期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Species composition and diversity,and carbon stock in a dune ecosystem in the Horqin Sandy Land of northern China 被引量:2
1
作者 FeiLong HU WenKai SHOU +2 位作者 Bo LIU ZhiMin LIU Carlos A BUSSO 《Journal of Arid Land》 SCIE CSCD 2015年第1期82-93,共12页
In this study, we determined carbon allocation and carbon stocks in the plant-soil system of different dune ecosystems in northeastern China. We quantified the species composition, above and below-ground bio masses, a... In this study, we determined carbon allocation and carbon stocks in the plant-soil system of different dune ecosystems in northeastern China. We quantified the species composition, above and below-ground bio masses, and carbon stocks of three dune types (i.e. active dunes, semi-stabilized dunes and stabilized dunes) and their corresponding inter-dune lowlands (i.e. interdune lowlands of active dunes, interdune lowlands of semi-stabilized dunes and interdune lowlands of stabilized dunes) in the Horqin Sandy Land. The results showed that the succession series on interdune lowlands of the Horqin Sandy Land confirmed differences in species composition of the various dune types. Aboveground carbon (AGC) on the interdune lowlands of semi-stabilized dunes (33.04 g C/m2) was greater (P〈0.05) than that on the interdune lowlands of active dunes (10.73 g C/m2). At the same time, the different dune types did not show any significant differences (/:〉〉0.05) in belowground plant carbon (BGC). However, the percentage of plant BGC in interdune lowlands of active dunes (81.5%) was significantly higher (P〈0.05) than that in the interdune lowlands of semi-stabilized dunes (58.9%). The predominant carbon pool in the study dune ecosystem was in the soil. It accounted for 95% to 99% of total carbon storage. Soil organic carbon (SOC) was at least 55% greater (P〈0.05) in the interdunes than in the dunes. Stabilized dunes showed at least a 37% greater (P〈0.05) SOC content than active dunes up to a 1-m soil depth. Meanwhile, SOC content of interdune lowlands of semi-stabilized dunes was greater (P〈0.05) than that of interdune lowlands of active dunes only up to a 20-cm soil depth. The dune ecosystem showed a great potential to store carbon when interdune lowlands of active dunes were conversed to interdune lowlands of semi-stabilized dunes, which stored up to twice as much carbon per unit volume as interdune lowlands of active dunes. 展开更多
关键词 species diversity carbon storage sand dunes interdune lowlands semi-arid areas
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部