Resilience studies for water distribution systems(WDS)coupled with other interdependent infrastructure systems attract increasing attention from stakeholders and researchers.However,most existing large-scale WDS model...Resilience studies for water distribution systems(WDS)coupled with other interdependent infrastructure systems attract increasing attention from stakeholders and researchers.However,most existing large-scale WDS models are single infrastructure-based without consideration of other infrastructure systems.This is due to a lack of needed information on systems coupling,the structure of the simulator used,and the computation load involved.To address these gaps,this paper presents a synthetic modeling framework for a real-world WDS as coordinating with other infrastructure systems via a building-mediated clustering approach through consideration of physical distance and node capacity.First,the WDS network topology and operation parameters are inferred via bulk open-source information.A building-mediated clustering approach is designed to systematically derive the interdependence between the WDS and the power system similarly created as a case study.Second,a novel linearization method is developed in formulating the WDS model that can relieve computation load while maintaining accuracy.Finally,a disruption-recovery framework is developed to demonstrate the proposed methodology in modelling WDS resilience.The framework is applied to a neighborhood in Queenstown,Singapore,an area of 20.43 km^(2) and 96,000 population.The near-real-time simulations on the coupled system involving 308 nodes and 384 links showcase the effectiveness and application of the proposed synthetic modeling and formulation.展开更多
With the advent of cross-domain interconnection,large-scale sensor network systems such as smart grids,smart homes,and intelligent transportation have emerged.These complex network systems often have a CPS(Cyber-Physi...With the advent of cross-domain interconnection,large-scale sensor network systems such as smart grids,smart homes,and intelligent transportation have emerged.These complex network systems often have a CPS(Cyber-Physical System)architecture and are usually composed of multiple interdependent systems.Minimal faults between interdependent networks may cause serious cascading failures between the entire system.Therefore,in this paper,we will explore the robustness detection schemes for interdependent networks.Firstly,by calculating the largest giant connected component in the entire system,the security of interdependent network systems under different attack models is analyzed.Secondly,a comparative analysis of the cascade failure mechanism between interdependent networks under the edge enhancement strategy is carried out.Finally,the simulation results verify the impact of system reliability under different handover edge strategies and show how to choose a better handover strategy to enhance its robustness.The further research work in this paper can also help design how to reduce the interdependence between systems,thereby further optimizing the interdependent network system’s structure to provide practical support for reducing the cascading failures.In the later work,we hope to explore our proposed strategies in the network model of real-world or close to real networks.展开更多
The impact of risk correlation on firm's investments in information system security is studied by using quantification models combining the ideas of the risk management theory and the game theory. The equilibrium lev...The impact of risk correlation on firm's investments in information system security is studied by using quantification models combining the ideas of the risk management theory and the game theory. The equilibrium levels of self-protection and insurance coverage under the non- cooperative condition are compared with socially optimal solutions, and the associated coordination mechanisms are proposed. The results show that self-protection investment increases in response to an increase in potential loss when the interdependent risk is small; the interdependent risk of security investments often induce firms to underinvest in security relative to the socially efficient level by ignoring marginal external costs or benefits conferred on others. A subsidy on self-protection investment from the government can help coordinate a firm's risk management decision and, thereby, improve individual security level and overall social welfare.展开更多
Critical infrastructure systems(CISs)play a key role in the socio-economic activity of a society,but are exposed to an array of disruptive events that can greatly impact their function and performance.Therefore,unders...Critical infrastructure systems(CISs)play a key role in the socio-economic activity of a society,but are exposed to an array of disruptive events that can greatly impact their function and performance.Therefore,understanding the underlying behaviors of CISs and their response to perturbations is needed to better prepare for,and mitigate the impact of,future disruptions.Resilience is one characteristic of CISs that influences the extent and severity of the impact induced by extreme events.Resilience is often dissected into four dimensions:robustness,redundancy,resourcefulness,and rapidity,known as the“4Rs”.This study proposes a framework to assess the resilience of an infrastructure network in terms of these four dimensions under optimal resource allocation strategies and incorporates interdependencies between different CISs,with resilience considered as a stochastic variable.The proposed framework combines an agent-based infrastructure interdependency model,advanced optimization algorithms,Bayesian network techniques,and Monte Carlo simulation to assess the resilience of an infrastructure network.The applicability and flexibility of the proposed framework is demonstrated with a case study using a network of CISs in Austin,Texas,where the resilience of the network is assessed and a“what-if”analysis is performed.展开更多
Aiming at the problem that it is difficult to build model and identify the vulnerable equipment for aviation armament System-of-Systems(SoS)due to complex equipment interaction relationships and high confrontation,the...Aiming at the problem that it is difficult to build model and identify the vulnerable equipment for aviation armament System-of-Systems(SoS)due to complex equipment interaction relationships and high confrontation,the interdependent network theory is introduced to solve it.Firstly,a two-layer heterogeneous interdependent network model for aviation armament SoS is proposed,which reflects the information interaction,functional dependency and inter-network dependence effectively.Secondly,using the attack cost to describe the confrontation process and taking the comprehensive impact on kill chains as the entry point,the node importance index and the attack cost measurement method are constructed.Thirdly,the identification of vulnerable nodes is transformed into the optimization problem of node combinatorial selection,and the vulnerable node identification method based on tabu search is proposed.Based on vulnerable nodes,a robustness enhancement strategy for aviation armament SoS network is presented.Finally,the above methods are used to an aerial confrontation SoS,and the results verify the rationality and effectiveness of the proposed methods.展开更多
The controllability problem of heterogeneous interdependent group systems with undirected and directed topology is investigated in this paper. First, the interdependent model of the heterogeneous system is set up acco...The controllability problem of heterogeneous interdependent group systems with undirected and directed topology is investigated in this paper. First, the interdependent model of the heterogeneous system is set up according to the difference of individual characteristics. An extended distributed protocol with the external sliding-mode control is designed, under which it is shown that a heterogeneous interdependent group system is controllable when the corresponding communication topology is controllable. Then, using the network eigenvalue method, the driving individuals are determined for a heterogeneous system with undirected topology. Under directed topology, the maximum match method is utilized to confirm the driving individuals. Some sufficient and necessary conditions are presented to assure that the heterogeneous interdependent group system is structurally controllable. Via theoretical analysis, the controllability of heterogeneous interdependent systems is related to the interdependent manner and the structure of the heterogeneous system. Numerical simulations are provided to demonstrate the effectiveness of the theoretical results.展开更多
A fiber-section model based Timoshenko beam element is proposed in this study that is founded on the nonlinear analysis of frame elements considering axial, flexural, and shear deformations. This model is achieved usi...A fiber-section model based Timoshenko beam element is proposed in this study that is founded on the nonlinear analysis of frame elements considering axial, flexural, and shear deformations. This model is achieved using a shear-bending interdependent formulation (SBIF). The shape function of the element is derived from the exact solution of the homogeneous form of the equilibrium equation for the Timoshenko deformation hypothesis.The proposed element is free from shear-locking. The sectional fiber model is constituted with a multi-axial plasticity material model, which is used to simulate the coupled shear-axial nonlinear behavior of each fiber. By imposing deformation compatibility conditions among the fibers, the sectional and elemental resisting forces are calculated. Since the SBIF shape functions are interactive with the shear-corrector factor for different shapes of sections, an iterative procedure is introduced in the nonlinear state determination of the proposed Timoshenko element. In addition, the proposed model tackles the geometric nonlinear problem by adopting a corotational coordinate transformation approach. The derivation procedure of the corotational algorithm of the SBIF Timoshenko element for nonlinear geometrical analysis is presented. Numerical examples confirm that the SBIF Timoshenko element with a fiber-section model has the same accuracy and robustness as the flexibility-based formulation. Finally, the SBIF Timoshenko element is extended and demonstratedin a three-dimensional numerical example.展开更多
Critical infrastructures(CI) are designated sectors that if incapacitated or destroyed by natural disasters would have a serious impact on national security and economic and social welfare. Due to the interdependenc...Critical infrastructures(CI) are designated sectors that if incapacitated or destroyed by natural disasters would have a serious impact on national security and economic and social welfare. Due to the interdependency of critical infrastructures failure of one infrastructure during a natural disaster such as earthquake or flood may cause failure of another and so on through a cascade or escalating effect. Quantification of these types of interdependencies between critical infrastructures is essential for effective response and management of resources for rescue, recovery, and restoration during times of crises. This paper proposes a new mathematical framework based on an asymmetric relation matrix constructed in a bottom-up approach for modeling and analyzing interdependencies of critical infrastructures. Asymmetric dependency matrices can be constructed using the asymmetric incidence coefficient based on node-level relationships defined between nodes for measuring the strength of interdependency between node and node, node and network, and networks and networks. These asymmetric matrices are further analyzed for ranking infrastructures in terms of their relative importance and for identifying nodes and infrastructure networks that play a critical role in chain effects among infrastructures involved in geo-disaster events such as flooding. Examples of interdependency analysis for the identification of vulnerabilities among fifteen national defense-related infrastructure sectors by the Australian government and a simulated example using the newly developed GIS-based network simulator Geo PN are used to validate and demonstrate the implementation and effectiveness of interdependency analysis methods in analyzing infrastructure interdependency during a flooding event.展开更多
The weighted Gini-Simpson quadratic index is the simplest measure of biodiversity which takes into account the relative abundance of species and some weights assigned to the species. These weights could be assigned ba...The weighted Gini-Simpson quadratic index is the simplest measure of biodiversity which takes into account the relative abundance of species and some weights assigned to the species. These weights could be assigned based on factors such as the phylogenetic distance between species, or their relative conservation values, or even the species richness or vulnerability of the habitats where these species live. In the vast majority of cases where the biodiversity is measured the species are supposed to be independent, which means that the relative proportion of a pair of species is the product of the relative proportions of the component species making up the respective pair. In the first section of the paper, the main versions of the weighted Gini-Simpson index of biodiversity for the pairs and triads of independent species are presented. In the second section of the paper, the weighted Gini-Simpson quadratic index is calculated for the general case when the species are interdependent. In this instance, the weights reflect the conservation values of the species and the distribution pattern variability of the subsets of species in the respective habitat induced by the inter-dependence between species. The third section contains a numerical example.展开更多
Enhancing the resilience of critical infrastructure systems requires substantial investment and entails trade-offs between environmental and economic benefits.To this aim,we propose a methodological framework that com...Enhancing the resilience of critical infrastructure systems requires substantial investment and entails trade-offs between environmental and economic benefits.To this aim,we propose a methodological framework that com-bines resilience and economic analyses and assesses the economic viability of alternative resilience designs for a Water Distribution System(WDS)and its interdependent power and transportation systems.Flow-based net-work models simulate the interdependent infrastructure systems and Global Resilience Analysis(GRA)quantifies three resilience metrics under various disruption scenarios.The economic analysis monetizes the three metrics and compares two resilience strategies involving the installation of remotely controlled shutoffvalves.Using the Micropolis synthetic interdependent water-transportation network as an example,we demonstrate how our framework can guide infrastructure stakeholders and utility operators in measuring the value of resilience invest-ments.Overall,our approach highlights the importance of economic analysis in designing resilient infrastructure systems.展开更多
The disintegration of networks is a widely researched topic with significant applications in fields such as counterterrorism and infectious disease control. While the traditional approaches for achieving network disin...The disintegration of networks is a widely researched topic with significant applications in fields such as counterterrorism and infectious disease control. While the traditional approaches for achieving network disintegration involve identifying critical sets of nodes or edges, limited research has been carried out on edge-based disintegration strategies. We propose a novel algorithm, i.e., a rank aggregation elite enumeration algorithm based on edge-coupled networks(RAEEC),which aims to implement tiling for edge-coupled networks by finding important sets of edges in the network while balancing effectiveness and efficiency. Our algorithm is based on a two-layer edge-coupled network model with one-to-one links, and utilizes three advanced edge importance metrics to rank the edges separately. A comprehensive ranking of edges is obtained using a rank aggregation approach proposed in this study. The top few edges from the ranking set obtained by RAEEC are then used to generate an enumeration set, which is continuously iteratively updated to identify the set of elite attack edges.We conduct extensive experiments on synthetic networks to evaluate the performance of our proposed method, and the results indicate that RAEEC achieves a satisfactory balance between efficiency and effectiveness. Our approach represents a significant contribution to the field of network disintegration, particularly for edge-based strategies.展开更多
We propose a model of edge-coupled interdependent networks with directed dependency links(EINDDLs)and develop the theoretical analysis framework of this model based on the self-consistent probabilities method.The phas...We propose a model of edge-coupled interdependent networks with directed dependency links(EINDDLs)and develop the theoretical analysis framework of this model based on the self-consistent probabilities method.The phase transition behaviors and parameter thresholds of this model under random attacks are analyzed theoretically on both random regular(RR)networks and Erd¨os-Renyi(ER)networks,and computer simulations are performed to verify the results.In this EINDDL model,a fractionβof connectivity links within network B depends on network A and a fraction(1-β)of connectivity links within network A depends on network B.It is found that randomly removing a fraction(1-p)of connectivity links in network A at the initial state,network A exhibits different types of phase transitions(first order,second order and hybrid).Network B is rarely affected by cascading failure whenβis small,and network B will gradually converge from the first-order to the second-order phase transition asβincreases.We present the critical values ofβfor the phase change process of networks A and B,and give the critical values of p andβfor network B at the critical point of collapse.Furthermore,a cascading prevention strategy is proposed.The findings are of great significance for understanding the robustness of EINDDLs.展开更多
The paper purposes that the three major civilizations are territorial rational civilization originated from the tribes before the Axial Age, discrete Western rational civilization originated from the mega empires in M...The paper purposes that the three major civilizations are territorial rational civilization originated from the tribes before the Axial Age, discrete Western rational civilization originated from the mega empires in Middle East and Greece during the Axial Age, and the connective Eastern rational civilization originated from the mega empires in India and China during the Axial Age. Territorial rational civilization with territorial worldview for ingroup and outgroup individuals produces territorial nationalist democracy based on rule of boundary to deal with ingroup and outgroup individuals. Discrete Western rational civilization with discrete worldview for discrete and independent individuals produces discrete liberty-equality democracy based on rule of law to deal with discrete individuals. Connective Eastern rational civilization with connective worldview for connective and related individuals produces connective common wellbeing democracy based on rule of relation to deal with connective individuals. The current highly international interdependence produces the purposed internationalized interdependent community which allows the interdependent coexistence of the three rational civilizations by establishing the promotion of rational civilizations, the basic rules of relation and law, the potential civilizational and the regional defense boundaries, and the cooperation in international relations. The mental origin of the rational civilization consists of the social brain for instinctive intragroup relations and worldviews to form the original human social group, the mental immune system for instinctive mental therapy, theory of imaginary mind for imaginary religious and political entities with their own minds to form cohesive large social groups, and the thinking brain for rule to form rational civilization.展开更多
The paper aims to study the invulnerability of directed interdependent networks with multiple dependency relations: dependent and supportive. We establish three models and simulate in three network systems to deal wit...The paper aims to study the invulnerability of directed interdependent networks with multiple dependency relations: dependent and supportive. We establish three models and simulate in three network systems to deal with this question. To improve network invulnerability, we’d better avoid dependent relations transmission and add supportive relations symmetrically.展开更多
Present paper deals a M/M/1:(∞;GD) queueing model with interdependent controllable arrival and service rates where- in customers arrive in the system according to poisson distribution with two different arrivals rate...Present paper deals a M/M/1:(∞;GD) queueing model with interdependent controllable arrival and service rates where- in customers arrive in the system according to poisson distribution with two different arrivals rates-slower and faster as per controllable arrival policy. Keeping in view the general trend of interdependent arrival and service processes, it is presumed that random variables of arrival and service processes follow a bivariate poisson distribution and the server provides his services under general discipline of service rule in an infinitely large waiting space. In this paper, our central attention is to explore the probability generating functions using Rouche’s theorem in both cases of slower and faster arrival rates of the queueing model taken into consideration;which may be helpful for mathematicians and researchers for establishing significant performance measures of the model. Moreover, for the purpose of high-lighting the application aspect of our investigated result, very recently Maurya [1] has derived successfully the expected busy periods of the server in both cases of slower and faster arrival rates, which have also been presented by the end of this paper.展开更多
The financial crisis that first struck the United States is unfolding into a worldwide economic recession.When the U.S.coughs,the world catches a cold,now a once-in-acentury cold.This is unexpected to most people,incl...The financial crisis that first struck the United States is unfolding into a worldwide economic recession.When the U.S.coughs,the world catches a cold,now a once-in-acentury cold.This is unexpected to most people,including most economists.It is often said that everything in展开更多
The introduction of western psychotherapy methods to China is an enormous transcultural challenge.It touches the different concepts of"independent self"and"interdependent self"in China.The differen...The introduction of western psychotherapy methods to China is an enormous transcultural challenge.It touches the different concepts of"independent self"and"interdependent self"in China.The different constructions of self are contingent upon society and culture.It is important to give particular consideration to this aspect in the transfer of western(body)psychotherapy to China.In this article,the author describes general and concrete examples of his own experiences in China.展开更多
Local energy systems are undergoing significant transformation by integrating more solar photovoltaics(PVs)and battery energy storage systems(BESS)to achieve net-zero targets in the energy sector.To ensure an affordab...Local energy systems are undergoing significant transformation by integrating more solar photovoltaics(PVs)and battery energy storage systems(BESS)to achieve net-zero targets in the energy sector.To ensure an affordable and sustainable decarbonisation process,optimising both system design and operation together is crucial for maximising system profitability and encouraging broader stakeholder participation in the energy transition.However,the complex interdependent influence on the system economic flows,along with the nonlinear characteristics of the system,make the economic optimisation extremely challenging.To address this,we developed a new framework based on advanced artificial intelligence to exploit a wider arbitrage margin under various trading mechanisms,including net metering,day-ahead,and dynamic frequency.We conducted optimisation study on a local energy system operating at University of Warwick using real data from demonstrated BESS and solar PVs,and the effectiveness of the proposed intelligent approach was validated,and the necessity of interdependent optimisation was highlighted.Results showed that,compared to the original campus system(20 MW-level),a carbon reduction rate of up to 61.4%was achieved through net metering trading,while a maximum annual profit increase of 251%was realised with dynamic frequency trading.The proposed intelligent framework can be applied to any energy systems with integrated solar PVs and BESS,where the adopted trading mechanism are associated with the system design and operation.The findings offer a practical tool for academics,investors,and policy makers to collaborate in the deployment of renewable energy and energy storage to accelerate the decarbonisation of energy supply.展开更多
China has reaffirmed its dominance as South Korea's largest supplier of textiles and apparel.From January to August 2025,South Korea's apparel imports totaled$7.679 billion,and 38.01%of this,amounting to$2.919...China has reaffirmed its dominance as South Korea's largest supplier of textiles and apparel.From January to August 2025,South Korea's apparel imports totaled$7.679 billion,and 38.01%of this,amounting to$2.919 billion,was sourced from China.This underscores the strong trade interdependence between the two East Asian economies.展开更多
文摘Resilience studies for water distribution systems(WDS)coupled with other interdependent infrastructure systems attract increasing attention from stakeholders and researchers.However,most existing large-scale WDS models are single infrastructure-based without consideration of other infrastructure systems.This is due to a lack of needed information on systems coupling,the structure of the simulator used,and the computation load involved.To address these gaps,this paper presents a synthetic modeling framework for a real-world WDS as coordinating with other infrastructure systems via a building-mediated clustering approach through consideration of physical distance and node capacity.First,the WDS network topology and operation parameters are inferred via bulk open-source information.A building-mediated clustering approach is designed to systematically derive the interdependence between the WDS and the power system similarly created as a case study.Second,a novel linearization method is developed in formulating the WDS model that can relieve computation load while maintaining accuracy.Finally,a disruption-recovery framework is developed to demonstrate the proposed methodology in modelling WDS resilience.The framework is applied to a neighborhood in Queenstown,Singapore,an area of 20.43 km^(2) and 96,000 population.The near-real-time simulations on the coupled system involving 308 nodes and 384 links showcase the effectiveness and application of the proposed synthetic modeling and formulation.
基金supported in part by the National Natural Science Foundation of China under grant No.62072412,No.61902359,No.61702148No.61672468 part by the Opening Project of Shanghai Key Laboratory of Integrated Administration Technologies for Information Security under grant AGK2018001.
文摘With the advent of cross-domain interconnection,large-scale sensor network systems such as smart grids,smart homes,and intelligent transportation have emerged.These complex network systems often have a CPS(Cyber-Physical System)architecture and are usually composed of multiple interdependent systems.Minimal faults between interdependent networks may cause serious cascading failures between the entire system.Therefore,in this paper,we will explore the robustness detection schemes for interdependent networks.Firstly,by calculating the largest giant connected component in the entire system,the security of interdependent network systems under different attack models is analyzed.Secondly,a comparative analysis of the cascade failure mechanism between interdependent networks under the edge enhancement strategy is carried out.Finally,the simulation results verify the impact of system reliability under different handover edge strategies and show how to choose a better handover strategy to enhance its robustness.The further research work in this paper can also help design how to reduce the interdependence between systems,thereby further optimizing the interdependent network system’s structure to provide practical support for reducing the cascading failures.In the later work,we hope to explore our proposed strategies in the network model of real-world or close to real networks.
基金The National Natural Science Foundation of China(No.71071033)
文摘The impact of risk correlation on firm's investments in information system security is studied by using quantification models combining the ideas of the risk management theory and the game theory. The equilibrium levels of self-protection and insurance coverage under the non- cooperative condition are compared with socially optimal solutions, and the associated coordination mechanisms are proposed. The results show that self-protection investment increases in response to an increase in potential loss when the interdependent risk is small; the interdependent risk of security investments often induce firms to underinvest in security relative to the socially efficient level by ignoring marginal external costs or benefits conferred on others. A subsidy on self-protection investment from the government can help coordinate a firm's risk management decision and, thereby, improve individual security level and overall social welfare.
文摘Critical infrastructure systems(CISs)play a key role in the socio-economic activity of a society,but are exposed to an array of disruptive events that can greatly impact their function and performance.Therefore,understanding the underlying behaviors of CISs and their response to perturbations is needed to better prepare for,and mitigate the impact of,future disruptions.Resilience is one characteristic of CISs that influences the extent and severity of the impact induced by extreme events.Resilience is often dissected into four dimensions:robustness,redundancy,resourcefulness,and rapidity,known as the“4Rs”.This study proposes a framework to assess the resilience of an infrastructure network in terms of these four dimensions under optimal resource allocation strategies and incorporates interdependencies between different CISs,with resilience considered as a stochastic variable.The proposed framework combines an agent-based infrastructure interdependency model,advanced optimization algorithms,Bayesian network techniques,and Monte Carlo simulation to assess the resilience of an infrastructure network.The applicability and flexibility of the proposed framework is demonstrated with a case study using a network of CISs in Austin,Texas,where the resilience of the network is assessed and a“what-if”analysis is performed.
基金supported by the Fundamental Research Funds for the Central Universities,China.
文摘Aiming at the problem that it is difficult to build model and identify the vulnerable equipment for aviation armament System-of-Systems(SoS)due to complex equipment interaction relationships and high confrontation,the interdependent network theory is introduced to solve it.Firstly,a two-layer heterogeneous interdependent network model for aviation armament SoS is proposed,which reflects the information interaction,functional dependency and inter-network dependence effectively.Secondly,using the attack cost to describe the confrontation process and taking the comprehensive impact on kill chains as the entry point,the node importance index and the attack cost measurement method are constructed.Thirdly,the identification of vulnerable nodes is transformed into the optimization problem of node combinatorial selection,and the vulnerable node identification method based on tabu search is proposed.Based on vulnerable nodes,a robustness enhancement strategy for aviation armament SoS network is presented.Finally,the above methods are used to an aerial confrontation SoS,and the results verify the rationality and effectiveness of the proposed methods.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61603137 and 11662002)the Innovation Team Project of Jiangxi Provincial Innovation Drive "5511" Advantaged Science and Technology(Grant No.20165BCB19011)+2 种基金the Natural Science Foundation of Jiangxi Province,China(Grant Nos.20171BAB212016 and 20171BAB202029)the Key Research and Development Project of the Technology Department of Jiangxi Province,China(Grant No.20161BBE53008)the Doctoral Scientific Research Foundation of East China Jiaotong University(Grant No.2003418002)
文摘The controllability problem of heterogeneous interdependent group systems with undirected and directed topology is investigated in this paper. First, the interdependent model of the heterogeneous system is set up according to the difference of individual characteristics. An extended distributed protocol with the external sliding-mode control is designed, under which it is shown that a heterogeneous interdependent group system is controllable when the corresponding communication topology is controllable. Then, using the network eigenvalue method, the driving individuals are determined for a heterogeneous system with undirected topology. Under directed topology, the maximum match method is utilized to confirm the driving individuals. Some sufficient and necessary conditions are presented to assure that the heterogeneous interdependent group system is structurally controllable. Via theoretical analysis, the controllability of heterogeneous interdependent systems is related to the interdependent manner and the structure of the heterogeneous system. Numerical simulations are provided to demonstrate the effectiveness of the theoretical results.
基金National Program on Key Basic Research Project of China (973) under Grant No.2011CB013603National Natural Science Foundation of China under Grant Nos.51008208,51378341+1 种基金Projects International Cooperation and Exchanges NSFC (NSFC-JST) under Grant No.51021140003Tianjin Municipal Natural Science Foundation under Grant No.13JCQNJC07200
文摘A fiber-section model based Timoshenko beam element is proposed in this study that is founded on the nonlinear analysis of frame elements considering axial, flexural, and shear deformations. This model is achieved using a shear-bending interdependent formulation (SBIF). The shape function of the element is derived from the exact solution of the homogeneous form of the equilibrium equation for the Timoshenko deformation hypothesis.The proposed element is free from shear-locking. The sectional fiber model is constituted with a multi-axial plasticity material model, which is used to simulate the coupled shear-axial nonlinear behavior of each fiber. By imposing deformation compatibility conditions among the fibers, the sectional and elemental resisting forces are calculated. Since the SBIF shape functions are interactive with the shear-corrector factor for different shapes of sections, an iterative procedure is introduced in the nonlinear state determination of the proposed Timoshenko element. In addition, the proposed model tackles the geometric nonlinear problem by adopting a corotational coordinate transformation approach. The derivation procedure of the corotational algorithm of the SBIF Timoshenko element for nonlinear geometrical analysis is presented. Numerical examples confirm that the SBIF Timoshenko element with a fiber-section model has the same accuracy and robustness as the flexibility-based formulation. Finally, the SBIF Timoshenko element is extended and demonstratedin a three-dimensional numerical example.
基金finically supported by a project “Modeling Infrastructure Interdependency for Emergency Management Using a Network-Centric Spatial Decision Support System Approach” awarded jointly by the Natural Science and Engineering Research Council of Canada (NSERC)the Public Safety and Emergency Preparedness Canada (PSEPC) (No.JIIRP 312733-04)
文摘Critical infrastructures(CI) are designated sectors that if incapacitated or destroyed by natural disasters would have a serious impact on national security and economic and social welfare. Due to the interdependency of critical infrastructures failure of one infrastructure during a natural disaster such as earthquake or flood may cause failure of another and so on through a cascade or escalating effect. Quantification of these types of interdependencies between critical infrastructures is essential for effective response and management of resources for rescue, recovery, and restoration during times of crises. This paper proposes a new mathematical framework based on an asymmetric relation matrix constructed in a bottom-up approach for modeling and analyzing interdependencies of critical infrastructures. Asymmetric dependency matrices can be constructed using the asymmetric incidence coefficient based on node-level relationships defined between nodes for measuring the strength of interdependency between node and node, node and network, and networks and networks. These asymmetric matrices are further analyzed for ranking infrastructures in terms of their relative importance and for identifying nodes and infrastructure networks that play a critical role in chain effects among infrastructures involved in geo-disaster events such as flooding. Examples of interdependency analysis for the identification of vulnerabilities among fifteen national defense-related infrastructure sectors by the Australian government and a simulated example using the newly developed GIS-based network simulator Geo PN are used to validate and demonstrate the implementation and effectiveness of interdependency analysis methods in analyzing infrastructure interdependency during a flooding event.
文摘The weighted Gini-Simpson quadratic index is the simplest measure of biodiversity which takes into account the relative abundance of species and some weights assigned to the species. These weights could be assigned based on factors such as the phylogenetic distance between species, or their relative conservation values, or even the species richness or vulnerability of the habitats where these species live. In the vast majority of cases where the biodiversity is measured the species are supposed to be independent, which means that the relative proportion of a pair of species is the product of the relative proportions of the component species making up the respective pair. In the first section of the paper, the main versions of the weighted Gini-Simpson index of biodiversity for the pairs and triads of independent species are presented. In the second section of the paper, the weighted Gini-Simpson quadratic index is calculated for the general case when the species are interdependent. In this instance, the weights reflect the conservation values of the species and the distribution pattern variability of the subsets of species in the respective habitat induced by the inter-dependence between species. The third section contains a numerical example.
文摘Enhancing the resilience of critical infrastructure systems requires substantial investment and entails trade-offs between environmental and economic benefits.To this aim,we propose a methodological framework that com-bines resilience and economic analyses and assesses the economic viability of alternative resilience designs for a Water Distribution System(WDS)and its interdependent power and transportation systems.Flow-based net-work models simulate the interdependent infrastructure systems and Global Resilience Analysis(GRA)quantifies three resilience metrics under various disruption scenarios.The economic analysis monetizes the three metrics and compares two resilience strategies involving the installation of remotely controlled shutoffvalves.Using the Micropolis synthetic interdependent water-transportation network as an example,we demonstrate how our framework can guide infrastructure stakeholders and utility operators in measuring the value of resilience invest-ments.Overall,our approach highlights the importance of economic analysis in designing resilient infrastructure systems.
基金supported by the National Natural Science Foundation of China (Grant Nos. 61877046, 12271419, and 62106186)the Natural Science Basic Research Program of Shaanxi (Program No. 2022JQ-620)the Fundamental Research Funds for the Central Universities (Grant Nos. XJS220709, JB210701, and QTZX23002)。
文摘The disintegration of networks is a widely researched topic with significant applications in fields such as counterterrorism and infectious disease control. While the traditional approaches for achieving network disintegration involve identifying critical sets of nodes or edges, limited research has been carried out on edge-based disintegration strategies. We propose a novel algorithm, i.e., a rank aggregation elite enumeration algorithm based on edge-coupled networks(RAEEC),which aims to implement tiling for edge-coupled networks by finding important sets of edges in the network while balancing effectiveness and efficiency. Our algorithm is based on a two-layer edge-coupled network model with one-to-one links, and utilizes three advanced edge importance metrics to rank the edges separately. A comprehensive ranking of edges is obtained using a rank aggregation approach proposed in this study. The top few edges from the ranking set obtained by RAEEC are then used to generate an enumeration set, which is continuously iteratively updated to identify the set of elite attack edges.We conduct extensive experiments on synthetic networks to evaluate the performance of our proposed method, and the results indicate that RAEEC achieves a satisfactory balance between efficiency and effectiveness. Our approach represents a significant contribution to the field of network disintegration, particularly for edge-based strategies.
基金the National Natural Science Foundation of China(Grant Nos.61973118,51741902,11761033,12075088,and 11835003)Project in JiangXi Province Department of Science and Technology(Grant Nos.20212BBE51010 and 20182BCB22009)the Natural Science Foundation of Zhejiang Province(Grant No.Y22F035316)。
文摘We propose a model of edge-coupled interdependent networks with directed dependency links(EINDDLs)and develop the theoretical analysis framework of this model based on the self-consistent probabilities method.The phase transition behaviors and parameter thresholds of this model under random attacks are analyzed theoretically on both random regular(RR)networks and Erd¨os-Renyi(ER)networks,and computer simulations are performed to verify the results.In this EINDDL model,a fractionβof connectivity links within network B depends on network A and a fraction(1-β)of connectivity links within network A depends on network B.It is found that randomly removing a fraction(1-p)of connectivity links in network A at the initial state,network A exhibits different types of phase transitions(first order,second order and hybrid).Network B is rarely affected by cascading failure whenβis small,and network B will gradually converge from the first-order to the second-order phase transition asβincreases.We present the critical values ofβfor the phase change process of networks A and B,and give the critical values of p andβfor network B at the critical point of collapse.Furthermore,a cascading prevention strategy is proposed.The findings are of great significance for understanding the robustness of EINDDLs.
文摘The paper purposes that the three major civilizations are territorial rational civilization originated from the tribes before the Axial Age, discrete Western rational civilization originated from the mega empires in Middle East and Greece during the Axial Age, and the connective Eastern rational civilization originated from the mega empires in India and China during the Axial Age. Territorial rational civilization with territorial worldview for ingroup and outgroup individuals produces territorial nationalist democracy based on rule of boundary to deal with ingroup and outgroup individuals. Discrete Western rational civilization with discrete worldview for discrete and independent individuals produces discrete liberty-equality democracy based on rule of law to deal with discrete individuals. Connective Eastern rational civilization with connective worldview for connective and related individuals produces connective common wellbeing democracy based on rule of relation to deal with connective individuals. The current highly international interdependence produces the purposed internationalized interdependent community which allows the interdependent coexistence of the three rational civilizations by establishing the promotion of rational civilizations, the basic rules of relation and law, the potential civilizational and the regional defense boundaries, and the cooperation in international relations. The mental origin of the rational civilization consists of the social brain for instinctive intragroup relations and worldviews to form the original human social group, the mental immune system for instinctive mental therapy, theory of imaginary mind for imaginary religious and political entities with their own minds to form cohesive large social groups, and the thinking brain for rule to form rational civilization.
文摘The paper aims to study the invulnerability of directed interdependent networks with multiple dependency relations: dependent and supportive. We establish three models and simulate in three network systems to deal with this question. To improve network invulnerability, we’d better avoid dependent relations transmission and add supportive relations symmetrically.
文摘Present paper deals a M/M/1:(∞;GD) queueing model with interdependent controllable arrival and service rates where- in customers arrive in the system according to poisson distribution with two different arrivals rates-slower and faster as per controllable arrival policy. Keeping in view the general trend of interdependent arrival and service processes, it is presumed that random variables of arrival and service processes follow a bivariate poisson distribution and the server provides his services under general discipline of service rule in an infinitely large waiting space. In this paper, our central attention is to explore the probability generating functions using Rouche’s theorem in both cases of slower and faster arrival rates of the queueing model taken into consideration;which may be helpful for mathematicians and researchers for establishing significant performance measures of the model. Moreover, for the purpose of high-lighting the application aspect of our investigated result, very recently Maurya [1] has derived successfully the expected busy periods of the server in both cases of slower and faster arrival rates, which have also been presented by the end of this paper.
文摘The financial crisis that first struck the United States is unfolding into a worldwide economic recession.When the U.S.coughs,the world catches a cold,now a once-in-acentury cold.This is unexpected to most people,including most economists.It is often said that everything in
文摘The introduction of western psychotherapy methods to China is an enormous transcultural challenge.It touches the different concepts of"independent self"and"interdependent self"in China.The different constructions of self are contingent upon society and culture.It is important to give particular consideration to this aspect in the transfer of western(body)psychotherapy to China.In this article,the author describes general and concrete examples of his own experiences in China.
基金support of the Engineering and Physical Sciences Research Council(EPSRC)of the United Kingdom(Grant No EP/V041665/1).
文摘Local energy systems are undergoing significant transformation by integrating more solar photovoltaics(PVs)and battery energy storage systems(BESS)to achieve net-zero targets in the energy sector.To ensure an affordable and sustainable decarbonisation process,optimising both system design and operation together is crucial for maximising system profitability and encouraging broader stakeholder participation in the energy transition.However,the complex interdependent influence on the system economic flows,along with the nonlinear characteristics of the system,make the economic optimisation extremely challenging.To address this,we developed a new framework based on advanced artificial intelligence to exploit a wider arbitrage margin under various trading mechanisms,including net metering,day-ahead,and dynamic frequency.We conducted optimisation study on a local energy system operating at University of Warwick using real data from demonstrated BESS and solar PVs,and the effectiveness of the proposed intelligent approach was validated,and the necessity of interdependent optimisation was highlighted.Results showed that,compared to the original campus system(20 MW-level),a carbon reduction rate of up to 61.4%was achieved through net metering trading,while a maximum annual profit increase of 251%was realised with dynamic frequency trading.The proposed intelligent framework can be applied to any energy systems with integrated solar PVs and BESS,where the adopted trading mechanism are associated with the system design and operation.The findings offer a practical tool for academics,investors,and policy makers to collaborate in the deployment of renewable energy and energy storage to accelerate the decarbonisation of energy supply.
文摘China has reaffirmed its dominance as South Korea's largest supplier of textiles and apparel.From January to August 2025,South Korea's apparel imports totaled$7.679 billion,and 38.01%of this,amounting to$2.919 billion,was sourced from China.This underscores the strong trade interdependence between the two East Asian economies.