Invasive as well as non-invasive neurotechnologies conceptualized to interface the central and peripheral nervous system have been probed for the past decades,which refer to electroencephalography,electrocorticography...Invasive as well as non-invasive neurotechnologies conceptualized to interface the central and peripheral nervous system have been probed for the past decades,which refer to electroencephalography,electrocorticography and microelectrode arrays.The challenges of these mentioned approaches are characterized by the bandwidth of the spatiotemporal resolution,which in turn is essential for large-area neuron recordings(Abiri et al.,2019).展开更多
High-performance alloys are indispensable in modern engineering because of their exceptional strength,ductility,corrosion resistance,fatigue resistance,and thermal stability,which are all significantly influenced by t...High-performance alloys are indispensable in modern engineering because of their exceptional strength,ductility,corrosion resistance,fatigue resistance,and thermal stability,which are all significantly influenced by the alloy interface structures.Despite substantial efforts,a comprehensive overview of interface engineering of high-performance alloys has not been presented so far.In this study,the interfaces in high-performance alloys,particularly grain and phase boundaries,were systematically examined,with emphasis on their crystallographic characteristics and chemical element segregations.The effects of the interfaces on the electrical conductivity,mechanical strength,toughness,hydrogen embrittlement resistance,and thermal stability of the alloys were elucidated.Moreover,correlations among various types of interfaces and advanced experimental and computational techniques were examined using big data analytics,enabling robust design strategies.Challenges currently faced in the field of interface engineering and emerging opportunities in the field are also discussed.The study results would guide the development of next-generation high-performance alloys.展开更多
Composite polymer electrolytes(CPEs)offer a promising solution for all-solid-state lithium-metal batteries(ASSLMBs).However,conventional nanofillers with Lewis-acid-base surfaces make limited contribution to improving...Composite polymer electrolytes(CPEs)offer a promising solution for all-solid-state lithium-metal batteries(ASSLMBs).However,conventional nanofillers with Lewis-acid-base surfaces make limited contribution to improving the overall performance of CPEs due to their difficulty in achieving robust electrochemical and mechanical interfaces simultaneously.Here,by regulating the surface charge characteristics of halloysite nanotube(HNT),we propose a concept of lithium-ion dynamic interface(Li^(+)-DI)engineering in nano-charged CPE(NCCPE).Results show that the surface charge characteristics of HNTs fundamentally change the Li^(+)-DI,and thereof the mechanical and ion-conduction behaviors of the NCCPEs.Particularly,the HNTs with positively charged surface(HNTs+)lead to a higher Li^(+)transference number(0.86)than that of HNTs-(0.73),but a lower toughness(102.13 MJ m^(-3)for HNTs+and 159.69 MJ m^(-3)for HNTs-).Meanwhile,a strong interface compatibilization effect by Li^(+)is observed for especially the HNTs+-involved Li^(+)-DI,which improves the toughness by 2000%compared with the control.Moreover,HNTs+are more effective to weaken the Li^(+)-solvation strength and facilitate the formation of Li F-rich solid-electrolyte interphase of Li metal compared to HNTs-.The resultant Li|NCCPE|LiFePO4cell delivers a capacity of 144.9 m Ah g^(-1)after 400 cycles at 0.5 C and a capacity retention of 78.6%.This study provides deep insights into understanding the roles of surface charges of nanofillers in regulating the mechanical and electrochemical interfaces in ASSLMBs.展开更多
The pre-wetting of aggregate surface is a means to improve the interface performance of SBS modified asphalt and aggregate.The effect of pre-wetting technology on the interaction between SBS modified asphalt and aggre...The pre-wetting of aggregate surface is a means to improve the interface performance of SBS modified asphalt and aggregate.The effect of pre-wetting technology on the interaction between SBS modified asphalt and aggregate was analyzed by molecular dynamics simulation.The diffusion coefficient and concentration distribution of SBS modified asphalt on aggregate surface are included.The simulation results show that the diffusion coefficient of the aggregate surface of SBS modified asphalt is increased by 47.6%and 70.5%respectively after 110#asphalt and 130#asphalt are pre-wetted.The concentration distribution of SBS modified asphalt on the aggregate surface after pre-wetting is more uniform.According to the results of interface energy calculation,the interface energy of SBS modified bitumen and aggregate can be increased by about 5%after pre-wetting.According to the results of molecular dynamics simulation,the pre-wetting technology can effectively improve the interface workability of SBS modified bitumen and aggregate,so as to improve the interface performance.展开更多
Metal-carbon dioxide(CO_(2))batteries hold great promise for reducing greenhouse gas emissions and are regarded as one of the most promising energy storage techniques due to their efficiency advantages in CO_(2)recove...Metal-carbon dioxide(CO_(2))batteries hold great promise for reducing greenhouse gas emissions and are regarded as one of the most promising energy storage techniques due to their efficiency advantages in CO_(2)recovery and conversion.Moreover,rechargeable nonaqueous metal-CO_(2)batteries have attracted much attention due to their high theoretical energy density.However,the stability issues of the electrode-electrolyte interfaces of nonaqueous metal-CO_(2)(lithium(Li)/sodium(Na)/potassium(K)-CO_(2))batteries have been troubling its development,and a large number of related research in the field of electrolytes have conducted in recent years.This review retraces the short but rapid research history of nonaqueous metal-CO_(2)batteries with a detailed electrochemical mechanism analysis.Then it focuses on the basic characteristics and design principles of electrolytes,summarizes the latest achievements of various types of electrolytes in a timely manner and deeply analyzes the construction strategies of stable electrode-electrolyte interfaces for metal-CO_(2)batteries.Finally,the key issues related to electrolytes and interface engineering are fully discussed and several potential directions for future research are proposed.This review enriches a comprehensive understanding of electrolytes and interface engineering toward the practical applications of next-generation metal-CO_(2)batteries.展开更多
The scaled suction caisson repre sents an innovative design featuring a bio-inspired sidewall modeled after snake skin,commonly utilized in offshore mooring platforms.In comparison with traditional suction caissons,th...The scaled suction caisson repre sents an innovative design featuring a bio-inspired sidewall modeled after snake skin,commonly utilized in offshore mooring platforms.In comparison with traditional suction caissons,this bio-inspired design demonstrates reduced penetration resistance and enhanced pull-out capacity due to the anisotropic shear behaviors of its sidewall.To investigate the shear behavior of the bio-inspired sidewall under pull-out load,direct shear tests were conducted between the bio-inspired surface and sand.The research demonstrates that the interface shear strength of the bio-inspired surface significantly surpasses that of the smooth surface due to interlocking effects.Additionally,the interface shear strength correlates with the aspect ratio of the bio-inspired surface,shear angle,and particle diameter distribution,with values increasing as the uniformity coefficient Cudecreases,while initially increasing and subsequently decreasing with increases in both aspect ratio and shear angle.The ratio between the interface friction angleδand internal friction angle δ_(s) defines the interface effect factor k.For the bio-inspired surface,the interface effect factor k varies with shear angleβ,ranging from 0.9 to 1.12.The peak value occurs at a shear angleβof 60°,substantially exceeding that of the smooth surface.A method for calculating the relative roughness R_(N) is employed to evaluate the interface roughness of the bio-inspired surface,taking into account scale dimension and particle diameter distribution effects.展开更多
The shear characteristics of the interface formed between a cemented tailings backfill(CTB)and surrounding rocks play a cru-cial role in the design and stability of underground goafs.To investigate the shear behavior ...The shear characteristics of the interface formed between a cemented tailings backfill(CTB)and surrounding rocks play a cru-cial role in the design and stability of underground goafs.To investigate the shear behavior of CTB-rock interfaces,rock samples repres-enting the topography of surrounding rocks were constructed using 3D morphology scanning and engraving techniques.A series of direct shear tests were conducted on the CTB rock samples to examine the influence of the cement-tailings ratio on the interfacial shear behavi-or.The results showed that the compressive strength of the CTB and shear strength of the CTB-rock interface decreased with decreasing cement proportion.With deceasing cement content,the failure area of the CTB after the test increased,and the roughness of the newly generated interface reduced.A digital image correlation analysis revealed that the compressive stress concentration in the region with an obtuse angle with respect to the shear direction was the primary cause of CTB failure.Moreover,the correlation between the wear area and the silicon-dense area helped confirm that the silicon particles are more prone to failure in these areas than in other regions.Our find-ings provide new insights into the shear sliding mechanism at CTB-rock interfaces and can aid in the selection of the cement-tailings ra-tio at engineering sites.For example,if the horizontal principal stress of the surrounding rock mass in a backfilling area is relatively high,the cement content can be reduced for CTB applications.展开更多
Two-dimensional(2D)semiconductors have emerged as an ideal platform for fundamental research and a promising candidate beyond silicon materials in future transistors due to their ultrathin thickness and excellent elec...Two-dimensional(2D)semiconductors have emerged as an ideal platform for fundamental research and a promising candidate beyond silicon materials in future transistors due to their ultrathin thickness and excellent electrical properties.However,the practical application of 2D semiconductors still faces significant challenges.The excellent interface quality of traditional silicon-based semiconductor devices is crucial for their outstanding performance,whereas the interface issues in 2D semiconductor/dielectric systems remain unresolved,resulting in device performance far below expectations.Therefore,further study of the interface in 2D semiconductor/dielectric systems and finding appropriate methods to quantify interface quality,as well as interface optimization strategies,are critical for driving the practical application of 2D semiconductors.In this review,we discuss the issues existing at the 2D semiconductor/dielectric interface,quantitative characterization methods and optimization strategies for interface quality.This includes comparing the advantages and disadvantages of traditional characterization methods for silicon-based semiconductors when applied to 2D semiconductors,as well as the development of strategies to improve interface quality and enhance the performance of 2D devices.Finally,in the outlook,we outline the development directions for improving the interface quality of 2D semiconductor/dielectric systems.展开更多
This study aims to validate the Object-Oriented User Interface Customization(OOUIC)framework by employing Use Case Analysis(UCA)to facilitate the development of adaptive User Interfaces(UIs).The OOUIC framework advoca...This study aims to validate the Object-Oriented User Interface Customization(OOUIC)framework by employing Use Case Analysis(UCA)to facilitate the development of adaptive User Interfaces(UIs).The OOUIC framework advocates for User-Centered Design(UCD)methodologies,including UCA,to systematically identify intricate user requirements and construct adaptive UIs tailored to diverse user needs.To operationalize this approach,thirty users of Product Lifecycle Management(PLM)systems were interviewed across six distinct use cases.Interview transcripts were subjected to deductive content analysis to classify UI objects systematically.Subsequently,adaptive UIs were developed for each use case,and their complexity was quantitatively compared against the original system UIs.The results demonstrated a significant reduction in complexity across all adaptive UIs(Mean Difference,MD=0.11,t(5)=8.26,p<0.001),confirming their superior efficiency.The findings validate the OOUIC framework,demonstrating that UCD effectively captures complex requirements for adaptive UI development,while adaptive UIs mitigate interface complexity through object reduction and optimized layout design.Furthermore,UCA and deductive content analysis serve as robust methodologies for object categorization in adaptive UI design.Beyond eliminating redundant elements and prioritizing object grouping,designers can further reduce complexity by adjusting object dimensions and window sizing.This study underscores the efficacy of UCA in developing adaptive UIs and streamlining complex interfaces.Ultimately,UCD proves instrumental in gathering intricate requirements,while adaptive UIs enhance usability by minimizing object clutter and refining spatial organization.展开更多
Efficient utilization of electrostatic charges is paramount for numerous applications,from printing to kinetic energy harvesting.However,existing technologies predominantly focus on the static qualities of these charg...Efficient utilization of electrostatic charges is paramount for numerous applications,from printing to kinetic energy harvesting.However,existing technologies predominantly focus on the static qualities of these charges,neglecting their dynamic capabilities as carriers for energy conversion.Herein,we report a paradigm-shifting strategy that orchestrates the swift transit of surface charges,generated through contact electrification,via a freely moving droplet.This technique ingeniously creates a bespoke charged surface which,in tandem with a droplet acting as a transfer medium to the ground,facilitates targeted charge displacement and amplifies electrical energy collection.The spontaneously generated electric field between the charged surface and needle tip,along with the enhanced water ionization under the electric field,proves pivotal in facilitating controlled charge transfer.By coupling the effects of charge self-transfer,contact electrification,and electrostatic induction,a dual-electrode droplet-driven(DD)triboelectric nanogenerator(TENG)is designed to harvest the water-related energy,exhibiting a two-orderof-magnitude improvement in electrical output compared to traditional single-electrode systems.Our strategy establishes a fundamental groundwork for efficient water drop energy acquisition,offering deep insights and substantial utility for future interdisciplinary research and applications in energy science.展开更多
Interface chemical modulation strategies are considered as promising method to prepare electrocatalysts for the urea oxidation reaction(UOR).However,conventional interface catalysts are generally limited by the inhere...Interface chemical modulation strategies are considered as promising method to prepare electrocatalysts for the urea oxidation reaction(UOR).However,conventional interface catalysts are generally limited by the inherent activity and incompatibility of the individual components themselves,and the irregular charge distribution and slow charge transfer ability between interfaces severely limit the activity of UOR.Therefore,we optimized and designed a Ni_(2)P/CoP interface with modulated surface charge distribution and directed charge transfer to promote UOR activity.Density functional theorycalculations first predict a regular charge transfer from CoP to Ni_(2)P,which creates a built-in electric field between Ni_(2)P and CoP interface.Optimization of the adsorption/desorption process of UOR/HER reaction intermediates leads to the improvement of catalytic activity.Electrochemical impedance spectroscopy and ex situ X-ray photoelectron spectroscopy characterization confirm the unique mechanism of facilitated reaction at the Ni_(2)P/CoP interface.Electrochemical tests further validated the prediction with excellent UOR/HER activities of 1.28 V and 19.7 mV vs.RHE,at 10 mA cm^(-2),respectively.Furthermore,Ni_(2)P/CoP achieves industrial-grade current densities(500 mA cm^(−2))at 1.75 V and 1.87 V in the overall urea electrolyzer(UOR||HER)and overall human urine electrolyzer(HUOR||HER),respectively,and demonstrates considerable durability.展开更多
The effects of the reduction rate of the corrugated rolling on the microstructure and mechanical properties of TA1/TC4 composite plate that was prepared via corrugated rolling+flat rolling process were investigated.Th...The effects of the reduction rate of the corrugated rolling on the microstructure and mechanical properties of TA1/TC4 composite plate that was prepared via corrugated rolling+flat rolling process were investigated.The finite element model was developed and validated for the corrugated rolling process of the composite plate.Experimental findings reveal the absence of significant defects and intermetallic compounds at the bonding interface.When the rolling temperature is 700℃with the reduction rate of 44%in the first pass of corrugated rolling,the tensile and interfacial shear strengths of the composite plate reach 749 and 403.97 MPa,respectively.The simulation results demonstrate that the plastic strain in the TC4 substrate is enhanced by corrugated rolling and the compressive stress at the trough is high.These results confirm that interfacial bonding is promoted by corrugated rolling,and the mechanical properties of the composite plate are improved significantly with the increase of reduction rate.展开更多
The formation of interphase layers,including the cathode-electrolyte interphase(CEI)and solidelectrolyte interphase(SEI),exhibits significant chemical complexity and plays a pivotal role in determining the performance...The formation of interphase layers,including the cathode-electrolyte interphase(CEI)and solidelectrolyte interphase(SEI),exhibits significant chemical complexity and plays a pivotal role in determining the performance of lithium batteries.Despite considerable advances in simulating the bulk phase properties of battery materials,the understanding of interfaces,including crystalline interfaces that represent the simplest case,remains limited.This is primarily due to challenges in performing ground-state searches for interface microstructures and the high computational costs associated with first-principles methods.Herein,we introduce InterOptimus,an automated workflow designed to efficiently search for ground-state heterogeneous interfaces.InterOptimus incorporates a rigorous,symmetry-aware equivalence analysis for lattice matching and termination scanning.Additionally,it introduces stereographic projection as an intuitive and comprehensive framework for visualizing and classifying interface structures.By integrating universal machine learning interatomic potentials(MLIPs),InterOptimus enables rapid predictions of interface energy and stability,significantly reducing the necessary computational cost in density functional theory(DFT)by over 90%.We benchmarked several MLIPs at three critical lithium battery interfaces,Li_(2)S|Ni_(3)S_(2),LiF|NCM,and Li_(3)PS_(4)|Li,and demonstrated that the MLIPs achieve accuracy comparable to DFT in modeling potential energy surfaces and ranking interface stabilities.Thus,InterOptimus facilitates the efficient determination of ground-state heterogeneous interface structures and subsequent studies of structure-property relationships,accelerating the interface engineering of novel battery materials.展开更多
Understanding frictional anisotropy,which refers to the variation in frictional resistance based on the shear direction,is crucial for optimizing the friction angle between a bio-inspired structure and the surrounding...Understanding frictional anisotropy,which refers to the variation in frictional resistance based on the shear direction,is crucial for optimizing the friction angle between a bio-inspired structure and the surrounding soil.Previous studies focused on estimating the interface frictional anisotropy mobilized by snakeskin-inspired textured surfaces and sand under monotonic shear loading conditions.However,there is a need to estimate interface frictional anisotropy under repetitive shear loads.In this study,a series of repetitive direct shear(DS)tests are performed with snakeskin-inspired textured surfaces under a constant vertical stress and two shear directions(cranial first half→caudal second half or caudal first half→cranial second half).The results show that(1)mobilized shear stress increases with the number of shearing cycles,(2)cranial shearing(shearing against the scales)consistently produces a higher shear resistance and less contractive behavior than caudal shearing(shearing along the scales),and(3)a higher scale height or smaller scale length of the surface yields a higher interface friction angle across all shearing cycles.Further analysis reveals that the gap between the cranial and caudal shear zones of the interface friction angle as a function of L/H(i.e.the ratio of scale length L to scale height H)continues to decrease as the number of shearing cycles approaches asymptotic values.The directional frictional resistance(DFR)decreases as the number of shearing cycles increases.Furthermore,the discussion covers the impact of initial relative density,vertical stress,and the number of shearing cycles on interface frictional anisotropy.展开更多
The two-dimensional electron gas(2DEG)formed at the interface between two oxide insulators provides new opportunities for electronics and spintronics.The broken inversion symmetry at the heterointerface results in a R...The two-dimensional electron gas(2DEG)formed at the interface between two oxide insulators provides new opportunities for electronics and spintronics.The broken inversion symmetry at the heterointerface results in a Rashba spin-orbit coupling(RSOC)effect that enables the conversion between spin and charge currents.However,conducting oxide interfaces that simultaneously exhibit strong RSOC and high carrier mobility-a combination query for achieving high spin-to-charge inter-conversion efficiencies-remain scarce.Herein,we report a correlated 2DEG with giant Rashba splitting and high electron mobility in(111)-oriented EuTiO_(3)/KTaO_(3)(ETO/KTO)heterostructures under light illumination.Upon light modulation,a unique carrier-dependent giant anomalous Hall effect,the signature of spin-polarized 2DEG,emerges with a sign crossover at a carrier density of approximately 5.0×10^(13)cm^(-2),highlighting dramatic changes in the band topology of KTO(111)interface.Furthermore,at 2 K,the carrier mobility is enhanced from 103 cm^(2)·V^(-1)·s^(-1)to 1800 cm^(2)·V^(-1)·s^(-1),a remarkable enhancement of approximately 20 times.Accompanying with a giant Rashba coefficient αR up to 360meV·˚A,this high mobility ferromagnetic 5d oxide 2DEG is predicted to achieve a giant spin-to-charge conversion efficiency ofλ~10 nm,showing great potential for designing low-power spin-orbitronic devices.展开更多
Steel slag(SS)accumulates unavoidably due to its complex and unstable composition,high production volumes,and limited value-added resource utilization.Single or multiple interface modifiers were proposed to enhance th...Steel slag(SS)accumulates unavoidably due to its complex and unstable composition,high production volumes,and limited value-added resource utilization.Single or multiple interface modifiers were proposed to enhance the properties of SS through high-speed dispersion,transforming its inherent hydrophilic and oleophobic characteristics into hydrophily and lipophilicity.The modification effects were innovatively assessed by observing the color changes of modified steel slag solutions following the dissolution-settlement equilibrium constant.This approach avoided human-induced errors and improved estimated accuracy in conformance with conventional methods such as oil absorption value,activation index,sedimentation volume,and lipophilicity.The hydrolysis of 3-aminopropyltriethoxysilane(KH)generated–Si(OH)_(3)structure to form hydrogen or covalent bonds with active substances(OH groups)from SS.Concurrently,SS underwent encapsulation via Si–O–Si structure resulting from the dehydration of–Si(OH)_(3).The stearic acid coupling agent(SA),aluminate coupling agent(AC),and titanate coupling agent(TN)underwent chemical reactions with Ca(OH)_(2),Al(OH)_(3),and CaCO_(3)in SS.The acidic SA primarily created stable chemical bonds and acted as a supplement due to its package,reducing surface activity and hydrophilicity while enhancing lipophilicity.Specifically,the optimal modification effect was obtained at 3 wt.%SA.Consequently,3 wt.%SA was established as the benchmark for multiple modifiers and the most effective combination was 3 wt.%SA and 3 wt.%AC.Compared with a single interface modifier,SA corroded the SS surface to provide numerous active sites for further modification by KH,AC,or TN,resulting in a more densely packed structure.In addition,more organic groups on SS prevent the proximity of other particles from agglomerating to achieve dispersion and a synergistic modification,laying a theoretical foundation of SS in a new pathway for organic composite materials.展开更多
Organic-inorganic hybrid perovskite solar cells achieve remarkable efficiencies(>26%)yet face stability challenges.Quasi-2D alternating-cation-interlayer perovskites offer enhanced stability through hydrophobic spa...Organic-inorganic hybrid perovskite solar cells achieve remarkable efficiencies(>26%)yet face stability challenges.Quasi-2D alternating-cation-interlayer perovskites offer enhanced stability through hydrophobic spacer cations but suffer from vertical phase segregation and buried interface defects.Herein,we introduce dicyanodiamide(DCD)to simultaneously address these dual limitations in GA(MA)_(n)Pb_(n)I_(3n+1)perovskites.The guanidine group in DCD passivates undercoordinated Pb^(2+)and MA^(+)vacancies at the perovskite/TiO_(2)interface,while cyano groups eliminate oxygen vacancies in TiO_(2)via Ti^(4+)-CN coordination,reducing interfacial trap density by 73%with respect to the control sample.In addition,DCD regulates crystallization kinetics,suppressing low-n-phase aggregation and promoting vertical alignment of high-n phases,which benefit for carrier transport.This dual-functional modification enhances charge transport and stabilizes energy-level alignment.The optimized devices achieve a record power conversion efficiency of 21.54%(vs.19.05%control)and retain 94%initial efficiency after 1200 h,outperforming unmodified counterparts(84%retention).Combining defect passivation with phase homogenization,this work establishes a molecular bridge strategy to decouple stability-efficiency trade-offs in low-dimensional perovskites,providing a universal framework for interface engineering in high-performance optoelectronics.展开更多
Cleanliness control of advanced steels is of vital importance for quality control of the products.In order to understand and control the inclusion removal during refining process in molten steel,its motion behaviors a...Cleanliness control of advanced steels is of vital importance for quality control of the products.In order to understand and control the inclusion removal during refining process in molten steel,its motion behaviors at the multiple steel/gas/slag interfaces have attracted the attention much of metallurgical community.The recent development of the agglomeration of non-metallic inclusions at the steel/Ar and steel/slag interfaces has been summarized,and both the experimental as well as theoretical works have been surveyed.In terms of in situ observation of high-temperature interfacial phenomena in the molten steel,researchers utilized high-temperature confocal laser scanning microscopy to observe the movement of more types of inclusions at the interface,i.e.,the investigated inclusion is no longer limited to Al_(2)O_(3)-based inclusions but moves forward to rare earth oxides,MgO-based oxides,etc.In terms of theoretical models,especially the model of inclusions at the steel/slag interface,the recent development has overcome the limitations of the assumptions of Kralchevsky-Paunov model and verified the possible errors caused by the model assumptions by combining the water model and the physical model.Last but not least,the future work in this topic has been suggested,which could be in combination of thermal physical properties of steels and slag,as well as utilize the artificial intelligence-based methodology to implement a comprehensive inclusion motion behaviors during a comprehensive metallurgical process.展开更多
Moisture-enabled electricity generation(MEG)has emerged as a promising sustainable energy harvesting technology,comparable to photovoltaics,thermoelectrics,and triboelectrics[1].MEGs generate electricity by converting...Moisture-enabled electricity generation(MEG)has emerged as a promising sustainable energy harvesting technology,comparable to photovoltaics,thermoelectrics,and triboelectrics[1].MEGs generate electricity by converting the chemical potential of moisture into electric energy through interactions with hygroscopic materials and nanostructured interfaces.Unlike solar or thermal harvesters,MEGs operate continuously by utilizing ubiquitous atmospheric moisture,granting them unique spatial and temporal adaptability.Despite nearly a decade of progress and the exploration of diverse material systems for MEG,the overall output power remains significantly limited due to inherently low charge carrier concentrations and restricted ion diffusion fluxes[2].As a result,standalone MEG devices often deliver low and unstable output,limiting practical applications.To enhance performance and versatility,recent efforts have explored hybridization of MEG with other ambient energy sources such as triboelectric or thermoelectric effects.展开更多
Currently,the demand for electromagnetic wave(EMW)absorbing materials with specific functions and capable of withstanding harsh environments is becoming increasingly urgent.Multi-component interface engineering is con...Currently,the demand for electromagnetic wave(EMW)absorbing materials with specific functions and capable of withstanding harsh environments is becoming increasingly urgent.Multi-component interface engineering is considered an effective means to achieve high-efficiency EMW absorption.However,interface modulation engineering has not been fully discussed and has great potential in the field of EMW absorption.In this study,multi-component tin compound fiber composites based on carbon fiber(CF)substrate were prepared by electrospinning,hydrothermal synthesis,and high-temperature thermal reduction.By utilizing the different properties of different substances,rich heterogeneous interfaces are constructed.This effectively promotes charge transfer and enhances interfacial polarization and conduction loss.The prepared SnS/SnS_(2)/SnO_(2)/CF composites with abundant heterogeneous interfaces have and exhibit excellent EMW absorption properties at a loading of 50 wt%in epoxy resin.The minimum reflection loss(RL)is−46.74 dB and the maximum effective absorption bandwidth is 5.28 GHz.Moreover,SnS/SnS_(2)/SnO_(2)/CF epoxy composite coatings exhibited long-term corrosion resistance on Q235 steel surfaces.Therefore,this study provides an effective strategy for the design of high-efficiency EMW absorbing materials in complex and harsh environments.展开更多
文摘Invasive as well as non-invasive neurotechnologies conceptualized to interface the central and peripheral nervous system have been probed for the past decades,which refer to electroencephalography,electrocorticography and microelectrode arrays.The challenges of these mentioned approaches are characterized by the bandwidth of the spatiotemporal resolution,which in turn is essential for large-area neuron recordings(Abiri et al.,2019).
基金supported by the National Natural Science Foundation of China(Nos.52122408 and 52474397)the High-level Talent Research Start-up Project Funding of Henan Academy of Sciences(No.242017127)+1 种基金the financial support from the Fundamental Research Funds for the Central Universities(University of Science and Technology Beijing(USTB),Nos.FRF-TP-2021-04C1 and 06500135)supported by USTB MatCom of Beijing Advanced Innovation Center for Materials Genome Engineering。
文摘High-performance alloys are indispensable in modern engineering because of their exceptional strength,ductility,corrosion resistance,fatigue resistance,and thermal stability,which are all significantly influenced by the alloy interface structures.Despite substantial efforts,a comprehensive overview of interface engineering of high-performance alloys has not been presented so far.In this study,the interfaces in high-performance alloys,particularly grain and phase boundaries,were systematically examined,with emphasis on their crystallographic characteristics and chemical element segregations.The effects of the interfaces on the electrical conductivity,mechanical strength,toughness,hydrogen embrittlement resistance,and thermal stability of the alloys were elucidated.Moreover,correlations among various types of interfaces and advanced experimental and computational techniques were examined using big data analytics,enabling robust design strategies.Challenges currently faced in the field of interface engineering and emerging opportunities in the field are also discussed.The study results would guide the development of next-generation high-performance alloys.
基金the financial support from the National Natural Science Foundation of China(52203123 and 52473248)State Key Laboratory of Polymer Materials Engineering(sklpme2024-2-04)+1 种基金the Fundamental Research Funds for the Central Universitiessponsored by the Double First-Class Construction Funds of Sichuan University。
文摘Composite polymer electrolytes(CPEs)offer a promising solution for all-solid-state lithium-metal batteries(ASSLMBs).However,conventional nanofillers with Lewis-acid-base surfaces make limited contribution to improving the overall performance of CPEs due to their difficulty in achieving robust electrochemical and mechanical interfaces simultaneously.Here,by regulating the surface charge characteristics of halloysite nanotube(HNT),we propose a concept of lithium-ion dynamic interface(Li^(+)-DI)engineering in nano-charged CPE(NCCPE).Results show that the surface charge characteristics of HNTs fundamentally change the Li^(+)-DI,and thereof the mechanical and ion-conduction behaviors of the NCCPEs.Particularly,the HNTs with positively charged surface(HNTs+)lead to a higher Li^(+)transference number(0.86)than that of HNTs-(0.73),but a lower toughness(102.13 MJ m^(-3)for HNTs+and 159.69 MJ m^(-3)for HNTs-).Meanwhile,a strong interface compatibilization effect by Li^(+)is observed for especially the HNTs+-involved Li^(+)-DI,which improves the toughness by 2000%compared with the control.Moreover,HNTs+are more effective to weaken the Li^(+)-solvation strength and facilitate the formation of Li F-rich solid-electrolyte interphase of Li metal compared to HNTs-.The resultant Li|NCCPE|LiFePO4cell delivers a capacity of 144.9 m Ah g^(-1)after 400 cycles at 0.5 C and a capacity retention of 78.6%.This study provides deep insights into understanding the roles of surface charges of nanofillers in regulating the mechanical and electrochemical interfaces in ASSLMBs.
基金Funded by the Research Funds of China University of Mining and Technology(No.102523215)。
文摘The pre-wetting of aggregate surface is a means to improve the interface performance of SBS modified asphalt and aggregate.The effect of pre-wetting technology on the interaction between SBS modified asphalt and aggregate was analyzed by molecular dynamics simulation.The diffusion coefficient and concentration distribution of SBS modified asphalt on aggregate surface are included.The simulation results show that the diffusion coefficient of the aggregate surface of SBS modified asphalt is increased by 47.6%and 70.5%respectively after 110#asphalt and 130#asphalt are pre-wetted.The concentration distribution of SBS modified asphalt on the aggregate surface after pre-wetting is more uniform.According to the results of interface energy calculation,the interface energy of SBS modified bitumen and aggregate can be increased by about 5%after pre-wetting.According to the results of molecular dynamics simulation,the pre-wetting technology can effectively improve the interface workability of SBS modified bitumen and aggregate,so as to improve the interface performance.
基金supports from the Beijing Laboratory of New Energy Storage Technology, North China Electric Power Universitythe Program of the National Energy Storage Industry-Education Platformthe Interdisciplinary Innovation Program of North China Electric Power University (No. XM2212315)
文摘Metal-carbon dioxide(CO_(2))batteries hold great promise for reducing greenhouse gas emissions and are regarded as one of the most promising energy storage techniques due to their efficiency advantages in CO_(2)recovery and conversion.Moreover,rechargeable nonaqueous metal-CO_(2)batteries have attracted much attention due to their high theoretical energy density.However,the stability issues of the electrode-electrolyte interfaces of nonaqueous metal-CO_(2)(lithium(Li)/sodium(Na)/potassium(K)-CO_(2))batteries have been troubling its development,and a large number of related research in the field of electrolytes have conducted in recent years.This review retraces the short but rapid research history of nonaqueous metal-CO_(2)batteries with a detailed electrochemical mechanism analysis.Then it focuses on the basic characteristics and design principles of electrolytes,summarizes the latest achievements of various types of electrolytes in a timely manner and deeply analyzes the construction strategies of stable electrode-electrolyte interfaces for metal-CO_(2)batteries.Finally,the key issues related to electrolytes and interface engineering are fully discussed and several potential directions for future research are proposed.This review enriches a comprehensive understanding of electrolytes and interface engineering toward the practical applications of next-generation metal-CO_(2)batteries.
基金supported by the National Natural Science Foundation of China(Grant Nos.52371301 and 52471289)。
文摘The scaled suction caisson repre sents an innovative design featuring a bio-inspired sidewall modeled after snake skin,commonly utilized in offshore mooring platforms.In comparison with traditional suction caissons,this bio-inspired design demonstrates reduced penetration resistance and enhanced pull-out capacity due to the anisotropic shear behaviors of its sidewall.To investigate the shear behavior of the bio-inspired sidewall under pull-out load,direct shear tests were conducted between the bio-inspired surface and sand.The research demonstrates that the interface shear strength of the bio-inspired surface significantly surpasses that of the smooth surface due to interlocking effects.Additionally,the interface shear strength correlates with the aspect ratio of the bio-inspired surface,shear angle,and particle diameter distribution,with values increasing as the uniformity coefficient Cudecreases,while initially increasing and subsequently decreasing with increases in both aspect ratio and shear angle.The ratio between the interface friction angleδand internal friction angle δ_(s) defines the interface effect factor k.For the bio-inspired surface,the interface effect factor k varies with shear angleβ,ranging from 0.9 to 1.12.The peak value occurs at a shear angleβof 60°,substantially exceeding that of the smooth surface.A method for calculating the relative roughness R_(N) is employed to evaluate the interface roughness of the bio-inspired surface,taking into account scale dimension and particle diameter distribution effects.
基金supported by the National Natural Science Foundation of China(No.52374153).
文摘The shear characteristics of the interface formed between a cemented tailings backfill(CTB)and surrounding rocks play a cru-cial role in the design and stability of underground goafs.To investigate the shear behavior of CTB-rock interfaces,rock samples repres-enting the topography of surrounding rocks were constructed using 3D morphology scanning and engraving techniques.A series of direct shear tests were conducted on the CTB rock samples to examine the influence of the cement-tailings ratio on the interfacial shear behavi-or.The results showed that the compressive strength of the CTB and shear strength of the CTB-rock interface decreased with decreasing cement proportion.With deceasing cement content,the failure area of the CTB after the test increased,and the roughness of the newly generated interface reduced.A digital image correlation analysis revealed that the compressive stress concentration in the region with an obtuse angle with respect to the shear direction was the primary cause of CTB failure.Moreover,the correlation between the wear area and the silicon-dense area helped confirm that the silicon particles are more prone to failure in these areas than in other regions.Our find-ings provide new insights into the shear sliding mechanism at CTB-rock interfaces and can aid in the selection of the cement-tailings ra-tio at engineering sites.For example,if the horizontal principal stress of the surrounding rock mass in a backfilling area is relatively high,the cement content can be reduced for CTB applications.
基金financially supported by the National Key R&D Program of China(No.2023YFE0210800)the National Natural Science Foundation of China(Nos.52202171,22350003,and U21A2069)+2 种基金the Hubei Provincial Natural Science Foundation of China(No.2024AFA012)the Shenzhen Science and Technology Program(Nos.JCYJ20240813153403005 and JCYJ20220818102215033)the Guangdong Basic and Applied Basic Research Foundation(No.2023B1515120041).
文摘Two-dimensional(2D)semiconductors have emerged as an ideal platform for fundamental research and a promising candidate beyond silicon materials in future transistors due to their ultrathin thickness and excellent electrical properties.However,the practical application of 2D semiconductors still faces significant challenges.The excellent interface quality of traditional silicon-based semiconductor devices is crucial for their outstanding performance,whereas the interface issues in 2D semiconductor/dielectric systems remain unresolved,resulting in device performance far below expectations.Therefore,further study of the interface in 2D semiconductor/dielectric systems and finding appropriate methods to quantify interface quality,as well as interface optimization strategies,are critical for driving the practical application of 2D semiconductors.In this review,we discuss the issues existing at the 2D semiconductor/dielectric interface,quantitative characterization methods and optimization strategies for interface quality.This includes comparing the advantages and disadvantages of traditional characterization methods for silicon-based semiconductors when applied to 2D semiconductors,as well as the development of strategies to improve interface quality and enhance the performance of 2D devices.Finally,in the outlook,we outline the development directions for improving the interface quality of 2D semiconductor/dielectric systems.
基金supported by the National Natural Science Foundation of China(Grant No.72301061).
文摘This study aims to validate the Object-Oriented User Interface Customization(OOUIC)framework by employing Use Case Analysis(UCA)to facilitate the development of adaptive User Interfaces(UIs).The OOUIC framework advocates for User-Centered Design(UCD)methodologies,including UCA,to systematically identify intricate user requirements and construct adaptive UIs tailored to diverse user needs.To operationalize this approach,thirty users of Product Lifecycle Management(PLM)systems were interviewed across six distinct use cases.Interview transcripts were subjected to deductive content analysis to classify UI objects systematically.Subsequently,adaptive UIs were developed for each use case,and their complexity was quantitatively compared against the original system UIs.The results demonstrated a significant reduction in complexity across all adaptive UIs(Mean Difference,MD=0.11,t(5)=8.26,p<0.001),confirming their superior efficiency.The findings validate the OOUIC framework,demonstrating that UCD effectively captures complex requirements for adaptive UI development,while adaptive UIs mitigate interface complexity through object reduction and optimized layout design.Furthermore,UCA and deductive content analysis serve as robust methodologies for object categorization in adaptive UI design.Beyond eliminating redundant elements and prioritizing object grouping,designers can further reduce complexity by adjusting object dimensions and window sizing.This study underscores the efficacy of UCA in developing adaptive UIs and streamlining complex interfaces.Ultimately,UCD proves instrumental in gathering intricate requirements,while adaptive UIs enhance usability by minimizing object clutter and refining spatial organization.
基金supported by the Natural Science Foundation of Zhejiang Province(LZ22C130001)the National Natural Science Foundation of China(32171887,and 52002028,and 52192610)+1 种基金the National Key Research and Development Project from Minister of Science&Technology(2021YFA0202704)Beijing Municipal Science&Technology Commission(Z171100002017017).
文摘Efficient utilization of electrostatic charges is paramount for numerous applications,from printing to kinetic energy harvesting.However,existing technologies predominantly focus on the static qualities of these charges,neglecting their dynamic capabilities as carriers for energy conversion.Herein,we report a paradigm-shifting strategy that orchestrates the swift transit of surface charges,generated through contact electrification,via a freely moving droplet.This technique ingeniously creates a bespoke charged surface which,in tandem with a droplet acting as a transfer medium to the ground,facilitates targeted charge displacement and amplifies electrical energy collection.The spontaneously generated electric field between the charged surface and needle tip,along with the enhanced water ionization under the electric field,proves pivotal in facilitating controlled charge transfer.By coupling the effects of charge self-transfer,contact electrification,and electrostatic induction,a dual-electrode droplet-driven(DD)triboelectric nanogenerator(TENG)is designed to harvest the water-related energy,exhibiting a two-orderof-magnitude improvement in electrical output compared to traditional single-electrode systems.Our strategy establishes a fundamental groundwork for efficient water drop energy acquisition,offering deep insights and substantial utility for future interdisciplinary research and applications in energy science.
文摘Interface chemical modulation strategies are considered as promising method to prepare electrocatalysts for the urea oxidation reaction(UOR).However,conventional interface catalysts are generally limited by the inherent activity and incompatibility of the individual components themselves,and the irregular charge distribution and slow charge transfer ability between interfaces severely limit the activity of UOR.Therefore,we optimized and designed a Ni_(2)P/CoP interface with modulated surface charge distribution and directed charge transfer to promote UOR activity.Density functional theorycalculations first predict a regular charge transfer from CoP to Ni_(2)P,which creates a built-in electric field between Ni_(2)P and CoP interface.Optimization of the adsorption/desorption process of UOR/HER reaction intermediates leads to the improvement of catalytic activity.Electrochemical impedance spectroscopy and ex situ X-ray photoelectron spectroscopy characterization confirm the unique mechanism of facilitated reaction at the Ni_(2)P/CoP interface.Electrochemical tests further validated the prediction with excellent UOR/HER activities of 1.28 V and 19.7 mV vs.RHE,at 10 mA cm^(-2),respectively.Furthermore,Ni_(2)P/CoP achieves industrial-grade current densities(500 mA cm^(−2))at 1.75 V and 1.87 V in the overall urea electrolyzer(UOR||HER)and overall human urine electrolyzer(HUOR||HER),respectively,and demonstrates considerable durability.
基金supported by the National Natural Science Foundation of China(No.52275362)Natural Science Foundation of Shanxi Province,China(No.202303021224002)the Central Government Guides the Special Fund Projects of Local Scientific and Technological Development(Nos.YDZJSX2021A020,YDZJSX2022A023).
文摘The effects of the reduction rate of the corrugated rolling on the microstructure and mechanical properties of TA1/TC4 composite plate that was prepared via corrugated rolling+flat rolling process were investigated.The finite element model was developed and validated for the corrugated rolling process of the composite plate.Experimental findings reveal the absence of significant defects and intermetallic compounds at the bonding interface.When the rolling temperature is 700℃with the reduction rate of 44%in the first pass of corrugated rolling,the tensile and interfacial shear strengths of the composite plate reach 749 and 403.97 MPa,respectively.The simulation results demonstrate that the plastic strain in the TC4 substrate is enhanced by corrugated rolling and the compressive stress at the trough is high.These results confirm that interfacial bonding is promoted by corrugated rolling,and the mechanical properties of the composite plate are improved significantly with the increase of reduction rate.
基金supported by the National Natural Science Foundation of China(92470110)the Special Funds for the Development of Strategic Emerging Industries in Shenzhen(XMHT20240108008)the Shenzhen Stable Support Program for Higher Education Institutions(WDZC20231126215806001)。
文摘The formation of interphase layers,including the cathode-electrolyte interphase(CEI)and solidelectrolyte interphase(SEI),exhibits significant chemical complexity and plays a pivotal role in determining the performance of lithium batteries.Despite considerable advances in simulating the bulk phase properties of battery materials,the understanding of interfaces,including crystalline interfaces that represent the simplest case,remains limited.This is primarily due to challenges in performing ground-state searches for interface microstructures and the high computational costs associated with first-principles methods.Herein,we introduce InterOptimus,an automated workflow designed to efficiently search for ground-state heterogeneous interfaces.InterOptimus incorporates a rigorous,symmetry-aware equivalence analysis for lattice matching and termination scanning.Additionally,it introduces stereographic projection as an intuitive and comprehensive framework for visualizing and classifying interface structures.By integrating universal machine learning interatomic potentials(MLIPs),InterOptimus enables rapid predictions of interface energy and stability,significantly reducing the necessary computational cost in density functional theory(DFT)by over 90%.We benchmarked several MLIPs at three critical lithium battery interfaces,Li_(2)S|Ni_(3)S_(2),LiF|NCM,and Li_(3)PS_(4)|Li,and demonstrated that the MLIPs achieve accuracy comparable to DFT in modeling potential energy surfaces and ranking interface stabilities.Thus,InterOptimus facilitates the efficient determination of ground-state heterogeneous interface structures and subsequent studies of structure-property relationships,accelerating the interface engineering of novel battery materials.
基金the funding supported from the National Research Foundation of Korea(NRF)grant funded by the Korea Government MSIT(No.2021R1C1C1006003).
文摘Understanding frictional anisotropy,which refers to the variation in frictional resistance based on the shear direction,is crucial for optimizing the friction angle between a bio-inspired structure and the surrounding soil.Previous studies focused on estimating the interface frictional anisotropy mobilized by snakeskin-inspired textured surfaces and sand under monotonic shear loading conditions.However,there is a need to estimate interface frictional anisotropy under repetitive shear loads.In this study,a series of repetitive direct shear(DS)tests are performed with snakeskin-inspired textured surfaces under a constant vertical stress and two shear directions(cranial first half→caudal second half or caudal first half→cranial second half).The results show that(1)mobilized shear stress increases with the number of shearing cycles,(2)cranial shearing(shearing against the scales)consistently produces a higher shear resistance and less contractive behavior than caudal shearing(shearing along the scales),and(3)a higher scale height or smaller scale length of the surface yields a higher interface friction angle across all shearing cycles.Further analysis reveals that the gap between the cranial and caudal shear zones of the interface friction angle as a function of L/H(i.e.the ratio of scale length L to scale height H)continues to decrease as the number of shearing cycles approaches asymptotic values.The directional frictional resistance(DFR)decreases as the number of shearing cycles increases.Furthermore,the discussion covers the impact of initial relative density,vertical stress,and the number of shearing cycles on interface frictional anisotropy.
基金supported by the Science Center of the National Science Foundation of China(Grant No.52088101)the National Key Research and Development Program of China(Grant Nos.2023YFA1406400,2021YFA1400300,and 2023YFA1607403)the National Natural Science Foundation of China(Grant Nos.T2394472 and T2394470).
文摘The two-dimensional electron gas(2DEG)formed at the interface between two oxide insulators provides new opportunities for electronics and spintronics.The broken inversion symmetry at the heterointerface results in a Rashba spin-orbit coupling(RSOC)effect that enables the conversion between spin and charge currents.However,conducting oxide interfaces that simultaneously exhibit strong RSOC and high carrier mobility-a combination query for achieving high spin-to-charge inter-conversion efficiencies-remain scarce.Herein,we report a correlated 2DEG with giant Rashba splitting and high electron mobility in(111)-oriented EuTiO_(3)/KTaO_(3)(ETO/KTO)heterostructures under light illumination.Upon light modulation,a unique carrier-dependent giant anomalous Hall effect,the signature of spin-polarized 2DEG,emerges with a sign crossover at a carrier density of approximately 5.0×10^(13)cm^(-2),highlighting dramatic changes in the band topology of KTO(111)interface.Furthermore,at 2 K,the carrier mobility is enhanced from 103 cm^(2)·V^(-1)·s^(-1)to 1800 cm^(2)·V^(-1)·s^(-1),a remarkable enhancement of approximately 20 times.Accompanying with a giant Rashba coefficient αR up to 360meV·˚A,this high mobility ferromagnetic 5d oxide 2DEG is predicted to achieve a giant spin-to-charge conversion efficiency ofλ~10 nm,showing great potential for designing low-power spin-orbitronic devices.
基金supported by the National Natural Science Foundation of China(U23A20605)Anhui Graduate Innovation and Entrepreneurship Practice Project(2022cxcysj090)+2 种基金China Baowu Low Carbon Metallurgy Innovation Foundation(BWLCF202202)the University Synergy Innovation Program of Anhui Province(GXXT-2020-072)the Outstanding Youth Fund of Anhui Province(2208085J19).
文摘Steel slag(SS)accumulates unavoidably due to its complex and unstable composition,high production volumes,and limited value-added resource utilization.Single or multiple interface modifiers were proposed to enhance the properties of SS through high-speed dispersion,transforming its inherent hydrophilic and oleophobic characteristics into hydrophily and lipophilicity.The modification effects were innovatively assessed by observing the color changes of modified steel slag solutions following the dissolution-settlement equilibrium constant.This approach avoided human-induced errors and improved estimated accuracy in conformance with conventional methods such as oil absorption value,activation index,sedimentation volume,and lipophilicity.The hydrolysis of 3-aminopropyltriethoxysilane(KH)generated–Si(OH)_(3)structure to form hydrogen or covalent bonds with active substances(OH groups)from SS.Concurrently,SS underwent encapsulation via Si–O–Si structure resulting from the dehydration of–Si(OH)_(3).The stearic acid coupling agent(SA),aluminate coupling agent(AC),and titanate coupling agent(TN)underwent chemical reactions with Ca(OH)_(2),Al(OH)_(3),and CaCO_(3)in SS.The acidic SA primarily created stable chemical bonds and acted as a supplement due to its package,reducing surface activity and hydrophilicity while enhancing lipophilicity.Specifically,the optimal modification effect was obtained at 3 wt.%SA.Consequently,3 wt.%SA was established as the benchmark for multiple modifiers and the most effective combination was 3 wt.%SA and 3 wt.%AC.Compared with a single interface modifier,SA corroded the SS surface to provide numerous active sites for further modification by KH,AC,or TN,resulting in a more densely packed structure.In addition,more organic groups on SS prevent the proximity of other particles from agglomerating to achieve dispersion and a synergistic modification,laying a theoretical foundation of SS in a new pathway for organic composite materials.
基金support from the National Key R&D Program of China(Grant No.2023YFE0111500)the National Natural Science Foundation of China(Grant No.52321006,T2394480,T2394484,22109143,22479131)+8 种基金Beijing National Laboratory for Molecular Sciences(BNLMS-CXXM-202005)the China Postdoctoral Innovative Talent Support Program(Grant No.BX2021271)the China Postdoctoral Science Foundation(2022M712851)the Opening Project of State Key Laboratory of Advanced Technology for Float Glass(Grant No.2022KF04)Graduate Education Reform Project of Henan Province(Grant No.2023SJGLX136Y)Key R&D Special Program of Henan Province(Grant No.241111242000)Program for Science and Technology Innovation Talents in Universities of Henan Province(Grant No.25HASTIT005)Training Plan for Young Backbone Teachers of Zhengzhou University(Grant No.2023ZDGGJS017)the Joint Research Project of Puyang Shengtong Juyuan New Materials Co.,Ltd.(Grant No.20230128A).
文摘Organic-inorganic hybrid perovskite solar cells achieve remarkable efficiencies(>26%)yet face stability challenges.Quasi-2D alternating-cation-interlayer perovskites offer enhanced stability through hydrophobic spacer cations but suffer from vertical phase segregation and buried interface defects.Herein,we introduce dicyanodiamide(DCD)to simultaneously address these dual limitations in GA(MA)_(n)Pb_(n)I_(3n+1)perovskites.The guanidine group in DCD passivates undercoordinated Pb^(2+)and MA^(+)vacancies at the perovskite/TiO_(2)interface,while cyano groups eliminate oxygen vacancies in TiO_(2)via Ti^(4+)-CN coordination,reducing interfacial trap density by 73%with respect to the control sample.In addition,DCD regulates crystallization kinetics,suppressing low-n-phase aggregation and promoting vertical alignment of high-n phases,which benefit for carrier transport.This dual-functional modification enhances charge transport and stabilizes energy-level alignment.The optimized devices achieve a record power conversion efficiency of 21.54%(vs.19.05%control)and retain 94%initial efficiency after 1200 h,outperforming unmodified counterparts(84%retention).Combining defect passivation with phase homogenization,this work establishes a molecular bridge strategy to decouple stability-efficiency trade-offs in low-dimensional perovskites,providing a universal framework for interface engineering in high-performance optoelectronics.
基金the National Natural Science Foundation of China(Grant No.52074179)for the financial supportNational Key Research and Development Program of China(2024YFB3713705)is also acknowledged.
文摘Cleanliness control of advanced steels is of vital importance for quality control of the products.In order to understand and control the inclusion removal during refining process in molten steel,its motion behaviors at the multiple steel/gas/slag interfaces have attracted the attention much of metallurgical community.The recent development of the agglomeration of non-metallic inclusions at the steel/Ar and steel/slag interfaces has been summarized,and both the experimental as well as theoretical works have been surveyed.In terms of in situ observation of high-temperature interfacial phenomena in the molten steel,researchers utilized high-temperature confocal laser scanning microscopy to observe the movement of more types of inclusions at the interface,i.e.,the investigated inclusion is no longer limited to Al_(2)O_(3)-based inclusions but moves forward to rare earth oxides,MgO-based oxides,etc.In terms of theoretical models,especially the model of inclusions at the steel/slag interface,the recent development has overcome the limitations of the assumptions of Kralchevsky-Paunov model and verified the possible errors caused by the model assumptions by combining the water model and the physical model.Last but not least,the future work in this topic has been suggested,which could be in combination of thermal physical properties of steels and slag,as well as utilize the artificial intelligence-based methodology to implement a comprehensive inclusion motion behaviors during a comprehensive metallurgical process.
基金the financial support of the National Natural Science Foundation of China(No.22205165).
文摘Moisture-enabled electricity generation(MEG)has emerged as a promising sustainable energy harvesting technology,comparable to photovoltaics,thermoelectrics,and triboelectrics[1].MEGs generate electricity by converting the chemical potential of moisture into electric energy through interactions with hygroscopic materials and nanostructured interfaces.Unlike solar or thermal harvesters,MEGs operate continuously by utilizing ubiquitous atmospheric moisture,granting them unique spatial and temporal adaptability.Despite nearly a decade of progress and the exploration of diverse material systems for MEG,the overall output power remains significantly limited due to inherently low charge carrier concentrations and restricted ion diffusion fluxes[2].As a result,standalone MEG devices often deliver low and unstable output,limiting practical applications.To enhance performance and versatility,recent efforts have explored hybridization of MEG with other ambient energy sources such as triboelectric or thermoelectric effects.
基金financially supported by the National Natural Science Foundation of China(No.52377026 and No.52301192)Taishan Scholars and Young Experts Program of Shandong Province(No.tsqn202103057)+4 种基金Postdoctoral Fellowship Program of CPSF under Grant Number(No.GZB20240327)Shandong Postdoctoral Science Foundation(No.SDCXZG-202400275)Qingdao Postdoctoral Application Research Project(No.QDBSH20240102023)China Postdoctoral Science Foundation(No.2024M751563)the Qingchuang Talents Induction Program of Shandong Higher Education Institution(Research and Innovation Team of Structural-Functional Polymer Composites).
文摘Currently,the demand for electromagnetic wave(EMW)absorbing materials with specific functions and capable of withstanding harsh environments is becoming increasingly urgent.Multi-component interface engineering is considered an effective means to achieve high-efficiency EMW absorption.However,interface modulation engineering has not been fully discussed and has great potential in the field of EMW absorption.In this study,multi-component tin compound fiber composites based on carbon fiber(CF)substrate were prepared by electrospinning,hydrothermal synthesis,and high-temperature thermal reduction.By utilizing the different properties of different substances,rich heterogeneous interfaces are constructed.This effectively promotes charge transfer and enhances interfacial polarization and conduction loss.The prepared SnS/SnS_(2)/SnO_(2)/CF composites with abundant heterogeneous interfaces have and exhibit excellent EMW absorption properties at a loading of 50 wt%in epoxy resin.The minimum reflection loss(RL)is−46.74 dB and the maximum effective absorption bandwidth is 5.28 GHz.Moreover,SnS/SnS_(2)/SnO_(2)/CF epoxy composite coatings exhibited long-term corrosion resistance on Q235 steel surfaces.Therefore,this study provides an effective strategy for the design of high-efficiency EMW absorbing materials in complex and harsh environments.