Resilience studies for water distribution systems(WDS)coupled with other interdependent infrastructure systems attract increasing attention from stakeholders and researchers.However,most existing large-scale WDS model...Resilience studies for water distribution systems(WDS)coupled with other interdependent infrastructure systems attract increasing attention from stakeholders and researchers.However,most existing large-scale WDS models are single infrastructure-based without consideration of other infrastructure systems.This is due to a lack of needed information on systems coupling,the structure of the simulator used,and the computation load involved.To address these gaps,this paper presents a synthetic modeling framework for a real-world WDS as coordinating with other infrastructure systems via a building-mediated clustering approach through consideration of physical distance and node capacity.First,the WDS network topology and operation parameters are inferred via bulk open-source information.A building-mediated clustering approach is designed to systematically derive the interdependence between the WDS and the power system similarly created as a case study.Second,a novel linearization method is developed in formulating the WDS model that can relieve computation load while maintaining accuracy.Finally,a disruption-recovery framework is developed to demonstrate the proposed methodology in modelling WDS resilience.The framework is applied to a neighborhood in Queenstown,Singapore,an area of 20.43 km^(2) and 96,000 population.The near-real-time simulations on the coupled system involving 308 nodes and 384 links showcase the effectiveness and application of the proposed synthetic modeling and formulation.展开更多
While in the past the robustness of transportation networks was studied considering the cyber and physical space as isolated environments this is no longer the case.Integrating the Internet of Things devices in the se...While in the past the robustness of transportation networks was studied considering the cyber and physical space as isolated environments this is no longer the case.Integrating the Internet of Things devices in the sensing area of transportation infrastructure has resulted in ubiquitous cyber-physical systems and increasing interdependen-cies between the physical and cyber networks.As a result,the robustness of transportation networks relies on the uninterrupted serviceability of physical and cyber networks.Current studies on interdependent networks overlook the civil engineering aspect of cyber-physical systems.Firstly,they rely on the assumption of a uniform and strong level of interdependency.That is,once a node within a network fails its counterpart fails immedi-ately.Current studies overlook the impact of earthquake and other natural hazards on the operation of modern transportation infrastructure,that now serve as a cyber-physical system.The last is responsible not only for the physical operation(e.g.,flow of vehicles)but also for the continuous data transmission and subsequently the cy-ber operation of the entire transportation network.Therefore,the robustness of modern transportation networks should be modelled from a new cyber-physical perspective that includes civil engineering aspects.In this paper,we propose a new robustness assessment approach for modern transportation networks and their underlying in-terdependent physical and cyber network,subjected to earthquake events.The novelty relies on the modelling of interdependent networks,in the form of a graph,based on their interdependency levels.We associate the service-ability level of the coupled physical and cyber network with the damage states induced by earthquake events.Robustness is then measured as a degradation of the cyber-physical serviceability level.The application of the approach is demonstrated by studying an illustrative transportation network using seismic data from real-world transportation infrastructure.Furthermore,we propose the integration of a robustness improvement indicator based on physical and cyber attributes to enhance the cyber-physical serviceability level.Results indicate an improvement in robustness level(i.e.,41%)by adopting the proposed robustness improvement indicator.The usefulness of our approach is highlighted by comparing it with other methods that consider strong interdepen-dencies and key node protection strategies.The approach is of interest to stakeholders who are attempting to incorporate cyber-physical systems into civil engineering systems.展开更多
This paper provides a systematic review on the resilience analysis of active distribution networks(ADNs)against hazardous weather events,considering the underlying cyber-physical interdependencies.As cyber-physical sy...This paper provides a systematic review on the resilience analysis of active distribution networks(ADNs)against hazardous weather events,considering the underlying cyber-physical interdependencies.As cyber-physical systems,ADNs are characterized by widespread structural and functional interdependen-cies between cyber(communication,computing,and control)and physical(electric power)subsystems and thus present complex hazardous-weather-related resilience issues.To bridge current research gaps,this paper first classifies diverse hazardous weather events for ADNs according to different time spans and degrees of hazard,with model-based and data-driven methods being utilized to characterize weather evolutions.Then,the adverse impacts of hazardous weather on all aspects of ADNs’sources,physical/cyber networks,and loads are analyzed.This paper further emphasizes the importance of situational awareness and cyber-physical collaboration throughout hazardous weather events,as these enhance the implementation of preventive dispatches,corrective actions,and coordinated restorations.In addition,a generalized quantitative resilience evaluation process is proposed regarding additional considerations about cyber subsystems and cyber-physical connections.Finally,potential hazardous-weather-related resilience challenges for both physical and cyber subsystems are discussed.展开更多
The performance model proposed by this study represents an innovative approach to deal with performance assessment in ATM (air traffic management). It is based on Bayesian networks methodology, which presents severa...The performance model proposed by this study represents an innovative approach to deal with performance assessment in ATM (air traffic management). It is based on Bayesian networks methodology, which presents several advantages but also some drawbacks as highlighted along the paper. We illustrate the main steps required for building the model and present a number of interesting results. The contribution of the paper is two-fold: (1) It presents a new methodological approach to deal with a problem which is of strategic importance for ANSPs (air navigation service providers); (2) It provides insights on the interdependencies between factors influencing performance. Both results are considered particularly important nowadays, due to the SES (Single European Sky) performance scheme and its related target setting process.展开更多
Traditionally, the analysis of sector interdependencies has involved the characterization of all infrastructure-to-infrastructure interconnections and some of the main infrastructure integrals that, once lost or be ta...Traditionally, the analysis of sector interdependencies has involved the characterization of all infrastructure-to-infrastructure interconnections and some of the main infrastructure integrals that, once lost or be tampered with, will compromise the performance and security issues with the other interconnected infrastructures. Therefore, the paper dwells much on the security implications which may be associated with these infrastructure sector interdependencies. This paper also discusses some of the major risk considerations, analytical approaches, researches and the necessary developments needed as well as the interdisciplinary ranges through which the necessary skills are required in the construction of comprehensive sector interdependencies.展开更多
Lifelines are critical infrastructure systems characterized by a high level of interdependency that can lead to cascading failures after any disaster.Many approaches can be used to analyze infrastructural interdepende...Lifelines are critical infrastructure systems characterized by a high level of interdependency that can lead to cascading failures after any disaster.Many approaches can be used to analyze infrastructural interdependencies,but they are usually not able to describe the sequence of events during emergencies.Therefore,interdependencies need to be modeled also taking into account the time effects.The methodology proposed in this paper is based on a modified version of the Input-output Inoperability Model and returns the probabilities of failure for each node of the system.Lifelines are modeled using graph theory,while perturbations,representing a natural or man-made disaster,are applied to the elements of the network following predetermined rules.The cascading effects among interdependent networks have been simulated using a spatial multilayer approach,while the use of an adjacency tensor allows to consider the temporal dimension and its effects.The method has been tested on a case study based on the 2011 Fukushima Dai-ichi nuclear disaster.Different configurations of the system have been analyzed and their probability of occurrence evaluated.Two models of the nuclear power plant have been developed to evaluate how different spatial scales and levels of detail affect the results.展开更多
Bangladesh aims to become a high-income country by 2041,requiring investment in critical infrastructure sectors.Disruptions in one sector can affect others,so prioritizing actions for key sectors is essential when res...Bangladesh aims to become a high-income country by 2041,requiring investment in critical infrastructure sectors.Disruptions in one sector can affect others,so prioritizing actions for key sectors is essential when resources are limited.Since no country has endless resources,the current strategy is to focus on developing infrastructure in order of importance.This means that the most critical infrastructure is given priority when allocating resources.The aim of this study was to identify the critical infrastructure sectors and their interdependencies in Bangladesh.While the science of critical infrastructure protection and resilience is well-developed in high-income and developed economies,this research sheds light on identifying critical infrastructure in developing nations like Bangladesh.To identify the critical infrastructure sectors,a comprehensive literature survey was conducted,which was verified and validated by country experts.Policymakers,practitioners,and researchers were consulted through key informant interviews(KII).Interpretive structural modeling(ISM)was applied to determine the interdependencies among identified sectors.Furthermore,cross-impact matrix multiplication applied to classification(MICMAC)analysis was applied to categorize the identified sectors based on driving power and dependence of sectors.The study found that 14 sectors-energy,information and communication technology(ICT),media and culture,law enforcement,transportation,among others-need extra protection measures.It also identified infrastructures with driving power and dependencies in the country’s context.Additionally,this article offers recommendations for improving policy and institutional actions to enhance the resilience of critical infrastructure in the country.展开更多
Interdependencies between critical infrastructures and the economy amplify the effects of damage caused by disasters.The growing interest in impacts beyond physical damage and community resilience has spurred a surge ...Interdependencies between critical infrastructures and the economy amplify the effects of damage caused by disasters.The growing interest in impacts beyond physical damage and community resilience has spurred a surge in literature on economic modeling methodologies for estimating indirect economic impacts of disasters and the recovery of economic activity over time.In this review,we present a framework for categorizing modeling approaches that assess indirect economic impacts across natural hazards and anthropogenic disasters such as cyber attacks.We first conduct a comparative analysis of macroeconomic models,focusing on the approaches capturing sectoral interdependencies.These include the Leontief Input-Output(I/O)model,the Inoperability Input-Output Model(IIM),the Dynamic Inoperability Input-Output Model(DIIM),the Adaptive Regional Input-Output(ARIO)model,and the Computable General Equilibrium(CGE)model and its extensions.We evaluate their applicability to disaster scenarios based on input data availability,the compatibility of model assumptions,and output capabilities.We also reveal the functional relationships of input data and output metrics across economic modeling approaches for inter-sectoral impacts.Furthermore,we examine how the damage mechanisms posed by different types of disasters translate into model inputs and impact modeling processes.This synthesis provides guidance for researchers and practitioners in selecting and configuring models based on specific disaster scenarios.It also identifies the gaps in the literature,including the need for a deeper understanding of model performance reliability,key drivers of economic outcomes in different disaster contexts,and the disparities in modeling approach applications across various hazard types.展开更多
China has reaffirmed its dominance as South Korea's largest supplier of textiles and apparel.From January to August 2025,South Korea's apparel imports totaled$7.679 billion,and 38.01%of this,amounting to$2.919...China has reaffirmed its dominance as South Korea's largest supplier of textiles and apparel.From January to August 2025,South Korea's apparel imports totaled$7.679 billion,and 38.01%of this,amounting to$2.919 billion,was sourced from China.This underscores the strong trade interdependence between the two East Asian economies.展开更多
As the geopolitical and economic landscape of the Asia-Pacific continues to evolve,the partnership between China and ASEAN has reached a defining juncture.The dual imperatives of maintaining strategic autonomy while d...As the geopolitical and economic landscape of the Asia-Pacific continues to evolve,the partnership between China and ASEAN has reached a defining juncture.The dual imperatives of maintaining strategic autonomy while deepening economic interdependence have pushed regional actors to refine their approaches to cooperation.Among them,Singapore and Thailand o"er two distinct yet complementary perspectives on how Southeast Asia can sustain stability,inclusivity,and shared growth amid intensifying global uncertainties.展开更多
The year 2025 marks the 50th anniversary of the establishment of diplomatic relations between China and Thailand,as well as the“Golden Jubilee of Sino-Thai Friendship”.Over the past half-century,the scale and scope ...The year 2025 marks the 50th anniversary of the establishment of diplomatic relations between China and Thailand,as well as the“Golden Jubilee of Sino-Thai Friendship”.Over the past half-century,the scale and scope of economic and trade cooperation between China and Thailand have dramatically expanded.Both nations have strengthened their bilateral economic ties,which have increasingly strengthened their interdependence and.complementarity,presenting a broad prospect of mutual benefit and win-win cooperation.展开更多
This study tested a multilevel model of the workplace territorial behaviors and employees’knowledge sharing relationship,with team identification serving as a mediator and task interdependence as a moderator.Data wer...This study tested a multilevel model of the workplace territorial behaviors and employees’knowledge sharing relationship,with team identification serving as a mediator and task interdependence as a moderator.Data were collected from 253 employees(females=128,mean age=28.626,SD=6.470)from 40 work teams from different industries in China.Path analysis results indicated that workplace territorial behaviors were associated with lower employee knowledge sharing.Team identification enhanced employee knowledge sharing and partially mediated the relationship between workplace territorial behaviors and employee knowledge sharing.Task interdependence enhanced knowledge sharing and strengthened the relationship between team identification and knowledge sharing.Thesefindings extend the proposition of social information processing theory by revealing the mediating role of team identification in the relationship between workplace territorial behaviors and knowledge sharing,and clarifying the boundary conditions of team identification.Practical implications of thesefindings include a need for managers to foster collaborative atmospheres,design interdependent tasks,and mitigate territorial behaviors to enhance team identification and knowledge sharing.展开更多
To improve the traditional classifying methods, such as vector space model (VSM)-based methods with highly complicated computation and poor scalability, a new classifying method ( called IER) is presented based on...To improve the traditional classifying methods, such as vector space model (VSM)-based methods with highly complicated computation and poor scalability, a new classifying method ( called IER) is presented based on two new concepts: interdependence and equivalent radius. In IER, the attribute is selected according to the value of interdependence, and the classifying rule is based on equivalent radius and center of gravity. The algorithm analysis shows that IER is good at classifying a large number of samples with higher scalability and lower computation complexity. After several experiments in classifying Chinese texts, the conclusion is drawn that IER outperforms k-nearest neighbor (kNN) and classifcation based on the center of classes (CCC) methods, so IER can be used online to automatically classify a large number of samples while keeping higher precision and recall.展开更多
The impact of risk correlation on firm's investments in information system security is studied by using quantification models combining the ideas of the risk management theory and the game theory. The equilibrium lev...The impact of risk correlation on firm's investments in information system security is studied by using quantification models combining the ideas of the risk management theory and the game theory. The equilibrium levels of self-protection and insurance coverage under the non- cooperative condition are compared with socially optimal solutions, and the associated coordination mechanisms are proposed. The results show that self-protection investment increases in response to an increase in potential loss when the interdependent risk is small; the interdependent risk of security investments often induce firms to underinvest in security relative to the socially efficient level by ignoring marginal external costs or benefits conferred on others. A subsidy on self-protection investment from the government can help coordinate a firm's risk management decision and, thereby, improve individual security level and overall social welfare.展开更多
The severe drought that Australia has endured over the past few years has impacted adversely on the environment and is the major cause of the reduction of water levels in the Coorong and Lower Lakes. The over-allocati...The severe drought that Australia has endured over the past few years has impacted adversely on the environment and is the major cause of the reduction of water levels in the Coorong and Lower Lakes. The over-allocation and over-use of water in the MDB (Murray-Darling Basin) has caused the system to endure the longest period ever of reduced freshwater inflows and levels. The environmental state of Coorong and Lower Lakes is an issue that requires immediate action by governments and the surrounding community. This article will explore current data regarding the social and planning implications of the degradation of the Coorong and Lower Lakes. It primarily focuses on the social impacts that will occur if the Coorong and Lower Lakes area is significantly environmentally degraded. Drawing on Beck's risk theory, this paper analyses the adaptive capacity of settlements in the Coorong and Lower Lakes area and how they respond to the stresses and risks caused by environmental degradation. Economic and environmental implications will also be explored to provide an understanding of the interdependencies, This article provides a foundation and theoretical structure for further investigative research to be undertaken.展开更多
Critical Infrastructures(CIs),which serve as the foundation of our modern society,are facing increasing risks from cyber threats,physical attacks,and natural disasters.Additionally,the interdependencies between CIs th...Critical Infrastructures(CIs),which serve as the foundation of our modern society,are facing increasing risks from cyber threats,physical attacks,and natural disasters.Additionally,the interdependencies between CIs through-out their operational lifespan can also significantly impact their integrity and safety.As a result,enhancing the resilience of CIs has emerged as a top priority for many countries,including the European Union.This involves not only understanding the threats/attacks themselves but also gaining knowledge about the areas and infrastruc-tures that could potentially be affected.A European Union-funded project named PRECINCT(Preparedness and Resilience Enforcement for Critical INfrastructure Cascading Cyber-Physical Threats),under the Horizon 2020 program,tries to connect private and public stakeholders of CIs in a specific geographical area.The key objec-tive of this project is to establish a common cyber-physical security management approach that will ensure the protection of both citizens and infrastructures,creating a secure territory.This paper presents the components of PRECINCT,including a directory of PRECINCT Critical Infrastructure Protection(CIP)blueprints.These blueprints support CI communities in designing integrated ecosystems,operating and replicating PRECINCT components(or toolkits).The integration enables coordinated security and resilience management,incorporating improved’installation-specific’security solutions.Additionally,Serious Games(SG),and Digital Twins(DT)are a significant part of this project,serving as a novel vulnerability evaluation method for analysing complicated multi-system cascading effects in the PRECINCT Living Labs(LLs).The use of SG supports the concentrated advancement of innovative resilience enhancement services.展开更多
The major challenge to increase the decentralized generation share in distribution grids is the maintenance of the voltage within the limits. The inductive power injection is widely used as a remedial measure. The mai...The major challenge to increase the decentralized generation share in distribution grids is the maintenance of the voltage within the limits. The inductive power injection is widely used as a remedial measure. The main aim of this paper is to study the effect of the reactive power injection (by what-ever means) on radial grid structures and their impact on the voltage of the higher voltage-level grids. Various studies have shown that, in addition to the major local effect on the voltage at the injection point, the injection of the reactive power on a feeder has a global effect, which cannot be neglected. The reactive power flow and the voltage on the higher voltage level grid are significantly affected. In addition, a random effect is introduced by the DGs which are connected through inverters (using wind or PVs). Although their operation is in accordance with the grid code, a volatile reactive power flow circulates on the grid. Finally, this study proposes the implementation of the “Volt/var secondary control” interaction chain in order to increase the distributed generation share at every distribution voltage level, be it medium or low voltage, and at the same time to guarantee a stable operation of the power grid. Features of Volt/var secondary control loops ensure a resilient behavior of the whole chain.展开更多
Ultrasonic treatment(UST)applied during the solidification of pure Mg,eutectic(Mg-Zn)and peritectic(Mg-Zr)alloys was investigated in order to explore the grain refinement mechanisms.Temperature dependent grain refinem...Ultrasonic treatment(UST)applied during the solidification of pure Mg,eutectic(Mg-Zn)and peritectic(Mg-Zr)alloys was investigated in order to explore the grain refinement mechanisms.Temperature dependent grain refinement is observed in pure Mg where decreasing the superheat temperature(at which UST is applied from above the melting temperature,TM)from 100℃to 40℃produces significant refinement with a uniform grain structure.The presence of solute reduces the temperature dependence of the UST refinement and excellent grain refinement is obtained regardless of the superheat temperature(100℃or 40℃)and even with the use of preheated sonotrode in the Mg-6 wt.%Zn alloy.A further improvement in grain refinement is achieved when the alloy contains potent particles that introduce additional nucleation of grains in Mg-0.5 and 1.0 wt.%Zr alloys(producing an average grain size of≤100μm).At 40℃superheat,UST of Mg-Zn alloys produces excellent refinement(average grain size<200μm)with non-dendritic grains,which is normally achieved only with the addition of grain refining master alloy in the as-cast condition.The enhanced refinement observed in the eutectic alloy is explained through the undercooling imposed by a relatively cold sonotrode combined with high frequency vibrations and acoustic streaming.The advantages of using a cold sonotrode,a low superheat and solute are demonstrated for achieving significant refinement during solidification of Mg alloys under UST without or with a lower addition of grain refining master alloys.展开更多
With society's increasing dependence on critical infrastructure such as power grids and communications systems, the robustness of these systems has attracted significant attention.Failure of some nodes can trigger a ...With society's increasing dependence on critical infrastructure such as power grids and communications systems, the robustness of these systems has attracted significant attention.Failure of some nodes can trigger a cascading failure, which completely fragments the network, necessitating recovery efforts to improve robustness of complex systems. Inspired by real-world scenarios, this paper proposes repair models after two kinds of network failures, namely complete and incomplete collapse. In both models, three kinds of repair strategies are possible, including random selection(RS), node selection based on single network node degree(SD), and node selection based on double network node degree(DD). We find that the node correlation in each of the two coupled networks affects repair efficiency. Numerical simulation and analysis results suggest that the repair node ratio and repair strategies may have a significant impact on the economics of the repair process. The results of this study thus provide insight into ways to improve the robustness of coupled networks after cascading failures.展开更多
文摘Resilience studies for water distribution systems(WDS)coupled with other interdependent infrastructure systems attract increasing attention from stakeholders and researchers.However,most existing large-scale WDS models are single infrastructure-based without consideration of other infrastructure systems.This is due to a lack of needed information on systems coupling,the structure of the simulator used,and the computation load involved.To address these gaps,this paper presents a synthetic modeling framework for a real-world WDS as coordinating with other infrastructure systems via a building-mediated clustering approach through consideration of physical distance and node capacity.First,the WDS network topology and operation parameters are inferred via bulk open-source information.A building-mediated clustering approach is designed to systematically derive the interdependence between the WDS and the power system similarly created as a case study.Second,a novel linearization method is developed in formulating the WDS model that can relieve computation load while maintaining accuracy.Finally,a disruption-recovery framework is developed to demonstrate the proposed methodology in modelling WDS resilience.The framework is applied to a neighborhood in Queenstown,Singapore,an area of 20.43 km^(2) and 96,000 population.The near-real-time simulations on the coupled system involving 308 nodes and 384 links showcase the effectiveness and application of the proposed synthetic modeling and formulation.
文摘While in the past the robustness of transportation networks was studied considering the cyber and physical space as isolated environments this is no longer the case.Integrating the Internet of Things devices in the sensing area of transportation infrastructure has resulted in ubiquitous cyber-physical systems and increasing interdependen-cies between the physical and cyber networks.As a result,the robustness of transportation networks relies on the uninterrupted serviceability of physical and cyber networks.Current studies on interdependent networks overlook the civil engineering aspect of cyber-physical systems.Firstly,they rely on the assumption of a uniform and strong level of interdependency.That is,once a node within a network fails its counterpart fails immedi-ately.Current studies overlook the impact of earthquake and other natural hazards on the operation of modern transportation infrastructure,that now serve as a cyber-physical system.The last is responsible not only for the physical operation(e.g.,flow of vehicles)but also for the continuous data transmission and subsequently the cy-ber operation of the entire transportation network.Therefore,the robustness of modern transportation networks should be modelled from a new cyber-physical perspective that includes civil engineering aspects.In this paper,we propose a new robustness assessment approach for modern transportation networks and their underlying in-terdependent physical and cyber network,subjected to earthquake events.The novelty relies on the modelling of interdependent networks,in the form of a graph,based on their interdependency levels.We associate the service-ability level of the coupled physical and cyber network with the damage states induced by earthquake events.Robustness is then measured as a degradation of the cyber-physical serviceability level.The application of the approach is demonstrated by studying an illustrative transportation network using seismic data from real-world transportation infrastructure.Furthermore,we propose the integration of a robustness improvement indicator based on physical and cyber attributes to enhance the cyber-physical serviceability level.Results indicate an improvement in robustness level(i.e.,41%)by adopting the proposed robustness improvement indicator.The usefulness of our approach is highlighted by comparing it with other methods that consider strong interdepen-dencies and key node protection strategies.The approach is of interest to stakeholders who are attempting to incorporate cyber-physical systems into civil engineering systems.
基金supported by the National Natural Science Foundation of China(52477132 and U2066601).
文摘This paper provides a systematic review on the resilience analysis of active distribution networks(ADNs)against hazardous weather events,considering the underlying cyber-physical interdependencies.As cyber-physical systems,ADNs are characterized by widespread structural and functional interdependen-cies between cyber(communication,computing,and control)and physical(electric power)subsystems and thus present complex hazardous-weather-related resilience issues.To bridge current research gaps,this paper first classifies diverse hazardous weather events for ADNs according to different time spans and degrees of hazard,with model-based and data-driven methods being utilized to characterize weather evolutions.Then,the adverse impacts of hazardous weather on all aspects of ADNs’sources,physical/cyber networks,and loads are analyzed.This paper further emphasizes the importance of situational awareness and cyber-physical collaboration throughout hazardous weather events,as these enhance the implementation of preventive dispatches,corrective actions,and coordinated restorations.In addition,a generalized quantitative resilience evaluation process is proposed regarding additional considerations about cyber subsystems and cyber-physical connections.Finally,potential hazardous-weather-related resilience challenges for both physical and cyber subsystems are discussed.
文摘The performance model proposed by this study represents an innovative approach to deal with performance assessment in ATM (air traffic management). It is based on Bayesian networks methodology, which presents several advantages but also some drawbacks as highlighted along the paper. We illustrate the main steps required for building the model and present a number of interesting results. The contribution of the paper is two-fold: (1) It presents a new methodological approach to deal with a problem which is of strategic importance for ANSPs (air navigation service providers); (2) It provides insights on the interdependencies between factors influencing performance. Both results are considered particularly important nowadays, due to the SES (Single European Sky) performance scheme and its related target setting process.
文摘Traditionally, the analysis of sector interdependencies has involved the characterization of all infrastructure-to-infrastructure interconnections and some of the main infrastructure integrals that, once lost or be tampered with, will compromise the performance and security issues with the other interconnected infrastructures. Therefore, the paper dwells much on the security implications which may be associated with these infrastructure sector interdependencies. This paper also discusses some of the major risk considerations, analytical approaches, researches and the necessary developments needed as well as the interdisciplinary ranges through which the necessary skills are required in the construction of comprehensive sector interdependencies.
基金the European Research Council under the Grant agreement no.ERC_IDEAL RESCUE_637842 of the project IDEAL RESCUE_Integrated Design and Control of Sustainable Communities during Emergencies.
文摘Lifelines are critical infrastructure systems characterized by a high level of interdependency that can lead to cascading failures after any disaster.Many approaches can be used to analyze infrastructural interdependencies,but they are usually not able to describe the sequence of events during emergencies.Therefore,interdependencies need to be modeled also taking into account the time effects.The methodology proposed in this paper is based on a modified version of the Input-output Inoperability Model and returns the probabilities of failure for each node of the system.Lifelines are modeled using graph theory,while perturbations,representing a natural or man-made disaster,are applied to the elements of the network following predetermined rules.The cascading effects among interdependent networks have been simulated using a spatial multilayer approach,while the use of an adjacency tensor allows to consider the temporal dimension and its effects.The method has been tested on a case study based on the 2011 Fukushima Dai-ichi nuclear disaster.Different configurations of the system have been analyzed and their probability of occurrence evaluated.Two models of the nuclear power plant have been developed to evaluate how different spatial scales and levels of detail affect the results.
基金partial scholarship support under the EDITS-AIT projectThe EDITS-AIT project at the Asian Institute of Technology, Thailand, received funding from the Energy Demand changes Induced by Technological and Social innovations (EDITS) project, which is part of the initiative coordinated by the Research Institute of Innovative Technology for the Earth (RITE) and the International Institute for Applied Systems Analysis (IIASA) (and funded by the Ministry of Economy, Trade, and Industry (METI), Japan)
文摘Bangladesh aims to become a high-income country by 2041,requiring investment in critical infrastructure sectors.Disruptions in one sector can affect others,so prioritizing actions for key sectors is essential when resources are limited.Since no country has endless resources,the current strategy is to focus on developing infrastructure in order of importance.This means that the most critical infrastructure is given priority when allocating resources.The aim of this study was to identify the critical infrastructure sectors and their interdependencies in Bangladesh.While the science of critical infrastructure protection and resilience is well-developed in high-income and developed economies,this research sheds light on identifying critical infrastructure in developing nations like Bangladesh.To identify the critical infrastructure sectors,a comprehensive literature survey was conducted,which was verified and validated by country experts.Policymakers,practitioners,and researchers were consulted through key informant interviews(KII).Interpretive structural modeling(ISM)was applied to determine the interdependencies among identified sectors.Furthermore,cross-impact matrix multiplication applied to classification(MICMAC)analysis was applied to categorize the identified sectors based on driving power and dependence of sectors.The study found that 14 sectors-energy,information and communication technology(ICT),media and culture,law enforcement,transportation,among others-need extra protection measures.It also identified infrastructures with driving power and dependencies in the country’s context.Additionally,this article offers recommendations for improving policy and institutional actions to enhance the resilience of critical infrastructure in the country.
基金supported by the Stanford Graduate Fellowship,the Center for Urban Science and Progress at New York Universitythe National Science Foundation under award number CMMI-2053014.The views and opinions expressed in this paper are those of the authors alone.
文摘Interdependencies between critical infrastructures and the economy amplify the effects of damage caused by disasters.The growing interest in impacts beyond physical damage and community resilience has spurred a surge in literature on economic modeling methodologies for estimating indirect economic impacts of disasters and the recovery of economic activity over time.In this review,we present a framework for categorizing modeling approaches that assess indirect economic impacts across natural hazards and anthropogenic disasters such as cyber attacks.We first conduct a comparative analysis of macroeconomic models,focusing on the approaches capturing sectoral interdependencies.These include the Leontief Input-Output(I/O)model,the Inoperability Input-Output Model(IIM),the Dynamic Inoperability Input-Output Model(DIIM),the Adaptive Regional Input-Output(ARIO)model,and the Computable General Equilibrium(CGE)model and its extensions.We evaluate their applicability to disaster scenarios based on input data availability,the compatibility of model assumptions,and output capabilities.We also reveal the functional relationships of input data and output metrics across economic modeling approaches for inter-sectoral impacts.Furthermore,we examine how the damage mechanisms posed by different types of disasters translate into model inputs and impact modeling processes.This synthesis provides guidance for researchers and practitioners in selecting and configuring models based on specific disaster scenarios.It also identifies the gaps in the literature,including the need for a deeper understanding of model performance reliability,key drivers of economic outcomes in different disaster contexts,and the disparities in modeling approach applications across various hazard types.
文摘China has reaffirmed its dominance as South Korea's largest supplier of textiles and apparel.From January to August 2025,South Korea's apparel imports totaled$7.679 billion,and 38.01%of this,amounting to$2.919 billion,was sourced from China.This underscores the strong trade interdependence between the two East Asian economies.
文摘As the geopolitical and economic landscape of the Asia-Pacific continues to evolve,the partnership between China and ASEAN has reached a defining juncture.The dual imperatives of maintaining strategic autonomy while deepening economic interdependence have pushed regional actors to refine their approaches to cooperation.Among them,Singapore and Thailand o"er two distinct yet complementary perspectives on how Southeast Asia can sustain stability,inclusivity,and shared growth amid intensifying global uncertainties.
文摘The year 2025 marks the 50th anniversary of the establishment of diplomatic relations between China and Thailand,as well as the“Golden Jubilee of Sino-Thai Friendship”.Over the past half-century,the scale and scope of economic and trade cooperation between China and Thailand have dramatically expanded.Both nations have strengthened their bilateral economic ties,which have increasingly strengthened their interdependence and.complementarity,presenting a broad prospect of mutual benefit and win-win cooperation.
文摘This study tested a multilevel model of the workplace territorial behaviors and employees’knowledge sharing relationship,with team identification serving as a mediator and task interdependence as a moderator.Data were collected from 253 employees(females=128,mean age=28.626,SD=6.470)from 40 work teams from different industries in China.Path analysis results indicated that workplace territorial behaviors were associated with lower employee knowledge sharing.Team identification enhanced employee knowledge sharing and partially mediated the relationship between workplace territorial behaviors and employee knowledge sharing.Task interdependence enhanced knowledge sharing and strengthened the relationship between team identification and knowledge sharing.Thesefindings extend the proposition of social information processing theory by revealing the mediating role of team identification in the relationship between workplace territorial behaviors and knowledge sharing,and clarifying the boundary conditions of team identification.Practical implications of thesefindings include a need for managers to foster collaborative atmospheres,design interdependent tasks,and mitigate territorial behaviors to enhance team identification and knowledge sharing.
基金The National Natural Science Foundation of China(No70501024,70501022)the Humanity & Social Science ResearchProgram of Ministry of Education of China (No05JC870013)
文摘To improve the traditional classifying methods, such as vector space model (VSM)-based methods with highly complicated computation and poor scalability, a new classifying method ( called IER) is presented based on two new concepts: interdependence and equivalent radius. In IER, the attribute is selected according to the value of interdependence, and the classifying rule is based on equivalent radius and center of gravity. The algorithm analysis shows that IER is good at classifying a large number of samples with higher scalability and lower computation complexity. After several experiments in classifying Chinese texts, the conclusion is drawn that IER outperforms k-nearest neighbor (kNN) and classifcation based on the center of classes (CCC) methods, so IER can be used online to automatically classify a large number of samples while keeping higher precision and recall.
基金The National Natural Science Foundation of China(No.71071033)
文摘The impact of risk correlation on firm's investments in information system security is studied by using quantification models combining the ideas of the risk management theory and the game theory. The equilibrium levels of self-protection and insurance coverage under the non- cooperative condition are compared with socially optimal solutions, and the associated coordination mechanisms are proposed. The results show that self-protection investment increases in response to an increase in potential loss when the interdependent risk is small; the interdependent risk of security investments often induce firms to underinvest in security relative to the socially efficient level by ignoring marginal external costs or benefits conferred on others. A subsidy on self-protection investment from the government can help coordinate a firm's risk management decision and, thereby, improve individual security level and overall social welfare.
文摘The severe drought that Australia has endured over the past few years has impacted adversely on the environment and is the major cause of the reduction of water levels in the Coorong and Lower Lakes. The over-allocation and over-use of water in the MDB (Murray-Darling Basin) has caused the system to endure the longest period ever of reduced freshwater inflows and levels. The environmental state of Coorong and Lower Lakes is an issue that requires immediate action by governments and the surrounding community. This article will explore current data regarding the social and planning implications of the degradation of the Coorong and Lower Lakes. It primarily focuses on the social impacts that will occur if the Coorong and Lower Lakes area is significantly environmentally degraded. Drawing on Beck's risk theory, this paper analyses the adaptive capacity of settlements in the Coorong and Lower Lakes area and how they respond to the stresses and risks caused by environmental degradation. Economic and environmental implications will also be explored to provide an understanding of the interdependencies, This article provides a foundation and theoretical structure for further investigative research to be undertaken.
基金funded by the European Commission,Horizon 2020 research and innovation programme under grant agreement No.101021668.
文摘Critical Infrastructures(CIs),which serve as the foundation of our modern society,are facing increasing risks from cyber threats,physical attacks,and natural disasters.Additionally,the interdependencies between CIs through-out their operational lifespan can also significantly impact their integrity and safety.As a result,enhancing the resilience of CIs has emerged as a top priority for many countries,including the European Union.This involves not only understanding the threats/attacks themselves but also gaining knowledge about the areas and infrastruc-tures that could potentially be affected.A European Union-funded project named PRECINCT(Preparedness and Resilience Enforcement for Critical INfrastructure Cascading Cyber-Physical Threats),under the Horizon 2020 program,tries to connect private and public stakeholders of CIs in a specific geographical area.The key objec-tive of this project is to establish a common cyber-physical security management approach that will ensure the protection of both citizens and infrastructures,creating a secure territory.This paper presents the components of PRECINCT,including a directory of PRECINCT Critical Infrastructure Protection(CIP)blueprints.These blueprints support CI communities in designing integrated ecosystems,operating and replicating PRECINCT components(or toolkits).The integration enables coordinated security and resilience management,incorporating improved’installation-specific’security solutions.Additionally,Serious Games(SG),and Digital Twins(DT)are a significant part of this project,serving as a novel vulnerability evaluation method for analysing complicated multi-system cascading effects in the PRECINCT Living Labs(LLs).The use of SG supports the concentrated advancement of innovative resilience enhancement services.
文摘The major challenge to increase the decentralized generation share in distribution grids is the maintenance of the voltage within the limits. The inductive power injection is widely used as a remedial measure. The main aim of this paper is to study the effect of the reactive power injection (by what-ever means) on radial grid structures and their impact on the voltage of the higher voltage-level grids. Various studies have shown that, in addition to the major local effect on the voltage at the injection point, the injection of the reactive power on a feeder has a global effect, which cannot be neglected. The reactive power flow and the voltage on the higher voltage level grid are significantly affected. In addition, a random effect is introduced by the DGs which are connected through inverters (using wind or PVs). Although their operation is in accordance with the grid code, a volatile reactive power flow circulates on the grid. Finally, this study proposes the implementation of the “Volt/var secondary control” interaction chain in order to increase the distributed generation share at every distribution voltage level, be it medium or low voltage, and at the same time to guarantee a stable operation of the power grid. Features of Volt/var secondary control loops ensure a resilient behavior of the whole chain.
基金the funding support provided by Australian Research Council Research Hub for Advanced Manufacturing of Medical Devices IH150100024the ARC Discovery grant DP140100702 and ARC linkage project LP150100950。
文摘Ultrasonic treatment(UST)applied during the solidification of pure Mg,eutectic(Mg-Zn)and peritectic(Mg-Zr)alloys was investigated in order to explore the grain refinement mechanisms.Temperature dependent grain refinement is observed in pure Mg where decreasing the superheat temperature(at which UST is applied from above the melting temperature,TM)from 100℃to 40℃produces significant refinement with a uniform grain structure.The presence of solute reduces the temperature dependence of the UST refinement and excellent grain refinement is obtained regardless of the superheat temperature(100℃or 40℃)and even with the use of preheated sonotrode in the Mg-6 wt.%Zn alloy.A further improvement in grain refinement is achieved when the alloy contains potent particles that introduce additional nucleation of grains in Mg-0.5 and 1.0 wt.%Zr alloys(producing an average grain size of≤100μm).At 40℃superheat,UST of Mg-Zn alloys produces excellent refinement(average grain size<200μm)with non-dendritic grains,which is normally achieved only with the addition of grain refining master alloy in the as-cast condition.The enhanced refinement observed in the eutectic alloy is explained through the undercooling imposed by a relatively cold sonotrode combined with high frequency vibrations and acoustic streaming.The advantages of using a cold sonotrode,a low superheat and solute are demonstrated for achieving significant refinement during solidification of Mg alloys under UST without or with a lower addition of grain refining master alloys.
基金supported by the National Natural Science Foundation of China(60972145)the National Aerospace Science Foundation of China(20140751008)
文摘With society's increasing dependence on critical infrastructure such as power grids and communications systems, the robustness of these systems has attracted significant attention.Failure of some nodes can trigger a cascading failure, which completely fragments the network, necessitating recovery efforts to improve robustness of complex systems. Inspired by real-world scenarios, this paper proposes repair models after two kinds of network failures, namely complete and incomplete collapse. In both models, three kinds of repair strategies are possible, including random selection(RS), node selection based on single network node degree(SD), and node selection based on double network node degree(DD). We find that the node correlation in each of the two coupled networks affects repair efficiency. Numerical simulation and analysis results suggest that the repair node ratio and repair strategies may have a significant impact on the economics of the repair process. The results of this study thus provide insight into ways to improve the robustness of coupled networks after cascading failures.