The influences of the wintertime AO (Arctic Oscillation) on the interdecadal variation of summer monsoon rainfall in East Asia were examined. An interdecadal abrupt change was found by the end of the 1970s in the vari...The influences of the wintertime AO (Arctic Oscillation) on the interdecadal variation of summer monsoon rainfall in East Asia were examined. An interdecadal abrupt change was found by the end of the 1970s in the variation of the AO index and the leading principal component time series of the summer rainfall in East Asia. The rainfall anomaly changed from below normal to above normal in central China, the southern part of northeastern China and the Korean peninsula around 1978. However, the opposite interdecadal variation was found in the rainfall anomaly in North China and South China. The interdecadal variation of summer rainfall is associated with the weakening of the East Asia summer monsoon circulation. It is indicated that the interdecadal variation of the AO exerts an influence on the weakening of the monsoon circulation. The recent trend in the AO toward its high-index polarity during the past two decades plays important roles in the land-sea contrast anomalies and wintertime precipitation anomaly. The mid- and high-latitude regions of the Asian continent are warming, while the low-latitude regions are cooling in winter and spring along with the AO entering its high-index polarity after the late 1970s. In the meantime, the precipitation over the Tibetan Plateau and South China is excessive, implying an increase of soil moisture. The cooling tendency of the land in the southern part of Asia will persist until summer because of the memory of soil moisture. So the warming of the Asian continent is relatively slow in summer. Moreover, the Indian Ocean and Pacific Ocean, which are located southward and eastward of the Asian land, are warming from winter to summer. This suggests that the contrast between the land and sea is decreased in summer. The interdecadal decrease of the land-sea heat contrast finally leads to the weakening of the East Asia summer monsoon circulation.展开更多
Decadal/interdecadal climate variability is an important research focus of the CLIVAR Program and has been paid more attention. Over recent years, a lot of studies in relation to interdecadal climate variations have b...Decadal/interdecadal climate variability is an important research focus of the CLIVAR Program and has been paid more attention. Over recent years, a lot of studies in relation to interdecadal climate variations have been also completed by Chinese scientists. This paper presents an overview of some advances in the study of decadal/interdecadal variations of the ocean temperature and its climate impacts, which includes interdccadal climate variability in China, the interdecadal modes of sea surface temperature (SST) anomalies in the North Pacific, and in particular, the impacts of interdecadal SST variations on the Asian monsoon rainfall. As summarized in this paper, some results have been achieved by using climate diagnostic studies of historical climatic datasets. Two fundamental interdecadal SST variability modes (7- 10-years mode and 25 35-years mode) have been identified over the North Pacific associated with different anomalous patterns of atmospheric circulation. The southern Indian Ocean dipole (SIOD) shows a major feature of interdecadal variation, with a positive (negative) phase favoring a weakened (enhanced) Asian summer monsoon in the following summer. It is also found that the China monsoon rainfall exhibits interdecadal variations with more wet (dry) monsoon years in the Yangtze River (South China and North China) before 1976, but vice versa after 1976. The weakened relationship between the Indian summer rainfall and ENSO is a feature of interdecadal variations, suggesting an important role of the interdecadal variation of the SIOD in the climate over the south Asia and southeast Asia. In addition, evidence indicates that the climate shift in the 1960s may be related to the anomalies of the North Atlantic Oscillation (NAO) and North Pacific Oscillation (NPO). Overall, the present research has improved our understanding of the decadal/interdecadal variations of SST and their impacts on the Asian monsoon rainfall. However, the research also highlights a number of problems for future research, in particular the mechanisms responsible for the monsoon long4erm predictability, which is a great challenge in climate research.展开更多
The East Asian summer monsoon (EASM) underwent an interdecadal variation with interannual variations during the period from 1958 to 1997, its index tended to decline from a higher stage in the mid-1960,s until it rea...The East Asian summer monsoon (EASM) underwent an interdecadal variation with interannual variations during the period from 1958 to 1997, its index tended to decline from a higher stage in the mid-1960,s until it reached a lower stage after 1980/s. Correlation analysis reveals that EASM is closely related with the global atmospheric circulation and sea surface temperature (SST). The differences between the weak and strong stage of EASM shows that, the summer monsoon circulation over East Asia and North Africa is sharply weakened, in the meantime, the westerlies in high latitudes and the trade-wind over the tropical ocean are also changed significantly. Over the most regions south of the northern subtropics, both air temperature in the lower troposphere and SST tended to rise compared with the strong stage of EASM. It is also revealed that the ocean-atmosphere interaction over the western Pacific and Indian Ocean plays a key role in interannual to interdecadal variation of EASM, most probably, the subtropical indian Ocean is more important. On the other hand, the ENSO event is less related to EASM at least during the concerned period.展开更多
The interdecadal variation of Pacific thermocline represented by depth anomalies of 25σθ isopycnal surface calculated from SODA data set is analyzed. The climatological depth of 25σθ isopycnal surface is quit...The interdecadal variation of Pacific thermocline represented by depth anomalies of 25σθ isopycnal surface calculated from SODA data set is analyzed. The climatological depth of 25σθ isopycnal surface is quite close to the depth of 20 ℃ isotherm in the tropical Pacific. The EOF1 mode of the 25σθ isopycnal surface accounts for 26. 4% of the total variance and its associated pattern is of east-west direction. The centers of positive and negative extremes are located near 10oS over the southern Pacific and the correlation coefficient with zero-lag between the corresponding EOF1 time coefficient and PDO index is -0.67. This shows that there is very close relation between the southern tropical Pacific and PDO. The wavelet analysis of detrended EOF1 time coefficient reveals that there are two dominant time scales of about 3~7 and 30 a respectively. An apparent abruptness of mean value occurred in the late 1970s. EOF2 mode accounts for 12.4% of the total variance and its pattern is an ENSO-related one. The correlation coefficient between the EOF2 time coefficient and NINO3 index is -0.68. The wavelet analysis of EOF2 time coefficient reveals that there are two leading time scales of about 2~7 and 10~15 a respectively. On an interdecadal scale, the zonal change is consistent along the equator and is seesaw along 10oS; there is consistent polarity in the tropics along 165oE, but reverse polarity between around equator and other tropical region along 120oW. In all the four profiles mentioned above, the regime shift occurred in the late 1970s. The evolving characteristics of anomalies can be explained mostly by the anomalies of ocean currents during a complete cycle on an interdecadal scale.展开更多
Based on the drought/flood grades of 90 meterological stations over eastern China and summer average sea-level pressure (SLP) during 1850-2008 and BPCCA statistical methods, the coupling relationship between the dro...Based on the drought/flood grades of 90 meterological stations over eastern China and summer average sea-level pressure (SLP) during 1850-2008 and BPCCA statistical methods, the coupling relationship between the drought/flood grades and the East Asian summer SLP is analyzed. The East Asian summer monsoon index which is closely related with interdecadal variation of drought/flood distribution over eastern China is defined by using the key areas of SLP. The impact of the interdecadal variation of the East Asian summer monsoon on the distribution of drought/flood over eastern China in the last 159 years is researched. The results show that there are four typical drought and flood spatial distribution patterns in eastern China, i.e. the distribution of drought/flood in southern China is contrary to the other regions, the distribution of drought/flood along the Huanghe River–Huaihe River Valley is contrary to the Yangtze River Valley and regions south of it, the distribution of drought/flood along the Yangtze River Valley and Huaihe River Valley is contrary to the other regions, the distribution of drought/flood in eastern China is contrary to the western. The main distribution pattern of SLP in summer is that the strength of SLP is opposite in Asian continent and West Pacific. It has close relationship between the interdecadal variation of drought/flood distribution patterns over eastern China and the interdecadal variation of the East Asian summer monsoon which was defined in this paper, but the correlation is not stable and it has a significant difference in changes of interdecadal phase. When the East Asian summer monsoon was stronger (weaker), regions north of the Yangtze River Valley was more susceptible to drought (flood), the Yangtze River Valley and regions south of it were more susceptible to flood (drought) before the 1920s; when the East Asian summer monsoon was stronger (weaker), the regions north of the Yangtze River Valley was prone to flood (drought), the Yangtze River Valley and regions south of it were prone to drought (flood) after the 1920s. It is indicated that by using the data of the longer period could get much richer results than by using the data of the last 50–60 years. The differences in the interdecadal phase between the East Asian summer monsoon and the drought/flood distributions in eastern China may be associated with the nonlinear feedback, which is the East Asian summer monsoon for the extrinsic forcing of solar activity.展开更多
The direct climatic effect of aerosols for the 1980-2000 period over East Asia was numerically investigated by a regional scale coupled climate-chemistry/ aerosol model, which includes major anthropogenic aerosols (s...The direct climatic effect of aerosols for the 1980-2000 period over East Asia was numerically investigated by a regional scale coupled climate-chemistry/ aerosol model, which includes major anthropogenic aerosols (sulfate, black carbon, and organic carbon) and natural aerosols (soil dust and sea salt). Anthropogenic emissions used in model simulation are from a global emission inventory prepared for the Intergovernmental Panel on Climate Change Fifth Assessment Report (IPCC AR5), whereas natural aerosols are calculated online in the model. The simulated 20-year average direct solar radiative effect due to aerosols at the surface was estimated to be in a range of-9- -33 W m-2 over most areas of China, with maxima over the Gobi desert of West China, and-12 W m-2 to -24 W m-2 over the Sichuan Basin, the middle and lower reaches of the Yellow River and the Yangtze River. Aerosols caused surface cooling in most areas of East Asia, with maxima of-0.8℃ to -1.6℃ over the deserts of West China, the Sichuan Basin, portions of central China, and the middle reaches of the Yangtze River. Aerosols induced a precipitation decrease over almost the entire East China, with maxima of-90 mm/year to -150 mm/year over the Sichuan Basin, the middle reaches of the Yangtze River and the lower reaches of the Yellow River. Interdecadal variation of the climate response to the aerosol direct radiative effect is evident, indicating larger decrease in surface air temperature and stronger per- turbation to precipitation in the 1990s than that in the 1980s, which could be due to the interdecadal variation of anthropogenic emissions.展开更多
The intensity of summer precipitation interannual variability is strongest over the middle and lower reaches of the Yangtze River Valley(MLYRV). The variability is larger than 1.5 mm d–1 and up to 35%–40% of the cli...The intensity of summer precipitation interannual variability is strongest over the middle and lower reaches of the Yangtze River Valley(MLYRV). The variability is larger than 1.5 mm d–1 and up to 35%–40% of the climatological mean summer precipitation. The relationship between the interdecadal change in the intensity of summer precipitation and its interannual variability over this area is investigated, by analyzing five gauged and re-constructed precipitation datasets. The relationship is found to be very weak over the MLYRV, with a correlation coefficient of only approximately 0.10. The Pacific Decadal Oscillation influences the western North Pacific subtropical high, which is responsible for the interdecadal change in summer precipitation over the MLYRV. However, the precipitation interannual variability is closely related to the ENSO events in the preceding winter due to its impact on the meridional displacement of the East Asian westerly jet. Different physical mechanisms cause different interdecadal variation in the intensity of summer precipitation and its interannual variability, and thus result in a poor relationship.展开更多
Evaporation controlled by meteorological parameters plays a crucial role in hydrology, meteorology and water resources management. An insight view of long-term variation in evaporation will help understanding the effe...Evaporation controlled by meteorological parameters plays a crucial role in hydrology, meteorology and water resources management. An insight view of long-term variation in evaporation will help understanding the effects of climate change and provide useful information for rational utilization of water resources, especially in the arid land where the shortage of water resources exists. However, the lack of data on evaporation led to difficulties in assessing the impacts of climate change on evaporation, especially in arid mountainous area. This study investigated the long-term variation of the pan-evaporation (Ep) measured by E601 type evaporation pan and its influencing climatic factors at both northern and southern slopes of the Tianshan Mountains in Xinjiang of China using the ensemble empirical mode decomposition method and Path analysis. The results revealed that Eps at both northern and southern slopes had obvious interdecadal variation within cycles of 3-4 and 7-8 years. Eps at both slopes sharply decreased in early 1980s, but increased after late 1990s. Path analysis showed that the 3-4 years cycle of Ep at the northern and southern slopes was mainly dependent upon actual water vapor pressure with a negative direct path coefficient of-0.515 and sunshine duration with a positive direct path coefficient of 0.370, respectively. The variation of Ep with cycle of 7-8 years at the northern slope was attributed to the wind speed with a direct path coefficient of 0.774. Average temperature had a direct path coefficient of 0.813 in 7-8 years cycle at the southern slope. The assessment of Ep variation and its causes provides information essential for a good understanding of hydrologic cycle and regional climate of arid mountainous regions in Xinjiang of China and offers a theoretical reference for distribution and utilization of water resources.展开更多
Simulations of the interdecadal variations of summer rainfall over China are assessed from 5 coupled AOGCMs from the Data Distribution Center (DDC) of the Intergovernmental Panel in Climate Change (IPCC) under the IPC...Simulations of the interdecadal variations of summer rainfall over China are assessed from 5 coupled AOGCMs from the Data Distribution Center (DDC) of the Intergovernmental Panel in Climate Change (IPCC) under the IPCC-Special Report in Emission Scenarios (SRES) A2 and B2 scenario. We examined their ability in simulating the interdecadal variations of summer precipitation over China from 1951 to 1990. The difference before and after the mid-1960’s and the late 1970’s is given respectively to check the capability of the models, especially in reproducing the rainfall jump in North China. We also investigated the interdecadal variations simulated by the models in the 1990’s and the average of 2001-2020 in the future under the scenario A2 and B2. The analysis shows that the current AOGCMs is not good enough in simulating the interdecadal variations of summer precipitation in China. The interdecadal variations of summer rainfall simulated by most of the models cannot reproduce the observation in North China. Higher resolution models are suggested to well simulate the interdecadal variability in regional scale.展开更多
This study aims to explore the interdecadal variation of South Asian High(SAH) and its relationship with SST(sea surface temperature) of the tropical and subtropical regions by using the NCEP/NCAR monthly reanalysis d...This study aims to explore the interdecadal variation of South Asian High(SAH) and its relationship with SST(sea surface temperature) of the tropical and subtropical regions by using the NCEP/NCAR monthly reanalysis data from 1948 to 2012, based on the NCAR CAM 3.0 general circulation model. The results show that: 1) the intensity of SAH represents a remarkable interdecadal variation characteristic, the intensity of SAH experienced from weak to strong at the late 1970 s, and after the late 1970 s, its strength is enhanced and the area is expanded in the east-west direction.The expansion degree is greater westward than eastward, while it is opposite in summer. 2) Corresponding to the interdecadal variation of SAH intensity, after the late 1970 s, the divergent component of wind field has two ascending and three descending areas. Of the two ascending areas, one is located in the East Pacific, the other location varies with the season from the Indian Ocean in winter to the South China Sea and West Pacific in summer. Three descending areas are located in the north-central Africa, the East Asia and the Middle Pacific region respectively. 3) Corresponding to the interdecadal variation of SAH intensity, the rotational component of wind field at the lower level is an anomalous cyclone over the South China Sea and West Pacific in summer, while in winter, it is an anomalous cyclone over the Indian Ocean, and an anomalous anticyclone over the equatorial Middle Pacific. 4) Numerical simulations show that the interdecadal variation of SAH is closely related to the SST of the tropical and subtropical regions. The SST of Indian Ocean plays an important role in winter, while in summer, the SST of the South China Sea and West Pacific plays an important role, and the SST of the East Pacific also plays a certain role.展开更多
Using NCEP/NCAR reanalysis data, variations of heat transport in the Northern Hemisphere were studied. It was found that there are interdecadal variations in heat ransport from middle latitudes to higher latitudes. Th...Using NCEP/NCAR reanalysis data, variations of heat transport in the Northern Hemisphere were studied. It was found that there are interdecadal variations in heat ransport from middle latitudes to higher latitudes. The variations of interdecadal heat transport over longitudes around 120° E are out of phase with those over around 90° E and over the Northcastern Pacific. The seasonal variations of heat transport were also discussed. It was found that most heat is transported in the lower layer of the troposphere from middle latitudes to higher latitudes. Over around 120° E and over around 120° W . the seasonal and interannual variations of heat transport across 32.5° N are apparent and in phase.展开更多
Based on the annual frequency data of tropical cyclones from 1960 to 2005 and by the polynomial fit and statistical analysis, this work has discovered that TC activity in the 46a exhibits significant decadal-scale var...Based on the annual frequency data of tropical cyclones from 1960 to 2005 and by the polynomial fit and statistical analysis, this work has discovered that TC activity in the 46a exhibits significant decadal-scale variability. It has two high frequency periods (HFP) and two low frequency periods (LFP). Significant differences in the number of TCs between HFP and LFP are found in active TC seasons from July to October. Differences of large-scale circulation during HFP and LFP have been investigated with NCEP/NOAA data for the season. In HFP, the condition includes not only higher sea surface temperature, lower sea level pressure, larger divergence of upper air, larger relative vorticity at low levels and smaller vertical shear, but also 500-hPa wind vector being more available for TC activity and moving to western North Pacific, the position of the subtropical anticyclone over the western Pacific shifting more northward, and South Asian Anticyclone at 100-hPa being much smaller than that in LFP. The precipitation of western North Pacific has no clear influence on TC activity.展开更多
The interannual and interdecadal variations of moisture sinks over Guangdong are discussed with the NCEP/NCAR reanalysis data and observed precipitation data from 1958 to 2004. The results indicate that climatically, ...The interannual and interdecadal variations of moisture sinks over Guangdong are discussed with the NCEP/NCAR reanalysis data and observed precipitation data from 1958 to 2004. The results indicate that climatically, the amount of precipitation is larger than that of evaporation in spring and summer. Precipitation and evaporation almost balance each other in autumn and the amount of evaporation is larger than that of precipitation in winter. The interannual signal dominates the variations of moisture sinks in all seasons in Guangdong with a period of three-year oscillation in autumn and winter. Remarkable interdecadal signal characterized by a period of three-decade oscillation can be identified for winter and spring from seasonally averaged moisture sink data and from annually moisture data, with variance percentage larger than 40%. This result indicates that Guangdong is at a transitional stage from positive anomalies to negative anomalies. The moisture sink anomalies in winter and following spring over Guangdong are usually in-phase. Besides, there exist periodic oscillations with periods of 10 to 15 years in summer and autumn. The positive (negative) anomalies of moisture sinks over Guangdong are due to the intensified (weakened) moisture from the tropical areas being transported to the Southern China, accompanied by an intensified (weakened) moisture convergence.展开更多
Based on the fifth-generation reanalysis dataset from the European Centre for Medium-Range Weather Forecasts for 1979–2019,we investigated the effects of the circumglobal teleconnection(CGT)on the interdecadal variat...Based on the fifth-generation reanalysis dataset from the European Centre for Medium-Range Weather Forecasts for 1979–2019,we investigated the effects of the circumglobal teleconnection(CGT)on the interdecadal variation of the March atmospheric heat source(AHS)over the Southeast Asian low-latitude highlands(SEALLH).The dominant mode of the March AHS over the SEALLH features a monopole structure with an 8–11-year period.Decadal variations in the AHS make an important contribution to the 11-year low-pass filtered component of the AHS index,whichexplains 54.3%of the total variance.The CGT shows a clear interdecadal variation,which explains 59.3%of the total variance.The March AHS over the SEALLH is significantly related to the CGT on interdecadal timescales.When the CGT is optimally excited by a significant cyclonic vorticity source near northern Africa(i.e.,in its positive phase),the SEALLH is dominated by anomalous southerly winds and ascending motions on the east of the anomalous cyclone.The enhanced advection and upward transfer result in a high-enthalpy air mass that converges into and condenses over the SEALLH,leading to a largerthan-average March AHS over this region.The key physical processes revealed by this diagnostic analysis are supported by numerical experiments.展开更多
Phase delays between two Nino indices-sea surface temperatures in Nino regions 1+2 and 3.4 (1950-2001)-at different time scales are detected by wavelet analysis. Analysis results show that there are two types of perio...Phase delays between two Nino indices-sea surface temperatures in Nino regions 1+2 and 3.4 (1950-2001)-at different time scales are detected by wavelet analysis. Analysis results show that there are two types of period bifurcations in the Nino indices and that period bifurcation points exist only in the region where the wavelet power is small. Interdecadal variation features of phase delays between the two indices vary with different time scales. In the periods of 40-72 months, the phase delay changes its sign in 1977: Nino 1+2 indices are 2-4 months earlier than Nino 3.4 indices before 1977, but 3-6 months later afterwards. In the periods of 20-40 months, however, the phase delay changes its sign in another way: Nino 1+2 indices are 1-4 months earlier before 1980 and during 1986-90, but 1-4 months later during 1980-83 and 1993-2001.展开更多
The characteristics and possible physical mechanism of interdecadal variation of the intensity of the South Asian High(SAH) in summer are analyzed using the NCEP/NCAR reanalysis data and NOAA extended reconstructed se...The characteristics and possible physical mechanism of interdecadal variation of the intensity of the South Asian High(SAH) in summer are analyzed using the NCEP/NCAR reanalysis data and NOAA extended reconstructed sea surface temperature(SST) data.The results indicate that a remarkable interdecadal transition occurred in the late1970 s that increased the intensity of SAH,or,an abrupt climate change was around 1978.A comparative analysis between the weak and strong period of the SAH intensity shows that the related anomalous patterns of the atmospheric circulation(including wind field,air temperature field and vertical velocity field) are nearly opposite to each other.The surface latent heat flux anomalies over the plateau(especially in the northwest of the plateau) in summer exert great influence on the interdecadal variation of the SAH intensity and the surface sensible heat flux anomalies play a more important role.Consistent with the interdecadal variation of the SAH intensity,the monopole mode of the tropical Indian Ocean SST in summer also experienced a low to high transition in the late 1970 s.To some extent,this can reveal the impact of the anomalous monopole mode of the tropical Indian Ocean SST in summer on interdecadal variation of the SAH.展开更多
Based on the data of daily precipitation in 11 national ground meteorological observation stations in Jining City from 1981 to 2020,the interdecadal variation,intensity,range and spatial distribution of rainstorms in ...Based on the data of daily precipitation in 11 national ground meteorological observation stations in Jining City from 1981 to 2020,the interdecadal variation,intensity,range and spatial distribution of rainstorms in Jining City were analyzed.The results show that the number of rainstorm days and the total amount of rainstorms in Jining City had significant changes among different decades.There was a continuous upward trend from the 1980s to the early 21 st century and a decrease after the early 21 st century.Rainstorms had distinct seasonal characteristics.They were mainly concentrated in summer,especially in July and August.In terms of spatial distribution,the frequency and intensity of rainstorms in the southeastern regions were significantly higher than those in the northwestern regions.The above results can provide a scientific basis for flood control and disaster reduction in Jining City.展开更多
This paper discusses the interdecadal changes of the climate in the tropical Pacific with a focus on the correspond- ing changes in the characteristics of the E1 Nifio-Southern Oscillation (ENSO). Compared with 1979...This paper discusses the interdecadal changes of the climate in the tropical Pacific with a focus on the correspond- ing changes in the characteristics of the E1 Nifio-Southern Oscillation (ENSO). Compared with 1979-1999, the whole tropical Pacific climate system, including both the ocean and atmosphere, shifted to a lower variability regime after 1999/2000. Meanwhile, the frequency of ENSO became less regular and was closer to a white noise process. The lead time of the equatorial Pacific's subsurface ocean heat content in preceding ENSO decreased remarkably, in addition to a reduction in the maximum correlation between them. The weakening of the correlation and the shorten- ing of the lead time pose more challenges for ENSO prediction, and is the likely reason behind the decrease in skill with respect to ENSO prediction after 2000. Coincident with the changes in tropical Pacific climate variability, the mean states of the atmospheric and oceanic components also experienced physically coherent changes. The warm an- omaly of SST in the western Pacific and cold anomaly in the eastern Pacific resulted in an increased zonal SST gradi- ent, linked to an enhancement in surface wind stress and strengthening of the Walker circulation, as well as an in- crease in the slope of the thermocline. These changes were consistent with an increase (a decrease) in precipitation and an enhancement (a suppression) of the deep convection in the western (eastern) equatorial Pacific. Possible con- nections between the mean state and ENSO variability and frequency changes in the tropical Pacific are also dis- cussed.展开更多
We use 71-yr(1948–2018) reanalysis data to investigate the interdecadal variation in the atmospheric heat source(Q1) over the Tibetan Plateau and surrounding Asian monsoon region(AMTP) and its effect on the Northern ...We use 71-yr(1948–2018) reanalysis data to investigate the interdecadal variation in the atmospheric heat source(Q1) over the Tibetan Plateau and surrounding Asian monsoon region(AMTP) and its effect on the Northern Hemisphere summer circulation. The large-scale circulation driven by Q1 over the AMTP is characterized by a center of convergent(divergent) or low(high) potential wind function in the lower(upper) troposphere. Q1 over the AMTP shows a clear interdecadal variation(with positive–negative–positive phases) and these three phases correspond to the time periods 1948–1972, 1973–2005, and 2006–2018, respectively. The thermal circulation has a corresponding interdecadal variation as a response to the interdecadal variation in Q1. An enhanced Q1 leads to an increase in the conversion of the total potential energy to non-divergent wind kinetic energy via the divergent wind velocity. The maximum conversion occurs in the tropopause. The primary thermal forcing for Q1 is produced by the intense, large volume precipitation of the summer monsoon. This induces a response in the large-scale circulation, leading to largescale divergence patterns. The synergistic effects of Pacific Decadal Oscillation(PDO) and North Atlantic Multidecadal Oscillation(AMO) influence Q1 over the AMTP, which is ultimately responsible for the modulation of variations in the global divergent circulation. The global divergent circulation in summer is therefore essentially a direct thermodynamic circulation driven by the strong Q1 over the AMTP.展开更多
Using the output data of 20 coupled climate models used in IPCC AR4 and observational data from NCEP, the capability of the models to simulate the boreal winter climatology of the East Asian sea level pressure, 850-hP...Using the output data of 20 coupled climate models used in IPCC AR4 and observational data from NCEP, the capability of the models to simulate the boreal winter climatology of the East Asian sea level pressure, 850-hPa wind, and surface air temperature; the decadal variations of the East Asian winter mon- soon (EAWM) intensity and EAWM-related circulation, and the interdecadal variations of EAWM-related circulation are systematically evaluated. The results indicate that 16 models can weakly simulate the declin- ing trend of the EAWM in the 1980s. More than half of the models produce relatively reasonable decadal variations of the EAWM-related circulation and the interdecadal differences of EAWM-related circulation between the boreal winters of 1960-1985 and 1986-1998, including the weakened Siberian high, Aleutian low, and East Asian trough, the enhanced Arctic oscillation and North Pacific oscillation, and a deepened polar vortex. It is found that the performance of the multi-selected-model ensemble in reproducing the spatial dis- tribution of the variations is encouraging, although the variational amplitudes are generally smaller than the observations. In addition, it is found that BCCR-BCM2.0, CGCM3.1-T63, CNRM-CM3, CSIRO-MK3.0, GISS-ER, INM-CM3.0, and MRI-CGCM2.3.2 perform well in every aspect.展开更多
基金This research was supported by the National Natural Science Foundation of China un-der Grant No.40233033.
文摘The influences of the wintertime AO (Arctic Oscillation) on the interdecadal variation of summer monsoon rainfall in East Asia were examined. An interdecadal abrupt change was found by the end of the 1970s in the variation of the AO index and the leading principal component time series of the summer rainfall in East Asia. The rainfall anomaly changed from below normal to above normal in central China, the southern part of northeastern China and the Korean peninsula around 1978. However, the opposite interdecadal variation was found in the rainfall anomaly in North China and South China. The interdecadal variation of summer rainfall is associated with the weakening of the East Asia summer monsoon circulation. It is indicated that the interdecadal variation of the AO exerts an influence on the weakening of the monsoon circulation. The recent trend in the AO toward its high-index polarity during the past two decades plays important roles in the land-sea contrast anomalies and wintertime precipitation anomaly. The mid- and high-latitude regions of the Asian continent are warming, while the low-latitude regions are cooling in winter and spring along with the AO entering its high-index polarity after the late 1970s. In the meantime, the precipitation over the Tibetan Plateau and South China is excessive, implying an increase of soil moisture. The cooling tendency of the land in the southern part of Asia will persist until summer because of the memory of soil moisture. So the warming of the Asian continent is relatively slow in summer. Moreover, the Indian Ocean and Pacific Ocean, which are located southward and eastward of the Asian land, are warming from winter to summer. This suggests that the contrast between the land and sea is decreased in summer. The interdecadal decrease of the land-sea heat contrast finally leads to the weakening of the East Asia summer monsoon circulation.
基金the Chinese Academy of Sciences (KZCX3-SW- 226) the National Natureal Science Foundation of China (Grant No. 40233033).
文摘Decadal/interdecadal climate variability is an important research focus of the CLIVAR Program and has been paid more attention. Over recent years, a lot of studies in relation to interdecadal climate variations have been also completed by Chinese scientists. This paper presents an overview of some advances in the study of decadal/interdecadal variations of the ocean temperature and its climate impacts, which includes interdccadal climate variability in China, the interdecadal modes of sea surface temperature (SST) anomalies in the North Pacific, and in particular, the impacts of interdecadal SST variations on the Asian monsoon rainfall. As summarized in this paper, some results have been achieved by using climate diagnostic studies of historical climatic datasets. Two fundamental interdecadal SST variability modes (7- 10-years mode and 25 35-years mode) have been identified over the North Pacific associated with different anomalous patterns of atmospheric circulation. The southern Indian Ocean dipole (SIOD) shows a major feature of interdecadal variation, with a positive (negative) phase favoring a weakened (enhanced) Asian summer monsoon in the following summer. It is also found that the China monsoon rainfall exhibits interdecadal variations with more wet (dry) monsoon years in the Yangtze River (South China and North China) before 1976, but vice versa after 1976. The weakened relationship between the Indian summer rainfall and ENSO is a feature of interdecadal variations, suggesting an important role of the interdecadal variation of the SIOD in the climate over the south Asia and southeast Asia. In addition, evidence indicates that the climate shift in the 1960s may be related to the anomalies of the North Atlantic Oscillation (NAO) and North Pacific Oscillation (NPO). Overall, the present research has improved our understanding of the decadal/interdecadal variations of SST and their impacts on the Asian monsoon rainfall. However, the research also highlights a number of problems for future research, in particular the mechanisms responsible for the monsoon long4erm predictability, which is a great challenge in climate research.
基金the CAS Key Project (KZCXZ-203)the NSFC Project (No. 49735160 and No.40075020)IAP Innovation Fund (No. 8-1307).
文摘The East Asian summer monsoon (EASM) underwent an interdecadal variation with interannual variations during the period from 1958 to 1997, its index tended to decline from a higher stage in the mid-1960,s until it reached a lower stage after 1980/s. Correlation analysis reveals that EASM is closely related with the global atmospheric circulation and sea surface temperature (SST). The differences between the weak and strong stage of EASM shows that, the summer monsoon circulation over East Asia and North Africa is sharply weakened, in the meantime, the westerlies in high latitudes and the trade-wind over the tropical ocean are also changed significantly. Over the most regions south of the northern subtropics, both air temperature in the lower troposphere and SST tended to rise compared with the strong stage of EASM. It is also revealed that the ocean-atmosphere interaction over the western Pacific and Indian Ocean plays a key role in interannual to interdecadal variation of EASM, most probably, the subtropical indian Ocean is more important. On the other hand, the ENSO event is less related to EASM at least during the concerned period.
基金This study was supported by the National Science Foundation of China under contract No.40136010the Chinese Academy of Sciences under contract No.ZKCX2-SW-210.
文摘The interdecadal variation of Pacific thermocline represented by depth anomalies of 25σθ isopycnal surface calculated from SODA data set is analyzed. The climatological depth of 25σθ isopycnal surface is quite close to the depth of 20 ℃ isotherm in the tropical Pacific. The EOF1 mode of the 25σθ isopycnal surface accounts for 26. 4% of the total variance and its associated pattern is of east-west direction. The centers of positive and negative extremes are located near 10oS over the southern Pacific and the correlation coefficient with zero-lag between the corresponding EOF1 time coefficient and PDO index is -0.67. This shows that there is very close relation between the southern tropical Pacific and PDO. The wavelet analysis of detrended EOF1 time coefficient reveals that there are two dominant time scales of about 3~7 and 30 a respectively. An apparent abruptness of mean value occurred in the late 1970s. EOF2 mode accounts for 12.4% of the total variance and its pattern is an ENSO-related one. The correlation coefficient between the EOF2 time coefficient and NINO3 index is -0.68. The wavelet analysis of EOF2 time coefficient reveals that there are two leading time scales of about 2~7 and 10~15 a respectively. On an interdecadal scale, the zonal change is consistent along the equator and is seesaw along 10oS; there is consistent polarity in the tropics along 165oE, but reverse polarity between around equator and other tropical region along 120oW. In all the four profiles mentioned above, the regime shift occurred in the late 1970s. The evolving characteristics of anomalies can be explained mostly by the anomalies of ocean currents during a complete cycle on an interdecadal scale.
基金National Natural Science Foundation of China No.40890053 Special Scientific Fund for Non-profit Public Industry (Meteorology) No.GYHY200906016 No.GYHY201006038
文摘Based on the drought/flood grades of 90 meterological stations over eastern China and summer average sea-level pressure (SLP) during 1850-2008 and BPCCA statistical methods, the coupling relationship between the drought/flood grades and the East Asian summer SLP is analyzed. The East Asian summer monsoon index which is closely related with interdecadal variation of drought/flood distribution over eastern China is defined by using the key areas of SLP. The impact of the interdecadal variation of the East Asian summer monsoon on the distribution of drought/flood over eastern China in the last 159 years is researched. The results show that there are four typical drought and flood spatial distribution patterns in eastern China, i.e. the distribution of drought/flood in southern China is contrary to the other regions, the distribution of drought/flood along the Huanghe River–Huaihe River Valley is contrary to the Yangtze River Valley and regions south of it, the distribution of drought/flood along the Yangtze River Valley and Huaihe River Valley is contrary to the other regions, the distribution of drought/flood in eastern China is contrary to the western. The main distribution pattern of SLP in summer is that the strength of SLP is opposite in Asian continent and West Pacific. It has close relationship between the interdecadal variation of drought/flood distribution patterns over eastern China and the interdecadal variation of the East Asian summer monsoon which was defined in this paper, but the correlation is not stable and it has a significant difference in changes of interdecadal phase. When the East Asian summer monsoon was stronger (weaker), regions north of the Yangtze River Valley was more susceptible to drought (flood), the Yangtze River Valley and regions south of it were more susceptible to flood (drought) before the 1920s; when the East Asian summer monsoon was stronger (weaker), the regions north of the Yangtze River Valley was prone to flood (drought), the Yangtze River Valley and regions south of it were prone to drought (flood) after the 1920s. It is indicated that by using the data of the longer period could get much richer results than by using the data of the last 50–60 years. The differences in the interdecadal phase between the East Asian summer monsoon and the drought/flood distributions in eastern China may be associated with the nonlinear feedback, which is the East Asian summer monsoon for the extrinsic forcing of solar activity.
基金supported by the Knowledge Innovation Program of the Chinese Academy of Sciences (Grant No.KZCX2-YW-Q11-03)the"Strategic Priority Research Program"of the Chinese Academy of Sciences(Grant No. XDA05100502)+1 种基金the National Basic Research Program of China (Grant No.2010CB950804)100 Talents Program of the Chinese Academy of Sciences
文摘The direct climatic effect of aerosols for the 1980-2000 period over East Asia was numerically investigated by a regional scale coupled climate-chemistry/ aerosol model, which includes major anthropogenic aerosols (sulfate, black carbon, and organic carbon) and natural aerosols (soil dust and sea salt). Anthropogenic emissions used in model simulation are from a global emission inventory prepared for the Intergovernmental Panel on Climate Change Fifth Assessment Report (IPCC AR5), whereas natural aerosols are calculated online in the model. The simulated 20-year average direct solar radiative effect due to aerosols at the surface was estimated to be in a range of-9- -33 W m-2 over most areas of China, with maxima over the Gobi desert of West China, and-12 W m-2 to -24 W m-2 over the Sichuan Basin, the middle and lower reaches of the Yellow River and the Yangtze River. Aerosols caused surface cooling in most areas of East Asia, with maxima of-0.8℃ to -1.6℃ over the deserts of West China, the Sichuan Basin, portions of central China, and the middle reaches of the Yangtze River. Aerosols induced a precipitation decrease over almost the entire East China, with maxima of-90 mm/year to -150 mm/year over the Sichuan Basin, the middle reaches of the Yangtze River and the lower reaches of the Yellow River. Interdecadal variation of the climate response to the aerosol direct radiative effect is evident, indicating larger decrease in surface air temperature and stronger per- turbation to precipitation in the 1990s than that in the 1980s, which could be due to the interdecadal variation of anthropogenic emissions.
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDA05110203)the National Natural Science Foundation of China (Grant Nos. 41305063 and 41320104007)
文摘The intensity of summer precipitation interannual variability is strongest over the middle and lower reaches of the Yangtze River Valley(MLYRV). The variability is larger than 1.5 mm d–1 and up to 35%–40% of the climatological mean summer precipitation. The relationship between the interdecadal change in the intensity of summer precipitation and its interannual variability over this area is investigated, by analyzing five gauged and re-constructed precipitation datasets. The relationship is found to be very weak over the MLYRV, with a correlation coefficient of only approximately 0.10. The Pacific Decadal Oscillation influences the western North Pacific subtropical high, which is responsible for the interdecadal change in summer precipitation over the MLYRV. However, the precipitation interannual variability is closely related to the ENSO events in the preceding winter due to its impact on the meridional displacement of the East Asian westerly jet. Different physical mechanisms cause different interdecadal variation in the intensity of summer precipitation and its interannual variability, and thus result in a poor relationship.
基金funded by the National Basic Research Program of China(2012CB956204)the Special Funds for Key Laboratories of the Xinjiang Uygur Autonomous Region(2014KL015)
文摘Evaporation controlled by meteorological parameters plays a crucial role in hydrology, meteorology and water resources management. An insight view of long-term variation in evaporation will help understanding the effects of climate change and provide useful information for rational utilization of water resources, especially in the arid land where the shortage of water resources exists. However, the lack of data on evaporation led to difficulties in assessing the impacts of climate change on evaporation, especially in arid mountainous area. This study investigated the long-term variation of the pan-evaporation (Ep) measured by E601 type evaporation pan and its influencing climatic factors at both northern and southern slopes of the Tianshan Mountains in Xinjiang of China using the ensemble empirical mode decomposition method and Path analysis. The results revealed that Eps at both northern and southern slopes had obvious interdecadal variation within cycles of 3-4 and 7-8 years. Eps at both slopes sharply decreased in early 1980s, but increased after late 1990s. Path analysis showed that the 3-4 years cycle of Ep at the northern and southern slopes was mainly dependent upon actual water vapor pressure with a negative direct path coefficient of-0.515 and sunshine duration with a positive direct path coefficient of 0.370, respectively. The variation of Ep with cycle of 7-8 years at the northern slope was attributed to the wind speed with a direct path coefficient of 0.774. Average temperature had a direct path coefficient of 0.813 in 7-8 years cycle at the southern slope. The assessment of Ep variation and its causes provides information essential for a good understanding of hydrologic cycle and regional climate of arid mountainous regions in Xinjiang of China and offers a theoretical reference for distribution and utilization of water resources.
基金Major Research Program for Global Change and Regional Response, National Natural Science Foundation of China (40231005) Program for Knowledge Innovation Project, Chinese Academy of Science (KZ CX3-SW-218).
文摘Simulations of the interdecadal variations of summer rainfall over China are assessed from 5 coupled AOGCMs from the Data Distribution Center (DDC) of the Intergovernmental Panel in Climate Change (IPCC) under the IPCC-Special Report in Emission Scenarios (SRES) A2 and B2 scenario. We examined their ability in simulating the interdecadal variations of summer precipitation over China from 1951 to 1990. The difference before and after the mid-1960’s and the late 1970’s is given respectively to check the capability of the models, especially in reproducing the rainfall jump in North China. We also investigated the interdecadal variations simulated by the models in the 1990’s and the average of 2001-2020 in the future under the scenario A2 and B2. The analysis shows that the current AOGCMs is not good enough in simulating the interdecadal variations of summer precipitation in China. The interdecadal variations of summer rainfall simulated by most of the models cannot reproduce the observation in North China. Higher resolution models are suggested to well simulate the interdecadal variability in regional scale.
基金National Natural Science Foundation for Yong Scholars(41105059,41305079)General Program of the National Natural Science Foundation of China(41575070,41230422,41575102)Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)
文摘This study aims to explore the interdecadal variation of South Asian High(SAH) and its relationship with SST(sea surface temperature) of the tropical and subtropical regions by using the NCEP/NCAR monthly reanalysis data from 1948 to 2012, based on the NCAR CAM 3.0 general circulation model. The results show that: 1) the intensity of SAH represents a remarkable interdecadal variation characteristic, the intensity of SAH experienced from weak to strong at the late 1970 s, and after the late 1970 s, its strength is enhanced and the area is expanded in the east-west direction.The expansion degree is greater westward than eastward, while it is opposite in summer. 2) Corresponding to the interdecadal variation of SAH intensity, after the late 1970 s, the divergent component of wind field has two ascending and three descending areas. Of the two ascending areas, one is located in the East Pacific, the other location varies with the season from the Indian Ocean in winter to the South China Sea and West Pacific in summer. Three descending areas are located in the north-central Africa, the East Asia and the Middle Pacific region respectively. 3) Corresponding to the interdecadal variation of SAH intensity, the rotational component of wind field at the lower level is an anomalous cyclone over the South China Sea and West Pacific in summer, while in winter, it is an anomalous cyclone over the Indian Ocean, and an anomalous anticyclone over the equatorial Middle Pacific. 4) Numerical simulations show that the interdecadal variation of SAH is closely related to the SST of the tropical and subtropical regions. The SST of Indian Ocean plays an important role in winter, while in summer, the SST of the South China Sea and West Pacific plays an important role, and the SST of the East Pacific also plays a certain role.
文摘Using NCEP/NCAR reanalysis data, variations of heat transport in the Northern Hemisphere were studied. It was found that there are interdecadal variations in heat ransport from middle latitudes to higher latitudes. The variations of interdecadal heat transport over longitudes around 120° E are out of phase with those over around 90° E and over the Northcastern Pacific. The seasonal variations of heat transport were also discussed. It was found that most heat is transported in the lower layer of the troposphere from middle latitudes to higher latitudes. Over around 120° E and over around 120° W . the seasonal and interannual variations of heat transport across 32.5° N are apparent and in phase.
基金National Key Fundamental Research and Development Plan of China (2004CB418303)Natural Science Foundation of China (40425009 40233028)
文摘Based on the annual frequency data of tropical cyclones from 1960 to 2005 and by the polynomial fit and statistical analysis, this work has discovered that TC activity in the 46a exhibits significant decadal-scale variability. It has two high frequency periods (HFP) and two low frequency periods (LFP). Significant differences in the number of TCs between HFP and LFP are found in active TC seasons from July to October. Differences of large-scale circulation during HFP and LFP have been investigated with NCEP/NOAA data for the season. In HFP, the condition includes not only higher sea surface temperature, lower sea level pressure, larger divergence of upper air, larger relative vorticity at low levels and smaller vertical shear, but also 500-hPa wind vector being more available for TC activity and moving to western North Pacific, the position of the subtropical anticyclone over the western Pacific shifting more northward, and South Asian Anticyclone at 100-hPa being much smaller than that in LFP. The precipitation of western North Pacific has no clear influence on TC activity.
基金Natural Science Foundation of Guangdong Province (05003339)
文摘The interannual and interdecadal variations of moisture sinks over Guangdong are discussed with the NCEP/NCAR reanalysis data and observed precipitation data from 1958 to 2004. The results indicate that climatically, the amount of precipitation is larger than that of evaporation in spring and summer. Precipitation and evaporation almost balance each other in autumn and the amount of evaporation is larger than that of precipitation in winter. The interannual signal dominates the variations of moisture sinks in all seasons in Guangdong with a period of three-year oscillation in autumn and winter. Remarkable interdecadal signal characterized by a period of three-decade oscillation can be identified for winter and spring from seasonally averaged moisture sink data and from annually moisture data, with variance percentage larger than 40%. This result indicates that Guangdong is at a transitional stage from positive anomalies to negative anomalies. The moisture sink anomalies in winter and following spring over Guangdong are usually in-phase. Besides, there exist periodic oscillations with periods of 10 to 15 years in summer and autumn. The positive (negative) anomalies of moisture sinks over Guangdong are due to the intensified (weakened) moisture from the tropical areas being transported to the Southern China, accompanied by an intensified (weakened) moisture convergence.
基金This work was supported by the National Natural Science Foundation of China(Grant No.42030603)the Natural Science Foundation of Yunnan Province(2019FY003006)the Postgraduate Research and Innovation foundation of Yunnan University(2021Z017).
文摘Based on the fifth-generation reanalysis dataset from the European Centre for Medium-Range Weather Forecasts for 1979–2019,we investigated the effects of the circumglobal teleconnection(CGT)on the interdecadal variation of the March atmospheric heat source(AHS)over the Southeast Asian low-latitude highlands(SEALLH).The dominant mode of the March AHS over the SEALLH features a monopole structure with an 8–11-year period.Decadal variations in the AHS make an important contribution to the 11-year low-pass filtered component of the AHS index,whichexplains 54.3%of the total variance.The CGT shows a clear interdecadal variation,which explains 59.3%of the total variance.The March AHS over the SEALLH is significantly related to the CGT on interdecadal timescales.When the CGT is optimally excited by a significant cyclonic vorticity source near northern Africa(i.e.,in its positive phase),the SEALLH is dominated by anomalous southerly winds and ascending motions on the east of the anomalous cyclone.The enhanced advection and upward transfer result in a high-enthalpy air mass that converges into and condenses over the SEALLH,leading to a largerthan-average March AHS over this region.The key physical processes revealed by this diagnostic analysis are supported by numerical experiments.
基金This work was supported by the National Natural Science Foundation of China under Grant No.40035010
文摘Phase delays between two Nino indices-sea surface temperatures in Nino regions 1+2 and 3.4 (1950-2001)-at different time scales are detected by wavelet analysis. Analysis results show that there are two types of period bifurcations in the Nino indices and that period bifurcation points exist only in the region where the wavelet power is small. Interdecadal variation features of phase delays between the two indices vary with different time scales. In the periods of 40-72 months, the phase delay changes its sign in 1977: Nino 1+2 indices are 2-4 months earlier than Nino 3.4 indices before 1977, but 3-6 months later afterwards. In the periods of 20-40 months, however, the phase delay changes its sign in another way: Nino 1+2 indices are 1-4 months earlier before 1980 and during 1986-90, but 1-4 months later during 1980-83 and 1993-2001.
基金State Key Basic Study Program of China("973",2010CB950401)National Science Foundation of China(41275086)
文摘The characteristics and possible physical mechanism of interdecadal variation of the intensity of the South Asian High(SAH) in summer are analyzed using the NCEP/NCAR reanalysis data and NOAA extended reconstructed sea surface temperature(SST) data.The results indicate that a remarkable interdecadal transition occurred in the late1970 s that increased the intensity of SAH,or,an abrupt climate change was around 1978.A comparative analysis between the weak and strong period of the SAH intensity shows that the related anomalous patterns of the atmospheric circulation(including wind field,air temperature field and vertical velocity field) are nearly opposite to each other.The surface latent heat flux anomalies over the plateau(especially in the northwest of the plateau) in summer exert great influence on the interdecadal variation of the SAH intensity and the surface sensible heat flux anomalies play a more important role.Consistent with the interdecadal variation of the SAH intensity,the monopole mode of the tropical Indian Ocean SST in summer also experienced a low to high transition in the late 1970 s.To some extent,this can reveal the impact of the anomalous monopole mode of the tropical Indian Ocean SST in summer on interdecadal variation of the SAH.
基金the Project of Jining Meteorological Bureau(2023JNZL09).
文摘Based on the data of daily precipitation in 11 national ground meteorological observation stations in Jining City from 1981 to 2020,the interdecadal variation,intensity,range and spatial distribution of rainstorms in Jining City were analyzed.The results show that the number of rainstorm days and the total amount of rainstorms in Jining City had significant changes among different decades.There was a continuous upward trend from the 1980s to the early 21 st century and a decrease after the early 21 st century.Rainstorms had distinct seasonal characteristics.They were mainly concentrated in summer,especially in July and August.In terms of spatial distribution,the frequency and intensity of rainstorms in the southeastern regions were significantly higher than those in the northwestern regions.The above results can provide a scientific basis for flood control and disaster reduction in Jining City.
基金Supported by the China Meteorological Administration Special Public Welfare Research Fund(GYHY201506013)
文摘This paper discusses the interdecadal changes of the climate in the tropical Pacific with a focus on the correspond- ing changes in the characteristics of the E1 Nifio-Southern Oscillation (ENSO). Compared with 1979-1999, the whole tropical Pacific climate system, including both the ocean and atmosphere, shifted to a lower variability regime after 1999/2000. Meanwhile, the frequency of ENSO became less regular and was closer to a white noise process. The lead time of the equatorial Pacific's subsurface ocean heat content in preceding ENSO decreased remarkably, in addition to a reduction in the maximum correlation between them. The weakening of the correlation and the shorten- ing of the lead time pose more challenges for ENSO prediction, and is the likely reason behind the decrease in skill with respect to ENSO prediction after 2000. Coincident with the changes in tropical Pacific climate variability, the mean states of the atmospheric and oceanic components also experienced physically coherent changes. The warm an- omaly of SST in the western Pacific and cold anomaly in the eastern Pacific resulted in an increased zonal SST gradi- ent, linked to an enhancement in surface wind stress and strengthening of the Walker circulation, as well as an in- crease in the slope of the thermocline. These changes were consistent with an increase (a decrease) in precipitation and an enhancement (a suppression) of the deep convection in the western (eastern) equatorial Pacific. Possible con- nections between the mean state and ENSO variability and frequency changes in the tropical Pacific are also dis- cussed.
基金the Strategic Priority Research Program of the Chinese Academy of Sciences (XDA20100304)Second Tibetan Plateau Scientific Expedition and Research Program (2019QZKK0208)+1 种基金National Natural Science Foundation of China (41790471)National Key Scientific Research Plan of China (2016YFA0602200)。
文摘We use 71-yr(1948–2018) reanalysis data to investigate the interdecadal variation in the atmospheric heat source(Q1) over the Tibetan Plateau and surrounding Asian monsoon region(AMTP) and its effect on the Northern Hemisphere summer circulation. The large-scale circulation driven by Q1 over the AMTP is characterized by a center of convergent(divergent) or low(high) potential wind function in the lower(upper) troposphere. Q1 over the AMTP shows a clear interdecadal variation(with positive–negative–positive phases) and these three phases correspond to the time periods 1948–1972, 1973–2005, and 2006–2018, respectively. The thermal circulation has a corresponding interdecadal variation as a response to the interdecadal variation in Q1. An enhanced Q1 leads to an increase in the conversion of the total potential energy to non-divergent wind kinetic energy via the divergent wind velocity. The maximum conversion occurs in the tropopause. The primary thermal forcing for Q1 is produced by the intense, large volume precipitation of the summer monsoon. This induces a response in the large-scale circulation, leading to largescale divergence patterns. The synergistic effects of Pacific Decadal Oscillation(PDO) and North Atlantic Multidecadal Oscillation(AMO) influence Q1 over the AMTP, which is ultimately responsible for the modulation of variations in the global divergent circulation. The global divergent circulation in summer is therefore essentially a direct thermodynamic circulation driven by the strong Q1 over the AMTP.
基金Supported by the National Natural Science Foundation of China(41130103 and 40905041)Knowledge Innovation Program of the Chinese Academy of Sciences(KZCX2-YW-QN202)China Global Change Research Program(2012CB955401)
文摘Using the output data of 20 coupled climate models used in IPCC AR4 and observational data from NCEP, the capability of the models to simulate the boreal winter climatology of the East Asian sea level pressure, 850-hPa wind, and surface air temperature; the decadal variations of the East Asian winter mon- soon (EAWM) intensity and EAWM-related circulation, and the interdecadal variations of EAWM-related circulation are systematically evaluated. The results indicate that 16 models can weakly simulate the declin- ing trend of the EAWM in the 1980s. More than half of the models produce relatively reasonable decadal variations of the EAWM-related circulation and the interdecadal differences of EAWM-related circulation between the boreal winters of 1960-1985 and 1986-1998, including the weakened Siberian high, Aleutian low, and East Asian trough, the enhanced Arctic oscillation and North Pacific oscillation, and a deepened polar vortex. It is found that the performance of the multi-selected-model ensemble in reproducing the spatial dis- tribution of the variations is encouraging, although the variational amplitudes are generally smaller than the observations. In addition, it is found that BCCR-BCM2.0, CGCM3.1-T63, CNRM-CM3, CSIRO-MK3.0, GISS-ER, INM-CM3.0, and MRI-CGCM2.3.2 perform well in every aspect.