Reconstruction of a homogeneous temperature and precipitation series for China is crucial for a proper understanding of climate change over China. The annual mean temperature anomaly series of ten regions are found fr...Reconstruction of a homogeneous temperature and precipitation series for China is crucial for a proper understanding of climate change over China. The annual mean temperature anomaly series of ten regions are found from 1880 to 2002. Positive anomalies over China during the 1920s and 1940s are noticeable. The linear trend for the period of 1880-2002 is 0.58℃(100a)-1, which is a little less than the global mean (0.60℃ (100a)-1). 1998 was the warmest year in China since 1880, which is in agreement with the estimation of the global mean temperature. The mean precipitation on a national scale depends mainly on the precipitation over East China. Variations of precipitation in West China show some characteristics which are independent of those in the east. However, the 1920s was the driest decade not only for the east, but also for eastern West China during the last 120 years. The most severe drought on a national scale occurred in 1928. Severe droughts also occurred in 1920, 1922, 1926, and 1929 in North China. It is noticeable that precipitation over East China was generally above normai in the 1950s and 1990s; severe floods along the Yangtze River in 1954, 1991, and 1998 only occurred in these two wet decades. An increasing trend in precipitation variations is observed during the second half of the 20th century in West China, but a similar trend is not found in East China, where the 20- to 40-year periodicities are predominant in the precipitation variations.展开更多
The interdecadal variability of the East Asia summer monsoon during 1951~1999 is analyzed by using two different East Asia monsoon indices. The results agree on the point that the East Asia monsoon has undergone an i...The interdecadal variability of the East Asia summer monsoon during 1951~1999 is analyzed by using two different East Asia monsoon indices. The results agree on the point that the East Asia monsoon has undergone an interdecadal variability in the mid-1970s. The intensity of the East Asia monsoon is weaker after this transition. Moreover the intensity and location of subtropical high that is an important component in East Asia monsoon system also shows interdecadal variation obviously. It is the interdecadal variation in atmospheric circulation that causes the drought over North China and flooding along the middle and lower reaches of the Yangtze River after the mid-1970s.展开更多
The instrumental records of precipitation, including some historical documentary evidence, show that the rainfall in North China during the rainy season (July and August) exhibits an interdecadal variability similar t...The instrumental records of precipitation, including some historical documentary evidence, show that the rainfall in North China during the rainy season (July and August) exhibits an interdecadal variability similar to the Sahelian rainfall. Both these areas exhibited a weak interdecadal rainfall variability prior to the 1950s, and experienced a long-lasting drought since the 1960s, with two rainfall decreasing transitions, one around the year 1965 and another in the late 1970s. NCEP/NCAR reanalysis data are used to analyze the associated changes in atmospheric circulation during the second decrease transition. The changes of local atmospheric circulation at the end of the 1970s, at both lower and upper levels, contribute to the less precipitation in North China and the Sahel.展开更多
Based on the National Centers for Environmental Prediction and National Center for Atmospheric Research (NCEP/NCAR) reanalysis data from 1950-1999, interdecadal variability of the East Asian Summer Monsoon (EASM) ...Based on the National Centers for Environmental Prediction and National Center for Atmospheric Research (NCEP/NCAR) reanalysis data from 1950-1999, interdecadal variability of the East Asian Summer Monsoon (EASM) and its associated atmospheric circulations are investigated. The EASM exhibits a distinct interdecadal variation, with stronger (weaker) summer monsoon maintained from 1950-1964 (1976-1997). In the former case, there is an enhanced Walker cell in the eastern Pacific and an anti-Walker cell in the western Pacific. The associated ascending motion resides in the central Pacific, which flows eastward and westward in the upper troposphere, descending in the eastern and western ends of the Pacific basin. At the same time, an anomalous East Asian Hadley Cell (EAHC) is found to connect the low-latitude and mid-latitude systems in East Asia, which strengthens the EASM. The descending branch of the EAHC lies in the west part of the anti-Walker cell, flowing northward in the lower troposphere and then ascending at the south of Lake Baikal (40°-50°N, 95°- 115°E) before returning to low latitudes in the upper troposphere, thus strengthening the EASM. The relationship between the EASM and SST in the eastern tropical Pacific is also discussed. A possible mechanism is proposed to link interdecadal variation of the EASM with the eastern tropical Pacific SST. A warmer sea surface temperature anomaly (SSTA) therein induces anomalous ascending motion in the eastern Pacific, resulting in a weaker Walker cell, and at the same time inducing an anomalous Walker cell in the western Pacific and an enhanced EAHC, leading to a weaker EASM. Furthermore, the interdecadal variation of summer precipitation over North China is found to be the south of Lake Baikal through enhancing and reducing strongly regulated by the velocity potential over the regional vertical motions.展开更多
The seasonal mean atmospheric precipitable water and water vapor transport over the Haihe River Basin (HRB) in North China with a focus on their interannual to interdecadal variability, and then the relationships of...The seasonal mean atmospheric precipitable water and water vapor transport over the Haihe River Basin (HRB) in North China with a focus on their interannual to interdecadal variability, and then the relationships of the interannual and interdecadal variability of the water cycle over the HRB to the Pacific Decadal Oscillation (PDO) and E1 Nino-Southern Oscillation (ENSO) phenomena were investigated using the observational and National Centers for Environmental Prediction (NCEP) reanalysis data. There was a strong interdecadal variability for the water cycle (such as precipitation and water vapor transport) over the region, with an abrupt change occurring mostly in the mid 1970s. The intensity of the East Asian summer monsoon largely affected the atmospheric water vapor transport. Generally, the net meridional convergence of the water vapor flux over the region was relatively large before 1965, and it declined gradually from then on with a further notable decrease since mid 1970s. Zonal water vapor transport was similar to meridional, but with a much smaller magnitude and no noteworthy turning in the mid 1970s. Results also suggested that the wind field played an important role in the water vapor transport over the HRB before the mid 1960s, and the interdecadal variability of the water cycle (precipitation, water vapor transport, etc.) in the summer was related to the PDO; however, interannual variation of the water vapor transport could also be related to the ENSO phenomena.展开更多
The characteristics of spring precipitation and water vapor transport in South China were analyzed by using observational data and the National Centers for Environmental Prediction (NCEP) reanalysis data. The results ...The characteristics of spring precipitation and water vapor transport in South China were analyzed by using observational data and the National Centers for Environmental Prediction (NCEP) reanalysis data. The results show that, during the spring, each component of the water cycle (precipitation, wind field, specific humidity, water vapor transport, etc.) in South China exhibits a notable interdecadal variability. An abrupt increase in spring precipitation occurred in the early 1970s. During the dry period from 1958 to 1971, a water vapor flux divergence (positive divQ) existed in South China, which may have led to the deficiency in rainfall. However, during the wet period from 1973 to 1989, there was a remarkable water vapor flux convergence (negative divQ) in South China, which may have resulted in the higher rainfall. The interdecadal variability of water vapor transport is closely related to the interdecadal variability of wind fields, although the interdecadal variability of specific humidity also plays a role to some extent, and the interdecadal variability of the zonal water vapor transport contributes much more to the interdecadal variability of spring precipitation than the meridional water vapor transport.展开更多
The observed tropospheric biennial oscillation (TBO) in the western North Pacific (WNP) monsoon region has an interdecadal variability with a period of 40-50 yr. That suggests a weaker effect of the TBO on the Eas...The observed tropospheric biennial oscillation (TBO) in the western North Pacific (WNP) monsoon region has an interdecadal variability with a period of 40-50 yr. That suggests a weaker effect of the TBO on the East Asia followed by a stronger one. A simple analytic model was designed to investigate the mechanism of the interdecadal variability of the TBO. The results indicated that a local TBO air-sea system not only supports the TBO variability in the WNP monsoon region but also produces an interdecadal variability of the TBO.展开更多
Ichthyoplankton samples were collected from Changjiang(Yangtze)River estuary in May 2016.Species composition was studied by DNA barcoding and morphological identification.To make better use of the estuarine biotic int...Ichthyoplankton samples were collected from Changjiang(Yangtze)River estuary in May 2016.Species composition was studied by DNA barcoding and morphological identification.To make better use of the estuarine biotic integrity index(EBI)to assess the ecosystem health of the Changjiang River estuary over the past 30 years,we collected the data of a spring ichthyoplankton survey in the estuary from 1986 to 2016.The EBI was calculated using 12 evaluation metrics,namely,the number of total ichthyoplankton species,estuarine spawning species,estuarine nursery species,estuarine resident species,benthic species,pelagic species,and intolerant species,and the percentages of tolerant species,omnivores,insectivores,carnivores,and natural hybrid species.EBI was calculated in spring in four periods(1986,1999,2007,and 2016)by assigning points of 1,3 or 5,giving values of 50,38,36,and 32,respectively,corresponding to“Good”,“Fair-Poor”,“Fair-Poor”,and“Poor”EBI levels,respectively.Changes in species composition were the primary reason for the significant decreases in EBI between 1986 and 1999,and for the large differences between 1986 and 2007 and between 2007 and 2016.The changes in species composition were influenced by declines in ichthyoplankton species,pollution sensitive species,estuarine nursery species and estuarine sedentary species,and an increase in pollution resistant species.An analysis of EBI interdecadal variability showed that the health status of the Changjiang River estuary ecosystem over the last 30 years first declined and then stabilized at a lower level.This result further settled the argument for urgent protection and restoration of the Changjiang River estuary.展开更多
A key component of the East Asian climate system is seasonally varying monsoon wind. Its interannual and interdecadal variability, as we1l as underlying oceanic processes, is the subject of a recent project completed ...A key component of the East Asian climate system is seasonally varying monsoon wind. Its interannual and interdecadal variability, as we1l as underlying oceanic processes, is the subject of a recent project completed by the Chinese Academy of Sciences. A series of research progress in the areas of monsoon winds, ocean responses, upwelling and productivity has been made and reviewed by this paper.展开更多
In this study, long-term (1777–1997) precipitation data for Seoul, Korea, wetness indices from eastern China, and modern observations are used to identify the interdecadal variability in East Asian summer monsoon p...In this study, long-term (1777–1997) precipitation data for Seoul, Korea, wetness indices from eastern China, and modern observations are used to identify the interdecadal variability in East Asian summer monsoon precipitation over the last 220 years. In the East Asian monsoon region, two long-term timescales of dry–wet transitions for the interdecadal variability and quasi-40-and quasi-60-year timescales are dominant in the 220-year precipitation data of Seoul, as well as in the wetness indices over China. The wet and dry spells between Seoul (southern China) and northern China are out-of-phase (out-of-phase) at the quasi-60-year timescale, and in-phase (out-of-phase by approximately 90 ? before 1900 and in-phase after 1900) at the quasi-40-year timescale. In particular, during the last century, the dominant long-term timescales over East Asia tend to decrease from the quasi-60-year to the quasi-40-year with increasing time. The dominant quasi-40-year and quasi-60-year timescales of the Seoul precipitation in Korea are strongly correlated with these timescales of the northern Pacific Ocean.展开更多
We analyzed interdecadal variability of the South China Sea monsoon and its relationship with latent heat flux in the Pacific Ocean, using NCEP wind field and OAFlux heat flux datasets. Results indicate that South Chi...We analyzed interdecadal variability of the South China Sea monsoon and its relationship with latent heat flux in the Pacific Ocean, using NCEP wind field and OAFlux heat flux datasets. Results indicate that South China Sea monsoon intensity had an obvious interdecadal variation with a decreasing trend. Variability of the monsoon was significantly correlated with latent heat flux in the Kuroshio area and tropical Pacific Ocean. Variability of latent heat flux in the Kuroshio area had an interdecadal increasing trend, while that in the tropical Pacific Ocean had an interdecadal decreasing trend. Latent heat flux variability in these two sea areas was used to establish a latent heat flux index, which had positive correlation with variability of the South China Sea monsoon. When the latent heat flux was 18 months ahead of the South China Sea monsoon, the correlation coefficient maximized at 0.58 (N=612), with a 99.9% significance level of 0.15. Thus, it is suggested that latent heat flux variability in the two areas contributes greatly to interdecadal variability of the South China Sea monsoon.展开更多
By using the simulation results of an AGCM, which had been run from 1945 to 1993 forced by COADS SST, the interdecadal variability of the model atmosphere was investigated and compared with that of NCEP reanalysis dat...By using the simulation results of an AGCM, which had been run from 1945 to 1993 forced by COADS SST, the interdecadal variability of the model atmosphere was investigated and compared with that of NCEP reanalysis data. It was found that, interdecadal variability exists significantly in both the tropical Pacific wind fields and the mid-high latitude atmospheric circulation of the model atmosphere. The tendency of time variation and spatial distributions of the interdecadal variability of the model atmosphere are basically consistent with observation. Relative to the mid-high latitude atmospheric circulation, the simulation of tropical Pacific wind is more satisfying, which suggests that anomalous variation of SST is still the main factor for the interdecadal variability of tropical Pacific wind. It might have more significant influence on the tropical wind than on the mid-high latitude atmosphere. However, there is still obvious difference between the simulation and observation. They could be attributed to both the simulation capability of the model and absence of other factors in the model which are important for the interdecadal climate variation.展开更多
This study investigated interdecadal variability of June–October(JJASO) the large and small warm pools in western Pacific and their association with rainfall anomalies using station and reanalysis data from 1958 to 2...This study investigated interdecadal variability of June–October(JJASO) the large and small warm pools in western Pacific and their association with rainfall anomalies using station and reanalysis data from 1958 to 2008.The results indicated that the large and small warm pools in western Pacific showed an interdecadal shift around 1986.The large warm pool years over western Pacific were found after 1986,whereas the small warm pool years were often seen throughout the periods before 1986.The analysis results also showed that there were obvious interdecadal variability in JJASO rainfall in Southeast China and warm pool in western Pacific.During 1958–1985(small warm pool years),the decrease in rainfall was associated with tropospheric moisture divergence and sinking motion over Southeast China and warm pool in western Pacific.However,during 1986–2008(large warm pool years),the increase in rainfall was associated with tropospheric moisture convergence and ascending motion.Further analysis showed that large warm pool contributed to the increase in surface latent heat fluxes over warm pool in the western Pacific.Thus,there was an increase in the amount of water vapor over Southeast China and warm pool in western Pacific,which contributed to increased rainfall in these regions.展开更多
The present study investigates the persistence of summer sea surface temperature anomalies(SSTAs) in the midlatitude North Pacific and its interdecadal variability. Summer SSTAs can persist for a long time(approxim...The present study investigates the persistence of summer sea surface temperature anomalies(SSTAs) in the midlatitude North Pacific and its interdecadal variability. Summer SSTAs can persist for a long time(approximately 8–14 months)around the Kuroshio Extension(KE) region. This long persistence may be strongly related to atmospheric forcing because the mixed layer is too shallow in the summer to be influenced by the anomalies at depths in the ocean. Changes in atmospheric circulation, latent heat flux, and longwave radiation flux all contribute to the long persistence of summer SSTAs. Among these factors, the longwave radiation flux has a dominant influence. The effects of sensible heat flux and shortwave radiation flux anomalies are not significant. The persistence of summer SSTAs displays pronounced interdecadal variability around the KE region, and the variability is very weak during 1950–82 but becomes stronger during 1983–2016. The changes in atmospheric circulation, latent heat flux, and longwave radiation flux are also responsible for this interdecadal variability because their forcings on the summer SSTAs are sustained for much longer after 1982.展开更多
This paper presents a concise summary of the studies on interdecadal variability of the East Asian winter monsoon (EAWM) from three main perspectives. (1) The EAWM has been significantly affected by global climate...This paper presents a concise summary of the studies on interdecadal variability of the East Asian winter monsoon (EAWM) from three main perspectives. (1) The EAWM has been significantly affected by global climate change. Winter temperature in China has experienced three stages of variations from the beginning of the 1950s: a cold period (from the beginning of the 1950s to the early or mid 1980s), a warm period (from the early or mid 1980s to the early 2000s), and a hiatus period in recent 10 years (starting from 1998). The strength of the EAWM has also varied in three stages: a stronger winter monsoon period (1950 to 1986/87), a weaker period (1986/87 to 2004/05), and a strengthening period (from 2005). (2) Corresponding to the interdecadal variations of the EAWM, the East Asian atmospheric circulation, winter temperature of China, and the occurrence of cold waves over China have all exhibited coherent interdecadal variability. The upper-level zonal circulation was stronger, the mid-tropospheric trough over East Asia was deeper with stronger downdrafts behind the trough, and the Siberian high was stronger during the cold period than during the warm period. (3) The interdecadal variations of the EAWM seem closely related to major modes of variability in the atmospheric circulation and the Pacific sea surface temperature. When the Northern Hemisphere annular mode/Arctic Oscillation and the Pacific decadal oscillation were in negative (positive) phase, the EAWM was stronger (weaker), leading to colder (warmer) temperatures in China. In addition, the negative (positive) phase of the Atlantic multi decadal oscillation coincided with relatively cold (warm) temperatures and stronger (weaker) EAWMs. It is thus inferred that the interdecadal variations in the ocean may be one of the most important natural factors influencing long-term variability in the EAWM, although global warming may have also played a significant role in weakening the EAWM.展开更多
A global atmospheric general circulation model (L9R15 AGCMs) forced by COADS SST was integrated from 1945 to 1993. Interannual and interdecadal variability of the simulated surface wind over the tropical Pacific was a...A global atmospheric general circulation model (L9R15 AGCMs) forced by COADS SST was integrated from 1945 to 1993. Interannual and interdecadal variability of the simulated surface wind over the tropical Pacific was analyzed and shown to agree vey well with observation. Simulation of surface wind over the central-western equatorial Pacific was more successful than that over the eastern Pacific. Zonal propagating feature of interannual variability of the tropical Pacific wind anomalies and its decadal difference were also simulated successfully. The close agreement between simulation and observation on the existence of obvious interdecadal variability of tropical Pacific surface wind attested to the high simulation capability of AGCM.展开更多
By using the multi-taper method(MTM)of singular value decomposition(SVD),this study investigates the interdecadal evolution(10-to 30-year cycle)of precipitation over eastern China from 1951 to 2015 and its relationshi...By using the multi-taper method(MTM)of singular value decomposition(SVD),this study investigates the interdecadal evolution(10-to 30-year cycle)of precipitation over eastern China from 1951 to 2015 and its relationship with the North Pacific sea surface temperature(SST).Two significant interdecadal signals,one with an 11-year cycle and the other with a 23-year cycle,are identified in both the precipitation and SST fields.Results show that the North Pacific SST forcing modulates the precipitation distribution over China through the effects of the Pacific Decadal Oscillation(PDO)-related anomalous Aleutian low on the western Pacific subtropical high(WPSH)and Mongolia high(MH).During the development stage of the PDO cold phase associated with the 11-year cycle,a weakened WPSH and MH increased the precipitation over the Yangtze River Basin,whereas an intensified WPSH and MH caused the enhanced rain band to move northward to North China during the decay stage.During the development stage of the PDO cold phase associated with the 23-year cycle,a weakened WPSH and MH increased the precipitation over North China,whereas an intensified WPSH and the weakened MH increased the precipitation over South China during the decay stage.The 11-year and 23-year variabilities contribute differently to the precipitation variations in the different regions of China,as seen in the 1998flooding case.The 11-year cycle mainly accounts for precipitation increases over the Yangtze River Basin,while the 23-year cycle is responsible for the precipitation increase over Northeast China.These results have important implications for understanding how the PDO modulates the precipitation distribution over China,helping to improve interdecadal climate prediction.展开更多
By utilizing multiple datasets from various sources available for the last 100 years, the existence for the interdecadal change of the winter sea surface temperature(SST) variability in the Kuroshio Extension(KE) ...By utilizing multiple datasets from various sources available for the last 100 years, the existence for the interdecadal change of the winter sea surface temperature(SST) variability in the Kuroshio Extension(KE) region is investigated. And its linkage with the Aleutian Low(AL) activity changes is also discussed. The results find that the KE SST variability exhibits the significant ~6 a and ~10 a oscillations with obvious interdecadal change. The ~6 a oscillation is mainly detected during 1930–1950, which is largely impacted by the anomalous surface heat flux forcing and Ekman heat transport associated with the AL intensity variation. The ~10 a oscillation is most evident after the 1980s, which is predominantly triggered by the AL north-south shift through the bridge of oceanic Rossby waves.展开更多
The climatological characteristics and interdecadal variability of the water vapor transport and budget over the Yellow River-Huaihe River valleys (YH1) and the Yangtze River-Huaihe River valleys (YH2) of East Chi...The climatological characteristics and interdecadal variability of the water vapor transport and budget over the Yellow River-Huaihe River valleys (YH1) and the Yangtze River-Huaihe River valleys (YH2) of East China were investigated in this study,using the NCEP/NCAR monthly mean reanalysis datasets from 1979 to 2009.Changes in the water vapor transport pattern occurred during the late 1990s over YH1 (YH2) that corresponded with the recent interdecadal changes in the eastern China summer precipitation pattern.The net moisture influx in the YH1 increased and the net moisture influx in the YH2 decreased during 2000-2009 in comparison to 1979-1999.Detailed features in the moisture flux and transport changes across the four boundaries were explored.The altered water vapor transport over the two domains can be principally attributed to the additive effects of the changes in the confluent southwesterly moisture flow by the Indian summer monsoon and East Asian summer monsoon (related with the eastward recession of the western Pacific subtropical high).The altered water vapor transport over YH1 was also partly caused by the weakened midlatitude westerlies.展开更多
The vertically averaged temperature (TAV) from surface to 100 m depth of the South China Sea for the period 1959-1988 is analyzed. The results indicate that there is a significant long-term variability from interannua...The vertically averaged temperature (TAV) from surface to 100 m depth of the South China Sea for the period 1959-1988 is analyzed. The results indicate that there is a significant long-term variability from interannual to interdecadal scales in the heat content in the upper ocean. The heat content of the upper ocean of the South China Sea increases evidently in the El Nino year. TAV anomaly in the ocean was negative from the end of 1950's to early 1970's, and then changed to positive. The changes of TAV of the ocean are closely related to ENSO events, the Asian winter monsoon and the tropical atmospheric circulation anomalies.展开更多
基金supported by the China National Key Programme for Developing Basic Sciences(G1998040900)the National Natural Science Foundation of China(Grant No.40205011)
文摘Reconstruction of a homogeneous temperature and precipitation series for China is crucial for a proper understanding of climate change over China. The annual mean temperature anomaly series of ten regions are found from 1880 to 2002. Positive anomalies over China during the 1920s and 1940s are noticeable. The linear trend for the period of 1880-2002 is 0.58℃(100a)-1, which is a little less than the global mean (0.60℃ (100a)-1). 1998 was the warmest year in China since 1880, which is in agreement with the estimation of the global mean temperature. The mean precipitation on a national scale depends mainly on the precipitation over East China. Variations of precipitation in West China show some characteristics which are independent of those in the east. However, the 1920s was the driest decade not only for the east, but also for eastern West China during the last 120 years. The most severe drought on a national scale occurred in 1928. Severe droughts also occurred in 1920, 1922, 1926, and 1929 in North China. It is noticeable that precipitation over East China was generally above normai in the 1950s and 1990s; severe floods along the Yangtze River in 1954, 1991, and 1998 only occurred in these two wet decades. An increasing trend in precipitation variations is observed during the second half of the 20th century in West China, but a similar trend is not found in East China, where the 20- to 40-year periodicities are predominant in the precipitation variations.
基金Natural Science Foundation of China (40365001) Intramural research program of Yunnan University (2002Q014ZH)
文摘The interdecadal variability of the East Asia summer monsoon during 1951~1999 is analyzed by using two different East Asia monsoon indices. The results agree on the point that the East Asia monsoon has undergone an interdecadal variability in the mid-1970s. The intensity of the East Asia monsoon is weaker after this transition. Moreover the intensity and location of subtropical high that is an important component in East Asia monsoon system also shows interdecadal variation obviously. It is the interdecadal variation in atmospheric circulation that causes the drought over North China and flooding along the middle and lower reaches of the Yangtze River after the mid-1970s.
文摘The instrumental records of precipitation, including some historical documentary evidence, show that the rainfall in North China during the rainy season (July and August) exhibits an interdecadal variability similar to the Sahelian rainfall. Both these areas exhibited a weak interdecadal rainfall variability prior to the 1950s, and experienced a long-lasting drought since the 1960s, with two rainfall decreasing transitions, one around the year 1965 and another in the late 1970s. NCEP/NCAR reanalysis data are used to analyze the associated changes in atmospheric circulation during the second decrease transition. The changes of local atmospheric circulation at the end of the 1970s, at both lower and upper levels, contribute to the less precipitation in North China and the Sahel.
文摘Based on the National Centers for Environmental Prediction and National Center for Atmospheric Research (NCEP/NCAR) reanalysis data from 1950-1999, interdecadal variability of the East Asian Summer Monsoon (EASM) and its associated atmospheric circulations are investigated. The EASM exhibits a distinct interdecadal variation, with stronger (weaker) summer monsoon maintained from 1950-1964 (1976-1997). In the former case, there is an enhanced Walker cell in the eastern Pacific and an anti-Walker cell in the western Pacific. The associated ascending motion resides in the central Pacific, which flows eastward and westward in the upper troposphere, descending in the eastern and western ends of the Pacific basin. At the same time, an anomalous East Asian Hadley Cell (EAHC) is found to connect the low-latitude and mid-latitude systems in East Asia, which strengthens the EASM. The descending branch of the EAHC lies in the west part of the anti-Walker cell, flowing northward in the lower troposphere and then ascending at the south of Lake Baikal (40°-50°N, 95°- 115°E) before returning to low latitudes in the upper troposphere, thus strengthening the EASM. The relationship between the EASM and SST in the eastern tropical Pacific is also discussed. A possible mechanism is proposed to link interdecadal variation of the EASM with the eastern tropical Pacific SST. A warmer sea surface temperature anomaly (SSTA) therein induces anomalous ascending motion in the eastern Pacific, resulting in a weaker Walker cell, and at the same time inducing an anomalous Walker cell in the western Pacific and an enhanced EAHC, leading to a weaker EASM. Furthermore, the interdecadal variation of summer precipitation over North China is found to be the south of Lake Baikal through enhancing and reducing strongly regulated by the velocity potential over the regional vertical motions.
基金the Key Knowledge Innovation Project of the Chinese Academy of Sciences (Nos. KZCX2-SW-317and KZCX3-SW-226).
文摘The seasonal mean atmospheric precipitable water and water vapor transport over the Haihe River Basin (HRB) in North China with a focus on their interannual to interdecadal variability, and then the relationships of the interannual and interdecadal variability of the water cycle over the HRB to the Pacific Decadal Oscillation (PDO) and E1 Nino-Southern Oscillation (ENSO) phenomena were investigated using the observational and National Centers for Environmental Prediction (NCEP) reanalysis data. There was a strong interdecadal variability for the water cycle (such as precipitation and water vapor transport) over the region, with an abrupt change occurring mostly in the mid 1970s. The intensity of the East Asian summer monsoon largely affected the atmospheric water vapor transport. Generally, the net meridional convergence of the water vapor flux over the region was relatively large before 1965, and it declined gradually from then on with a further notable decrease since mid 1970s. Zonal water vapor transport was similar to meridional, but with a much smaller magnitude and no noteworthy turning in the mid 1970s. Results also suggested that the wind field played an important role in the water vapor transport over the HRB before the mid 1960s, and the interdecadal variability of the water cycle (precipitation, water vapor transport, etc.) in the summer was related to the PDO; however, interannual variation of the water vapor transport could also be related to the ENSO phenomena.
基金supported by the National Basic Research Program of China (Grant No. 2009CB421406)the National Key Technologies R&D Program of China (Grant No. 2007BAC03A00)
文摘The characteristics of spring precipitation and water vapor transport in South China were analyzed by using observational data and the National Centers for Environmental Prediction (NCEP) reanalysis data. The results show that, during the spring, each component of the water cycle (precipitation, wind field, specific humidity, water vapor transport, etc.) in South China exhibits a notable interdecadal variability. An abrupt increase in spring precipitation occurred in the early 1970s. During the dry period from 1958 to 1971, a water vapor flux divergence (positive divQ) existed in South China, which may have led to the deficiency in rainfall. However, during the wet period from 1973 to 1989, there was a remarkable water vapor flux convergence (negative divQ) in South China, which may have resulted in the higher rainfall. The interdecadal variability of water vapor transport is closely related to the interdecadal variability of wind fields, although the interdecadal variability of specific humidity also plays a role to some extent, and the interdecadal variability of the zonal water vapor transport contributes much more to the interdecadal variability of spring precipitation than the meridional water vapor transport.
基金supported by the National Natural Science Foundation of China (Grant No 40505019)
文摘The observed tropospheric biennial oscillation (TBO) in the western North Pacific (WNP) monsoon region has an interdecadal variability with a period of 40-50 yr. That suggests a weaker effect of the TBO on the East Asia followed by a stronger one. A simple analytic model was designed to investigate the mechanism of the interdecadal variability of the TBO. The results indicated that a local TBO air-sea system not only supports the TBO variability in the WNP monsoon region but also produces an interdecadal variability of the TBO.
基金Supported by the National Key Research and Development Program of China(Nos.2016YFC1402103,2016YFC1402305,2016YFC1402201)the Open Fund of Key Laboratory of Marine Ecological Monitoring and Restoration Technologies,Ministry of Natural Resources(Nos.202007,202010)the Youth fund of East China Sea Bureau,Ministry of Natural Resources(No.201801)。
文摘Ichthyoplankton samples were collected from Changjiang(Yangtze)River estuary in May 2016.Species composition was studied by DNA barcoding and morphological identification.To make better use of the estuarine biotic integrity index(EBI)to assess the ecosystem health of the Changjiang River estuary over the past 30 years,we collected the data of a spring ichthyoplankton survey in the estuary from 1986 to 2016.The EBI was calculated using 12 evaluation metrics,namely,the number of total ichthyoplankton species,estuarine spawning species,estuarine nursery species,estuarine resident species,benthic species,pelagic species,and intolerant species,and the percentages of tolerant species,omnivores,insectivores,carnivores,and natural hybrid species.EBI was calculated in spring in four periods(1986,1999,2007,and 2016)by assigning points of 1,3 or 5,giving values of 50,38,36,and 32,respectively,corresponding to“Good”,“Fair-Poor”,“Fair-Poor”,and“Poor”EBI levels,respectively.Changes in species composition were the primary reason for the significant decreases in EBI between 1986 and 1999,and for the large differences between 1986 and 2007 and between 2007 and 2016.The changes in species composition were influenced by declines in ichthyoplankton species,pollution sensitive species,estuarine nursery species and estuarine sedentary species,and an increase in pollution resistant species.An analysis of EBI interdecadal variability showed that the health status of the Changjiang River estuary ecosystem over the last 30 years first declined and then stabilized at a lower level.This result further settled the argument for urgent protection and restoration of the Changjiang River estuary.
基金Supported by the Knowledge Innovation Program of Chinese Academy of Sciences (No. KZCX2-YW-Q11-02)
文摘A key component of the East Asian climate system is seasonally varying monsoon wind. Its interannual and interdecadal variability, as we1l as underlying oceanic processes, is the subject of a recent project completed by the Chinese Academy of Sciences. A series of research progress in the areas of monsoon winds, ocean responses, upwelling and productivity has been made and reviewed by this paper.
基金supported by the Korea Foundation for International Cooperation of Science and Technology (KICOS) througha grant provided by the Korean Ministry of Science and Technology (MOST) in 2009, and the Grant of NIMR-2009-B-2 at the National Institute of Meteorological Research, Korea Meteorological Administration
文摘In this study, long-term (1777–1997) precipitation data for Seoul, Korea, wetness indices from eastern China, and modern observations are used to identify the interdecadal variability in East Asian summer monsoon precipitation over the last 220 years. In the East Asian monsoon region, two long-term timescales of dry–wet transitions for the interdecadal variability and quasi-40-and quasi-60-year timescales are dominant in the 220-year precipitation data of Seoul, as well as in the wetness indices over China. The wet and dry spells between Seoul (southern China) and northern China are out-of-phase (out-of-phase) at the quasi-60-year timescale, and in-phase (out-of-phase by approximately 90 ? before 1900 and in-phase after 1900) at the quasi-40-year timescale. In particular, during the last century, the dominant long-term timescales over East Asia tend to decrease from the quasi-60-year to the quasi-40-year with increasing time. The dominant quasi-40-year and quasi-60-year timescales of the Seoul precipitation in Korea are strongly correlated with these timescales of the northern Pacific Ocean.
基金Supported by the Knowledge Innovation Program of Chinese Academy of Science (No. KZCX2-YW-Q11-02)
文摘We analyzed interdecadal variability of the South China Sea monsoon and its relationship with latent heat flux in the Pacific Ocean, using NCEP wind field and OAFlux heat flux datasets. Results indicate that South China Sea monsoon intensity had an obvious interdecadal variation with a decreasing trend. Variability of the monsoon was significantly correlated with latent heat flux in the Kuroshio area and tropical Pacific Ocean. Variability of latent heat flux in the Kuroshio area had an interdecadal increasing trend, while that in the tropical Pacific Ocean had an interdecadal decreasing trend. Latent heat flux variability in these two sea areas was used to establish a latent heat flux index, which had positive correlation with variability of the South China Sea monsoon. When the latent heat flux was 18 months ahead of the South China Sea monsoon, the correlation coefficient maximized at 0.58 (N=612), with a 99.9% significance level of 0.15. Thus, it is suggested that latent heat flux variability in the two areas contributes greatly to interdecadal variability of the South China Sea monsoon.
文摘By using the simulation results of an AGCM, which had been run from 1945 to 1993 forced by COADS SST, the interdecadal variability of the model atmosphere was investigated and compared with that of NCEP reanalysis data. It was found that, interdecadal variability exists significantly in both the tropical Pacific wind fields and the mid-high latitude atmospheric circulation of the model atmosphere. The tendency of time variation and spatial distributions of the interdecadal variability of the model atmosphere are basically consistent with observation. Relative to the mid-high latitude atmospheric circulation, the simulation of tropical Pacific wind is more satisfying, which suggests that anomalous variation of SST is still the main factor for the interdecadal variability of tropical Pacific wind. It might have more significant influence on the tropical wind than on the mid-high latitude atmosphere. However, there is still obvious difference between the simulation and observation. They could be attributed to both the simulation capability of the model and absence of other factors in the model which are important for the interdecadal climate variation.
基金supported by the Fund of Key Laboratory of Global Change and Marine-Atmospheric Chemistry (Grant No.GCMAC1301)the National Natural Science Foundation of China (Grant Nos.41175055 and 41230527)and the Special Scientific Research Project for Public Interest (Grant No.GYHY201006021)
文摘This study investigated interdecadal variability of June–October(JJASO) the large and small warm pools in western Pacific and their association with rainfall anomalies using station and reanalysis data from 1958 to 2008.The results indicated that the large and small warm pools in western Pacific showed an interdecadal shift around 1986.The large warm pool years over western Pacific were found after 1986,whereas the small warm pool years were often seen throughout the periods before 1986.The analysis results also showed that there were obvious interdecadal variability in JJASO rainfall in Southeast China and warm pool in western Pacific.During 1958–1985(small warm pool years),the decrease in rainfall was associated with tropospheric moisture divergence and sinking motion over Southeast China and warm pool in western Pacific.However,during 1986–2008(large warm pool years),the increase in rainfall was associated with tropospheric moisture convergence and ascending motion.Further analysis showed that large warm pool contributed to the increase in surface latent heat fluxes over warm pool in the western Pacific.Thus,there was an increase in the amount of water vapor over Southeast China and warm pool in western Pacific,which contributed to increased rainfall in these regions.
基金supported by the National Natural Science Foundation of China (NSFC) (Grant Nos. 41375094 and 41406028)the Basic Scientific Research Fund for National Public Institutes of China (Grant No. GY0215P04)+2 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDA11010102)the NSFC–Shandong Joint Fund for Marine Science Research Centers (Grant No. U1406401)the Foundation for Innovative Research Groups of the NSFC (Grant No. 41421005)
文摘The present study investigates the persistence of summer sea surface temperature anomalies(SSTAs) in the midlatitude North Pacific and its interdecadal variability. Summer SSTAs can persist for a long time(approximately 8–14 months)around the Kuroshio Extension(KE) region. This long persistence may be strongly related to atmospheric forcing because the mixed layer is too shallow in the summer to be influenced by the anomalies at depths in the ocean. Changes in atmospheric circulation, latent heat flux, and longwave radiation flux all contribute to the long persistence of summer SSTAs. Among these factors, the longwave radiation flux has a dominant influence. The effects of sensible heat flux and shortwave radiation flux anomalies are not significant. The persistence of summer SSTAs displays pronounced interdecadal variability around the KE region, and the variability is very weak during 1950–82 but becomes stronger during 1983–2016. The changes in atmospheric circulation, latent heat flux, and longwave radiation flux are also responsible for this interdecadal variability because their forcings on the summer SSTAs are sustained for much longer after 1982.
基金Supported by the National(Key)Basic Research and Development(973)Program of China(2012CB417205 and 2013CB430202)National Natural Science Foundation of China(41130960)+1 种基金China Meteorological Administration Special Public Welfare Research Fund(GYHY201406001)National Science and Technology Support Program of China(2009BAC51B02)
文摘This paper presents a concise summary of the studies on interdecadal variability of the East Asian winter monsoon (EAWM) from three main perspectives. (1) The EAWM has been significantly affected by global climate change. Winter temperature in China has experienced three stages of variations from the beginning of the 1950s: a cold period (from the beginning of the 1950s to the early or mid 1980s), a warm period (from the early or mid 1980s to the early 2000s), and a hiatus period in recent 10 years (starting from 1998). The strength of the EAWM has also varied in three stages: a stronger winter monsoon period (1950 to 1986/87), a weaker period (1986/87 to 2004/05), and a strengthening period (from 2005). (2) Corresponding to the interdecadal variations of the EAWM, the East Asian atmospheric circulation, winter temperature of China, and the occurrence of cold waves over China have all exhibited coherent interdecadal variability. The upper-level zonal circulation was stronger, the mid-tropospheric trough over East Asia was deeper with stronger downdrafts behind the trough, and the Siberian high was stronger during the cold period than during the warm period. (3) The interdecadal variations of the EAWM seem closely related to major modes of variability in the atmospheric circulation and the Pacific sea surface temperature. When the Northern Hemisphere annular mode/Arctic Oscillation and the Pacific decadal oscillation were in negative (positive) phase, the EAWM was stronger (weaker), leading to colder (warmer) temperatures in China. In addition, the negative (positive) phase of the Atlantic multi decadal oscillation coincided with relatively cold (warm) temperatures and stronger (weaker) EAWMs. It is thus inferred that the interdecadal variations in the ocean may be one of the most important natural factors influencing long-term variability in the EAWM, although global warming may have also played a significant role in weakening the EAWM.
文摘A global atmospheric general circulation model (L9R15 AGCMs) forced by COADS SST was integrated from 1945 to 1993. Interannual and interdecadal variability of the simulated surface wind over the tropical Pacific was analyzed and shown to agree vey well with observation. Simulation of surface wind over the central-western equatorial Pacific was more successful than that over the eastern Pacific. Zonal propagating feature of interannual variability of the tropical Pacific wind anomalies and its decadal difference were also simulated successfully. The close agreement between simulation and observation on the existence of obvious interdecadal variability of tropical Pacific surface wind attested to the high simulation capability of AGCM.
基金supported by the National Natural Science Foundation of China(Grant No.42030410)Laoshan Laboratory(No.LSKJ202202403-2)+1 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB40000000)the Startup Foundation for Introducing Talent of NUIST。
文摘By using the multi-taper method(MTM)of singular value decomposition(SVD),this study investigates the interdecadal evolution(10-to 30-year cycle)of precipitation over eastern China from 1951 to 2015 and its relationship with the North Pacific sea surface temperature(SST).Two significant interdecadal signals,one with an 11-year cycle and the other with a 23-year cycle,are identified in both the precipitation and SST fields.Results show that the North Pacific SST forcing modulates the precipitation distribution over China through the effects of the Pacific Decadal Oscillation(PDO)-related anomalous Aleutian low on the western Pacific subtropical high(WPSH)and Mongolia high(MH).During the development stage of the PDO cold phase associated with the 11-year cycle,a weakened WPSH and MH increased the precipitation over the Yangtze River Basin,whereas an intensified WPSH and MH caused the enhanced rain band to move northward to North China during the decay stage.During the development stage of the PDO cold phase associated with the 23-year cycle,a weakened WPSH and MH increased the precipitation over North China,whereas an intensified WPSH and the weakened MH increased the precipitation over South China during the decay stage.The 11-year and 23-year variabilities contribute differently to the precipitation variations in the different regions of China,as seen in the 1998flooding case.The 11-year cycle mainly accounts for precipitation increases over the Yangtze River Basin,while the 23-year cycle is responsible for the precipitation increase over Northeast China.These results have important implications for understanding how the PDO modulates the precipitation distribution over China,helping to improve interdecadal climate prediction.
基金The National Basic Research Program(973 program)of China under contract No.2013CB956203the National Natural Science Foundation of China under contract No.41375063
文摘By utilizing multiple datasets from various sources available for the last 100 years, the existence for the interdecadal change of the winter sea surface temperature(SST) variability in the Kuroshio Extension(KE) region is investigated. And its linkage with the Aleutian Low(AL) activity changes is also discussed. The results find that the KE SST variability exhibits the significant ~6 a and ~10 a oscillations with obvious interdecadal change. The ~6 a oscillation is mainly detected during 1930–1950, which is largely impacted by the anomalous surface heat flux forcing and Ekman heat transport associated with the AL intensity variation. The ~10 a oscillation is most evident after the 1980s, which is predominantly triggered by the AL north-south shift through the bridge of oceanic Rossby waves.
基金supported by the Major State Basic Research Development Program of China (973 Program) under Grant Nos. 2009CB421406 and 2010CB950304Chinese Academy of Sciences under Grant No. KZCX2-YW-Q1-02the National Natural Science Foundation of China under Grant Nos. 40875048 and 40821092
文摘The climatological characteristics and interdecadal variability of the water vapor transport and budget over the Yellow River-Huaihe River valleys (YH1) and the Yangtze River-Huaihe River valleys (YH2) of East China were investigated in this study,using the NCEP/NCAR monthly mean reanalysis datasets from 1979 to 2009.Changes in the water vapor transport pattern occurred during the late 1990s over YH1 (YH2) that corresponded with the recent interdecadal changes in the eastern China summer precipitation pattern.The net moisture influx in the YH1 increased and the net moisture influx in the YH2 decreased during 2000-2009 in comparison to 1979-1999.Detailed features in the moisture flux and transport changes across the four boundaries were explored.The altered water vapor transport over the two domains can be principally attributed to the additive effects of the changes in the confluent southwesterly moisture flow by the Indian summer monsoon and East Asian summer monsoon (related with the eastward recession of the western Pacific subtropical high).The altered water vapor transport over YH1 was also partly caused by the weakened midlatitude westerlies.
文摘The vertically averaged temperature (TAV) from surface to 100 m depth of the South China Sea for the period 1959-1988 is analyzed. The results indicate that there is a significant long-term variability from interannual to interdecadal scales in the heat content in the upper ocean. The heat content of the upper ocean of the South China Sea increases evidently in the El Nino year. TAV anomaly in the ocean was negative from the end of 1950's to early 1970's, and then changed to positive. The changes of TAV of the ocean are closely related to ENSO events, the Asian winter monsoon and the tropical atmospheric circulation anomalies.