High interfacial bonding strength and moderate matrix recovery are important prerequisites for synergistic deformation of composite plates.
基金the support from Yunnan Fundamental Research Projects(202301BE070001-029,202401CF070129,202501CF070181)National Natural Science Foundation of China(22209012,22479067)Kunming University of Science and Technology Analysis and Testing Fund Support Project(2023T20220172)。
文摘In order to maximize the advantages of high energy density in Li metal batteries,it is necessary to match cathode materials with high specific capacities.Ni-rich layered oxides have been shown to reversibly embed more Li+during charge and discharge processes due to the increased Ni content in their crystal structure,thereby providing higher energy density.However,a significant challenge associated with Ni-rich layered oxide cathodes is the crossover effect,which arises from the dissolution of Ni^(2+)from the cathode,leading to a rapid decline in battery capacity.Through the delocalization-induced effect of solvent molecules,Ni^(2+)is transformed into a fluorinated transition metal inorganic phase layer,thereby forming a corrosion-resistant Li metal interface.This prevents solvent molecules from being reduced and degraded by Li metal anode.The surface of the Li metal anode exhibits a smooth and flat deposition morphology after long-term cycling.Furthermore,the introduction of Ni^(2+)can enhance the concentration gradient of transition metal ions near the cathode,thereby suppressing the dissolution process of transition metal ions.Even the NCM955 cathode with a mass load of 22 mg cm^(−2)also has great capacity retention after cycling.The Ni^(2+)induced by high electronegative functional groups of solvent under the electron delocalization effect,preventing the Ni ions dissolution of cathode and constructing a corrosion-resistant Li metal interface layer.This work provides new insights into suppressing crossover effects in Li metal batteries with high nickel cathodes.
文摘Invasive as well as non-invasive neurotechnologies conceptualized to interface the central and peripheral nervous system have been probed for the past decades,which refer to electroencephalography,electrocorticography and microelectrode arrays.The challenges of these mentioned approaches are characterized by the bandwidth of the spatiotemporal resolution,which in turn is essential for large-area neuron recordings(Abiri et al.,2019).
基金supported by the National Natural Science Foundation of China(Nos.52122408 and 52474397)the High-level Talent Research Start-up Project Funding of Henan Academy of Sciences(No.242017127)+1 种基金the financial support from the Fundamental Research Funds for the Central Universities(University of Science and Technology Beijing(USTB),Nos.FRF-TP-2021-04C1 and 06500135)supported by USTB MatCom of Beijing Advanced Innovation Center for Materials Genome Engineering。
文摘High-performance alloys are indispensable in modern engineering because of their exceptional strength,ductility,corrosion resistance,fatigue resistance,and thermal stability,which are all significantly influenced by the alloy interface structures.Despite substantial efforts,a comprehensive overview of interface engineering of high-performance alloys has not been presented so far.In this study,the interfaces in high-performance alloys,particularly grain and phase boundaries,were systematically examined,with emphasis on their crystallographic characteristics and chemical element segregations.The effects of the interfaces on the electrical conductivity,mechanical strength,toughness,hydrogen embrittlement resistance,and thermal stability of the alloys were elucidated.Moreover,correlations among various types of interfaces and advanced experimental and computational techniques were examined using big data analytics,enabling robust design strategies.Challenges currently faced in the field of interface engineering and emerging opportunities in the field are also discussed.The study results would guide the development of next-generation high-performance alloys.
基金the financial support from the National Natural Science Foundation of China(52203123 and 52473248)State Key Laboratory of Polymer Materials Engineering(sklpme2024-2-04)+1 种基金the Fundamental Research Funds for the Central Universitiessponsored by the Double First-Class Construction Funds of Sichuan University。
文摘Composite polymer electrolytes(CPEs)offer a promising solution for all-solid-state lithium-metal batteries(ASSLMBs).However,conventional nanofillers with Lewis-acid-base surfaces make limited contribution to improving the overall performance of CPEs due to their difficulty in achieving robust electrochemical and mechanical interfaces simultaneously.Here,by regulating the surface charge characteristics of halloysite nanotube(HNT),we propose a concept of lithium-ion dynamic interface(Li^(+)-DI)engineering in nano-charged CPE(NCCPE).Results show that the surface charge characteristics of HNTs fundamentally change the Li^(+)-DI,and thereof the mechanical and ion-conduction behaviors of the NCCPEs.Particularly,the HNTs with positively charged surface(HNTs+)lead to a higher Li^(+)transference number(0.86)than that of HNTs-(0.73),but a lower toughness(102.13 MJ m^(-3)for HNTs+and 159.69 MJ m^(-3)for HNTs-).Meanwhile,a strong interface compatibilization effect by Li^(+)is observed for especially the HNTs+-involved Li^(+)-DI,which improves the toughness by 2000%compared with the control.Moreover,HNTs+are more effective to weaken the Li^(+)-solvation strength and facilitate the formation of Li F-rich solid-electrolyte interphase of Li metal compared to HNTs-.The resultant Li|NCCPE|LiFePO4cell delivers a capacity of 144.9 m Ah g^(-1)after 400 cycles at 0.5 C and a capacity retention of 78.6%.This study provides deep insights into understanding the roles of surface charges of nanofillers in regulating the mechanical and electrochemical interfaces in ASSLMBs.
基金the National Natural Science Foundation of China (No. 50375019).
文摘The matrix accumulative roll bonding technology (MARB) can improve the matrix performance of metal composite and strengthen the bonding quality of the interface./n this research, for the fwst time, the technology of MARB was proposed. A sound Cu/AI bonding composite was obtained using the MARB process and the bonding characteristic of the interface was studied using scanning electricity microscope (SEM) and energy-dispersive spectroscopy (EDS). The result indicated that accumulation cycles and diffusion annealing temperature were the most important factors for fabricating a Cu/AI composite material. The substrate aluminum was strengthened by MARB, and a high quality Cu/AI composite with sound interface was obtained as well.
文摘To work efficiently with DSS, most users need assistance in representation conversion, i. e., translating the specific outcome from the DSS into the universal language of visual. In generally, it is much easier to understand the results from the DSS if they are translated into charts, maps, and other scientific displays, because visualization exploits human natural ability to recognize and understand visual pattern. In this paper we discuss the concept of visualization for DSS. AniGraftool, a software system, is introduced as an example of Visualized User Interface for DSS.
基金the National Natural Science Foundation of China (Grant Nos. 21273058, 21673064, 51802059 and 21503059)China Postdoctoral Science Foundation (Grant Nos. 2018M631938, 2018T110307 and 2017M621284)+1 种基金Heilongjiang Postdoctoral Fund (LBH-Z17074)Fundamental Research Funds for the Central Universities (Grant No. HIT. NSRIF. 2019040 and 2019041)
文摘A core shell structured C@MoxTi1-xO2-δnanocrystal with a functionalized interface(C@MTNC-FI)was fabricated via the hydrothermal method with subsequent annealing derived from tetrabutyl orthotitanate.The formation of anatase TiO2 was inhibited by the simultaneous presence of the hydrothermal etching/regrowth process,infiltration of Mo dopants and carbon coating,which endows the C@MTNC-FI with an ultrafine crystalline architecture that has a Mo-functionalized interface and carbon-coated shell.Pt Ru nanoparticles(NPs)were supported on C@MTNC-FI by employing a microwave-assisted polyol process(MAPP).The obtained Pt Ru/C@MTNC-FI catalyst has 2.68 times higher mass activity towards methanol electrooxidation than that of the un-functionalized catalyst(Pt Ru/C@TNC)and 1.65 times higher mass activity than that of Pt Ru/C catalyst with over 25%increase in durability.The improved catalytic performance is due to several aspects including ultrafine crystals of TiO2 with abundant grain boundaries,Mofunctionalized interface with enhanced electron interactions,and core shell architecture with excellent electrical transport properties.This work suggests the potential application of an interface-functionalized crystalline material as a sustainable and clean energy solution.
基金Project supported by the National Natural Science Foundation of China(NSFC)(21425101,21321001,21371011,21331001)Ministry of Science and Technology(MOST)of China(2014CB643800)+3 种基金Natural Science Foundation of China(NSFC) for the Youth Scientist grant(11504309)the Initial Start-up Grant Support from the Department General Research Fund(Dept.GRF) from ABCT in the Hong Kong Polytechnic Universitythe Early Career Scheme(ECS) Fund(PolyU 253026/16P) from the Research Grant Council(RGC)in Hong Kongthe High Performance Supercomputer(ATOM Project)in PolyU
文摘To break through the bottle-neck of quantum yield in upconversion (UC) core-shell system, we elucidated that the energy transfer efficiency in core-shell system had an evident contribution from the charge transfer of interface with related to two factors: (i) band offsets and (2) binding energy area density. These two variables were determined by material intrinsic properties and core-shell thickness ratio. We further unraveled the mechanism of non-radiative energy transfer by charge transfer induced dipole at the inter- face, based on a quasi-classical derivation from F6rster type resonant energy transfer (FRET) model. With stable bonding across the interface, the contributions on energy transfer in both radiative and non-radiative energy transfer should also be accounted together in Auzel's energy transfer (ETU) model in core-shell system. Based on the discussion about interface bonding, band offsets, and forma- tion energies, we figured out the significance of interface bonding induced gap states (IBIGS) that played a significant role for influ- encing the charge transfer and radiative type energy transfer. The interface band offsets were a key factor in dominating the non-radiative energy transfer, which was also correlated to core-shell thickness ratio. We found that the energy area density with re- lated to core/shell thickness ratio followed the trend of Boltzman sigmoidal growth function. By the physical trend, this work contrib- uted a reference how the multi-layered core-shell structure was formed starting from the very beginning within minimum size. A route was paved towards a systematic study of the interface to unveil the energy transfer mechanism in core-shell systems.
基金supported by National Natural Science Foundation of China (50932001)National Natural Science Foundation of China (51102020,51202013)National Science and Technology Major Project(2009ZX02039-005)
文摘Effects of NH3 rapid thermal annealing (RTA) on the interface and electrical properties of Gd-doped HfO2 (GDH)/Si stack were investigated. The process of NH3 annealing could significantly affect the crystallization, stoichiometric properties of GDH film and the interface characteristic of GDH/Si system. NH3 annealing also led to the decrease of interface layer thickness. The leakage current density of Pt/GDH/p-Si MOS capacitor without RTA was 2× 10-3 A/cm2. After NH3 annealing, the leakage current density was about one order of magnitude lower (3.9× 104 A/cm2). The effective permittivity extracted from the C-V curves was -14.1 and 13.1 for samples without and with RTA, respectively.
基金supported by the Air Force Office of Scientific Research under award number FA2386-17-14025。
文摘A Cu-1.5 wt.%Ti/Diamond(55 vol.%)composite was fabricated by hot forging from powder mixture of copper,titanium and diamond powders at 1050?C.A nano-thick TiC interfacial layer was formed between the diamond particle and copper matrix during forging,and it has an orientation relationship of(111)TiC//(002)Cu&[110]TiC//[110]Cuwith the copper matrix.HRTEM analysis suggests that TiC is semicoherently bond with copper matrix,which helps reduce phonon scattering at the TiC/Cu interface and facilitates the heat transfer,further leading to the hot-forged copper/diamond composite(referred as to Cu-Ti/Dia-0)has a thermal conductivity of 410 W/m K,and this is about 74%of theoretical thermal conductivity of hot-forged copper/composite(552 W/m K).However,the formation of thin amorphous carbon layer in diamond particle(next to the interfacial TiC layer)and deformed structure in the copper matrix have adverse effect on the thermal conductivity of Cu-Ti/Dia-0 composite.800℃-annealing eliminates the discrepancy in TiC interface morphology between the diamond-{100}and-{111}facets of Cu-Ti/Dia-0 composite,but causes TiC particles coarsening and agglomerating for the Cu-Ti/Dia-2 composite and interfacial layer cracking and spallation for the Cu-Ti/Dia-1 composite.In addition,a large amount of graphite was formed by titanium-induced diamond graphitization in the Cu-Ti/Dia-2 composite.All these factors deteriorate the heat transfer behavior for the annealed Cu-Ti/Dia composites.Appropriate heat treatment needs to be continually investigated to improve the thermal conductivity of hot-forged CuTi/Dia composite by eliminating deformed structure in the copper matrix with limit/without impacts on the formed TiC interfacial layer.
基金the partial financial support from the National Natural Science Foundation of China(21935003 and 21805182)National Key Research and Development Plan(2016YFB0901503)+1 种基金Shanghai Pujiang Program(18PJ1403800)the support from the Hundreds of Talents program of Sun Yat-sen University。
文摘Aqueous zinc ion batteries show prospects for next-generation renewable energy storage devices.However,the practical applications have been limited by the issues derived from Zn anode.As one of serious problems,Zn dendrite growth caused from the uncontrollable Zn deposition is unfavorable.Herein,with the aim to regulate Zn deposition,an artificial solid–electrolyte interface is subtly engineered with a perovskite type material,BaTiO3,which can be polarized,and its polarization could be switched under the external electric field.Resulting from the aligned dipole in BaTiO3 layer,zinc ions could move in order during cycling process.Regulated Zn migration at the anode/electrolyte interface contributes to the even Zn stripping/plating and confined Zn dendrite growth.As a result,the reversible Zn plating/stripping processes for over 2000 h have been achieved at 1 mA cm^(−2) with capacity of 1 mAh cm−2.Furthermore,this anode endowing the electric dipoles shows enhanced cycling stability for aqueous Zn-MnO2 batteries.The battery can deliver nearly 100%Coulombic efficiency at 2 Ag^(−1) after 300 cycles.