Contemporary intervention strategies in Latin America have been mainly based on adaptability and informal interconnection processes based on observing morphogenic evolution in informal settlements.These behaviours wer...Contemporary intervention strategies in Latin America have been mainly based on adaptability and informal interconnection processes based on observing morphogenic evolution in informal settlements.These behaviours were flrst explored by John F.C.Turner in Peru in the 1960s and Jorge Mario Jáuregui since the 2000s,subsequently used as necessary project tools in planning informal contexts.However,empirical evidence reveals that both processes have been approached individually in the interventions,showing a disconnection in the scale produced and in their complementarity of action.The objective of the study is to identify factors that originate the connection and disconnection of the processes of adaptability and interconnection between the intervention and the informal settlement,establishing a hypothesis that the disconnection produced between both processes reduces the effectiveness of the intervention to the detriment of the informal settlement.As a method,variables involved in these processes are analysed in representative models from the United States,Chile,Brazil,Colombia,and South Africa from a formal(state and private programs)and informal(evolutionary phases)perspective.As a result,the research provides new insights into the insertion of adaptability and interconnectedness processes endowed with greater effectiveness in interventions on informal settlements.展开更多
A Malawian perspective on China’s influence,innovation and shared growth In today’s interconnected world,diplomacy,trade,and culture are drawing nations once thought distant closer.A case in point is the growing rel...A Malawian perspective on China’s influence,innovation and shared growth In today’s interconnected world,diplomacy,trade,and culture are drawing nations once thought distant closer.A case in point is the growing relationship between Malawi and China-two geographically and historically distinct countries that are finding powerful common ground and shared aspirations.展开更多
Salt deposits in China predominantly originate from lake deposits,characterized by thin salt beds interspersed with numerous interlayers,collectively termed bedded salt formations.Historically,the solution mining prac...Salt deposits in China predominantly originate from lake deposits,characterized by thin salt beds interspersed with numerous interlayers,collectively termed bedded salt formations.Historically,the solution mining practices have adopted the layered solution mining approach,inspired by coal mining techniques.However,this approach fails to account for the unique challenges of salt solution mining.Practical implementation is inefficient,costs escalate post-construction,and cavern geometry is constrained by salt beds thickness.Additionally,resource loss in abandoned beds and stability risks in adjacent mining zones remain unresolved.This study investigates mining scheme selection for low-grade salt deposits in Huai'an Salt Basin,introducing a continuous solution mining method that traverses multiple interlayers.Through comprehensive analysis of plastic deformation in caverns and surrounding rock,volume shrinkage rates,and economic costs comparing continuous and layered solution mining approaches,the results demonstrate that:(1)In the layered solution mining with horizontal interconnected wells scheme,plastic deformation zones propagate unevenly,posing interlayer connectivity risks.Concurrently,roof subsidence and floor heave destabilize the structure;(2)the continuous solution mining with horizontal interconnected wells scheme reduces plastic deformation zones to 3.4%of cavern volume,with volumetric shrinkage below 17%,markedly improving stability;(3)Economically,the continuous solution mining scheme generates caverns 2.43 times larger than the layered solution mining,slashing unit volume costs to 41.1%while enhancing resource recovery and long-term viability.The continuous method demonstrates distinct economic advantages and achieves higher resource utilization efficiency in solution mining compared to layered mining.Furthermore,its superior cavern stability presents strong potential for large-scale implementation.展开更多
Chongqing,the only municipality directly under the central government in China’s central and western regions,is distinguished by its unique identity as both a“mountain city”and a“river city.”Recognized as the bir...Chongqing,the only municipality directly under the central government in China’s central and western regions,is distinguished by its unique identity as both a“mountain city”and a“river city.”Recognized as the birthplace of Bayu culture,an influential ancient culture native to the Chongqing area,the city boasts a recorded history of more than 3,000 years.As a crucial strategic hub in the development of China’s western regions,Chongqing occupies a pivotal position in the interconnected networks fostered by the Belt and Road Initiative and the Yangtze River Economic Belt.Leveraging the golden waterway of the Yangtze River,the China-Europe Railway Express(Chengdu-Chongqing),and the New International Land-Sea Trade Corridor,Chongqing has emerged as a crucial gateway for China’s opening-up.展开更多
Metal composites produced through the liquid metal dealloying(LMD)process feature an advanced matrix-matrix composite structure,where two metallic materials form a continuous,three-dimensional interconnected network.T...Metal composites produced through the liquid metal dealloying(LMD)process feature an advanced matrix-matrix composite structure,where two metallic materials form a continuous,three-dimensional interconnected network.This study investigates the effects of Ti Cu precursor compositions on dealloying behavior and microstructural evolution in liquid Mg,using Ti_(50)Cu_(50)and Ti_(30)Cu_(70)precursors.The initial microstructure of the precursor significantly influences dealloying kinetics and phase transitions.The single-phase Ti_(50)Cu_(50)precursor exhibits a faster initial dealloying rate due to its homogeneous structure,yet complete dealloying requires 90 min.In contrast,the dualphase Ti_(30)Cu_(70)precursor achieves complete dealloying in 30 min,demonstrating the impact of a higher Cu concentration on accelerating the process kinetics.Additionally,the study explores the coarsening behavior and hardness variations during the LMD process,along with the microstructural characteristics of Mg-Ti composites fabricated from these two precursors.The findings highlight the critical role of precursor composition in tailoring the microstructure and properties of Mg-Ti composites produced through the LMD process,demonstrating its potential for advanced composite material manufacturing.展开更多
In June 2024,the 78th session of the United Nations General Assembly unanimously adopted a resolution proposed by China,designating June 10 of each year as the International Day for Dialogue Among Civilizations.This i...In June 2024,the 78th session of the United Nations General Assembly unanimously adopted a resolution proposed by China,designating June 10 of each year as the International Day for Dialogue Among Civilizations.This initiative aimed to deepen global appreciation for the value of civilizational diversity,promote dialogue and mutual respect,and advance the construction of a more harmonious and interconnected world.展开更多
The competence to distinguish points of view is an essential skill in today’s interconnected and information-rich world.Here’s why it is so important:区分观点的能力是当今互联互通、信息丰富的世界中一项必不可少的技能...The competence to distinguish points of view is an essential skill in today’s interconnected and information-rich world.Here’s why it is so important:区分观点的能力是当今互联互通、信息丰富的世界中一项必不可少的技能。以下是它如此重要的原因。展开更多
This study presents the use of an innovative population-based algorithm called the Sine Cosine Algorithm and its metaheuristic form,Quasi Oppositional Sine Cosine Algorithm,to automatic generation control of a multipl...This study presents the use of an innovative population-based algorithm called the Sine Cosine Algorithm and its metaheuristic form,Quasi Oppositional Sine Cosine Algorithm,to automatic generation control of a multiple-source-based interconnected power system that consists of thermal,gas,and hydro power plants.The Proportional-Integral-Derivative controller,which is utilized for automated generation control in an interconnected hybrid power systemwith aDClink connecting two regions,has been tuned using the proposed optimization technique.An Electric Vehicle is taken into consideration only as an electrical load.The Quasi Oppositional Sine Cosinemethod’s performance and efficacy have been compared to the Sine Cosine Algorithm and optimal output feedback controller tuning performance.Applying the QOSCA optimization technique,which has only been shown in this study in the context of an LFC research thus far,makes this paper unique.The main objective has been used to assess and compare the dynamic performances of the recommended controller along with QOSCA optimisation technic.The resilience of the controller is examined using two different system parameters:B(frequency bias parameter)and R(governor speed regulation).The sensitivity analysis results demonstrate the high reliability of the QOSCA algorithm-based controller.Once optimal controller gains are established for nominal conditions,step load perturbations up to±10%&±25%in the nominal values of the systemparameters and operational load condition do not require adjustment of the controller.Ultimately,a scenario is examined whereby EVs are used for area 1,and a single PID controller is used rather than three.展开更多
In this article, we report the preparation of a three-dimensional(3D) interconnected mesoporous anatase TiO2-SiO2 nanocomposite. The nanocomposite was obtained by using an ordered two-dimensional(2D) hexagonal mes...In this article, we report the preparation of a three-dimensional(3D) interconnected mesoporous anatase TiO2-SiO2 nanocomposite. The nanocomposite was obtained by using an ordered two-dimensional(2D) hexagonal mesoporous anatase 70 TiO2-30 SiO2-950 nanocomposite(crystallized at 950 °C for 2 h) as a precursor, NaO H as an etchant of SiO2 via a "creating mesopores in the pore walls" approach. Our strategy adopts mild conditions of creating pores such as diluted NaO H solution, appropriate temperature and solid/liquid ratio, etc. aiming at ensuring the integrities of mesopores architecture and anatase nanocrystals. XRD, TEM and N2 sorption techniques have been used to systematically investigate the physico-chemical properties of the nanocomposites. The results show that the intrawall mesopores are highly dense and uniform(average pore size 3.6 nm), and highly link the initial mesochannels in a 3D manner while retaining mesostructural integrity. There is no significant change to either crystallinity or size of the anatase nanocrystals before and after creating the intrawall mesopores. The photocatalytic degradation rates of rhodamine B(RhB, 0.303 min^–1) and methylene blue(MB, 0.757 min^–1) dyes on the resultant nanocomposite are very high, which are 5.1 and 5.3 times that of the precursor; even up to 16.5 and 24.1 times that of Degussa P25 photocatalyst, respectively. These results clearly demonstrate that the 3D interconnected mesopores structure plays an overwhelming role to the increments of activities. The 3D mesoporous anatase TiO2-SiO2 nanocomposite exhibits unexpected-high degradation activities to RhB and MB in the mesoporous metal oxide-based materials reported so far. Additionally, the nanocomposite is considerably stable and reusable. We believe that this method would pave the way for the preparation of other 3D highly interconnected mesoporous metal oxide-based materials with ultra-high performance.展开更多
Many officials and planners in Jordan have advocated in the last decade extracting the deep brackish, thermal, and salty groundwater resources, desalinate them, and use them for household water supplies. Generally, su...Many officials and planners in Jordan have advocated in the last decade extracting the deep brackish, thermal, and salty groundwater resources, desalinate them, and use them for household water supplies. Generally, such groundwater is non-renewable and is found in aquifers underlying fresh renewable groundwater bodies building the base support for them. The deep groundwater feeds the thermal mineralized springs issuing along the eastern escarpment of the Dead Sea-Jordan Rift Valley used for therapeutic purposes. In this article, the geologic set-up of the aquifer series underlying the different parts of the country is outlined to illustrate that all such aquifers extending from ground surface to the impermeable granitic Basement Complex are, in the majority of areas, directly or indirectly interconnected and that extractions from any aquifer, shallow or deep, are effectively taken from the same stock of the groundwater body. Hence, it is concluded that advocating the extraction of the deep salty or brackish groundwater is quasi extracting the same amount of groundwater from the overlying, shallower fresh water aquifers. The deep groundwater issues along the eastern escarpment of the Jordan Rift Valley and is used in household supplies, in irrigation and in spas as curative agent. In addition, the intended use of the deep groundwater to be extracted according to the suggested policy in household supplies requiring desalination, which is a costly unnecessary process accompanied with rigorous environmental ramifications of disposing off the desalination brines.展开更多
Validating simulation model is one of the important aspects for modeling and simulation. Some methods of validating model are compared and analyzed. Several typical methods, such as TIC’s inequality coefficient, gray...Validating simulation model is one of the important aspects for modeling and simulation. Some methods of validating model are compared and analyzed. Several typical methods, such as TIC’s inequality coefficient, gray interconnected analysis, direct spectrum estimation, maximum entropy spectral estimation based on Burg or Marple, are chosen and programmed in C language. Some examples by using the program are given. The results show that the program is available and it is best to adopt multi methods for validating models.展开更多
The robust stabilizating control problem for a class of uncertain nonlinear large-scale systems is discussed. Based on the theory of both input/output (I/O) linearization and decentralized variable structure control (...The robust stabilizating control problem for a class of uncertain nonlinear large-scale systems is discussed. Based on the theory of both input/output (I/O) linearization and decentralized variable structure control (VSC),two-level and decentralized variable structure control laws for this kind of systems are presented respectively,which achieve asymptotically stabilization despite the uncertainties and disturbances. At last,sirnulation of the disturbed two-pendulum system is given to illustrate the feasibility of proposed technique.展开更多
A new type controller, fuzzy neural networks sliding mode controller (FNNSMC), is developed for a class of large scale systems with unknown bounds of high order interconnections and disturbances. Although sliding mod...A new type controller, fuzzy neural networks sliding mode controller (FNNSMC), is developed for a class of large scale systems with unknown bounds of high order interconnections and disturbances. Although sliding mode control is simple and insensitive to uncertainties and disturbances, there are two main problems in the sliding mode controller (SMC): control input chattering and the assumption of known bounds of uncertainties and disturbances. The FNNSMC, which incorporates the fuzzy neural networks (FNN) and the SMC, can eliminate the chattering by using the continuous output of the FNN to replace the discontinuous sign term in the SMC. The bounds of uncertainties and disturbances are also not required in the FNNSMC design. The simulation results show that the FNNSMC has more robustness than the SMC.展开更多
Discussions about justice in cross-cultural context give rise to assorted theories. In this paper, issues surrounding communalism as a theory of justice in African culture will be examined with a view to show that its...Discussions about justice in cross-cultural context give rise to assorted theories. In this paper, issues surrounding communalism as a theory of justice in African culture will be examined with a view to show that its principles of care and fellow feeling could be worked out to address the problem of alienation from society characterizing some members of the contemporary African society. Recognition of the social dynamics of human society and relationships is of essence to communalism. As a theory of justice and a world view, communalism describes the human being as "being with others" and what that should be. The expression, "I am because we are, and because we are, I am" is the driving force of the communalistic society. Such a society is characterized by care, love, belongingness, solidarity, and interconnectedness. The aim of this paper is to highlight the manifestations of the idea of justice in communalism using leadership or governance, consensus in decision making, moral rules, punishment for wrong doing, and the equitable distribution of resources. It also aims to show that the communalist idea of justice is integrationist in outlook being constitutive of political and socio-economic elements, which the individual enjoys in practical terms as opposed to the paper rights, which citizens in much of the contemporary societies enjoy. The paper notes that drastic changes have occurred in the socio-economic relations within African societies as a consequence of acculturation subsequent to European colonization and these have had far reaching consequences.展开更多
The central aim of this article is to account for communication’s diverse behavioral aspects: actional, motional, audio-visual, emotional, and intentional and their neural underpinnings. Based on neural substrates,...The central aim of this article is to account for communication’s diverse behavioral aspects: actional, motional, audio-visual, emotional, and intentional and their neural underpinnings. Based on neural substrates, the aforementioned aspects will be illuminated in terms of their interpersonal and socio-cultural dimensions active in human interaction. Culture in this context is to be approached, on the one hand, as a guideline identifying a given group or society in a given neuro-social space and taken, on the other hand, as a universal catalogue of synchronized human behavior. The framework we draw on our lines of reasoning incorporates Mirror Neurons theory and Neural Networks conception, equally referring to an interdisciplinary-grounded perspective.展开更多
The deep aquifers in Jordan contain non-renewable and fossil groundwater and their extraction is quasi a mining process, which ends in the depletion of these resources. Although aquifers in the majority of groundwater...The deep aquifers in Jordan contain non-renewable and fossil groundwater and their extraction is quasi a mining process, which ends in the depletion of these resources. Although aquifers in the majority of groundwater basins in Jordan are vertically and horizontally interconnected stratification in different water quality horizons with generally increasing water salinity with the depth is observed. Many officials and planners advocate the extraction of deep salty and brackish water to be desalinated and used in household, industrial, and agricultural uses. In this article, the quality of the groundwater in the different deep aquifers and areas in Jordan is discussed. The results of this study show that the consequences of the deep groundwater exploitation are not restricted to depletion of the deep aquifers but also that the overlying fresh groundwater will, due to vertical and horizontal interconnectedness of the different aquifers, percolate down to replace the extracted deep groundwater. This will cause the down-percolating fresh groundwater to become salinized in the deep saline aquifers, which means that extracting the deep brackish and saline groundwater is not only an emptying process of the deep groundwater but also it is an emptying process of the fresh groundwater overlying them. The results allow to conclude that any extraction of the deep groundwater in areas lying to the north of Ras en Naqab Escarpment will have damaging impacts on the fresh groundwater in the overlying fresh groundwater aquifers. This article strongly advises not to extract the deep brackish and saline groundwater, but to conserve that groundwater as a base supporting the overlying fresh groundwater resources, and that will help in protecting the thermal mineralized water springs used in spas originating from these deep aquifers. The increasing water needs of the country can be covered by the desalination of seawater at Aqaba, which is the only viable option for Jordan at present and in the coming decades.展开更多
A high strength self-compacting pervious concrete(SCPC) with top-bottom interconnected pores was prepared in this paper. The frost-resisting durability of such SCPC in different deicing salt concentrations(0%, 3%, 5%,...A high strength self-compacting pervious concrete(SCPC) with top-bottom interconnected pores was prepared in this paper. The frost-resisting durability of such SCPC in different deicing salt concentrations(0%, 3%, 5%, 10%, and 20%) was investigated. The mass-loss rate, relative dynamic modulus of elasticity, compressive strength, flexural strength and hydraulic conductivity of SCPC after 300 freeze-thaw cycles were measured to evaluate the frost-resisting durability. In addition, the microstructures of SCPC near the top-bottom interconnected pores after 300 freeze-thaw cycles were observed by SEM. The results show that the high strength SCPC possesses much better frost-resisting durability than traditional pervious concrete(TPC) after 300 freeze-thaw cycles, which can be used in heavy loading roads. The most serious freeze-thaw damage emerges in the SCPC immersed in the 3% of Na Cl solution, while there is no obvious damage in 20% of Na Cl solution. Furthermore, it can be deduced that the high strength SCPC can be used for 100 years in a cold environment.展开更多
The current investigations primarily focus on using advanced suspensions to overcome the tradeo design of ride comfort and handling performance for mining vehicles. It is generally realized by adjusting spring sti nes...The current investigations primarily focus on using advanced suspensions to overcome the tradeo design of ride comfort and handling performance for mining vehicles. It is generally realized by adjusting spring sti ness or damping parameters through active control methods. However, some drawbacks regarding control complexity and uncertain reliability are inevitable for these advanced suspensions. Herein, a novel passive hydraulically interconnected suspension(HIS) system is proposed to achieve an improved ride-handling compromise of mining vehicles. A lumped-mass vehicle model involved with a mechanical–hydraulic coupled system is developed by applying the free-body diagram method. The transfer matrix method is used to derive the impedance of the hydraulic system, and the impedance is integrated to form the equation of motions for a mechanical–hydraulic coupled system. The modal analysis method is employed to obtain the free vibration transmissibilities and force vibration responses under di erent road excitations. A series of frequency characteristic analyses are presented to evaluate the isolation vibration performance between the mining vehicles with the proposed HIS and the conventional suspension. The analysis results prove that the proposed HIS system can e ectively suppress the pitch motion of sprung mass to guarantee the handling performance, and favorably provide soft bounce sti ness to improve the ride comfort. The distribution of dynamic forces between the front and rear wheels is more reasonable, and the vibration decay rate of sprung mass is increased e ectively. This research proposes a new suspension design method that can achieve the enhanced cooperative control of bounce and pitch motion modes to improve the ride comfort and handling performance of mining vehicles as an e ective passive suspension system.展开更多
An advanced fuzzy C-mean (FCM) algorithm was proposed for the efficient regional clustering of multi-nodes interconnected systems. Due to various locational prices and regional coherencies for each node and point, m...An advanced fuzzy C-mean (FCM) algorithm was proposed for the efficient regional clustering of multi-nodes interconnected systems. Due to various locational prices and regional coherencies for each node and point, modified similarity measure was considered to gather nodes having similar characteristics. The similarity measure was needed to contain locafi0nal prices as well as regional coherency. In order to consider the two properties simultaneously, distance measure of fuzzy C-mean algorithm had to be modified. Regional clustering algorithm for interconnected power systems was designed based on the modified fuzzy C-mean algorithm. The proposed algorithm produces proper classification for the interconnected power system and the results are demonstrated in the example of IEEE 39-bus interconnected electricity system.展开更多
This paper considers a fault-tolerant control and vibration suppression problem of flexible spacecraft.The attitude dynamics is modeled by an interconnected system,in which the rigid part and the flexible part are cou...This paper considers a fault-tolerant control and vibration suppression problem of flexible spacecraft.The attitude dynamics is modeled by an interconnected system,in which the rigid part and the flexible part are coupled with each other.Such a model allows us to use the interconnected system approach to analyze the flexible spacecraft.Both distributed and decentralized observer-based fault-tolerant control schemes are developed,under which the closed-loop stability of flexible spacecraft can be ensured by using the cycle-small-gain theorem.Compared with the traditional method,this paper considers the faults occurred not only in the rigid parts,but also in the flexible parts.In addition,the application of the interconnected system approach simplifies the system model of flexible spacecraft,thereby the difficulty of theoretical analysis and engineering practice of fault-tolerant control of flexible spacecraft are greatly reduced.Simulation results show the effectiveness of the proposed methods and the comparison of different fault-tolerant control approach.展开更多
文摘Contemporary intervention strategies in Latin America have been mainly based on adaptability and informal interconnection processes based on observing morphogenic evolution in informal settlements.These behaviours were flrst explored by John F.C.Turner in Peru in the 1960s and Jorge Mario Jáuregui since the 2000s,subsequently used as necessary project tools in planning informal contexts.However,empirical evidence reveals that both processes have been approached individually in the interventions,showing a disconnection in the scale produced and in their complementarity of action.The objective of the study is to identify factors that originate the connection and disconnection of the processes of adaptability and interconnection between the intervention and the informal settlement,establishing a hypothesis that the disconnection produced between both processes reduces the effectiveness of the intervention to the detriment of the informal settlement.As a method,variables involved in these processes are analysed in representative models from the United States,Chile,Brazil,Colombia,and South Africa from a formal(state and private programs)and informal(evolutionary phases)perspective.As a result,the research provides new insights into the insertion of adaptability and interconnectedness processes endowed with greater effectiveness in interventions on informal settlements.
文摘A Malawian perspective on China’s influence,innovation and shared growth In today’s interconnected world,diplomacy,trade,and culture are drawing nations once thought distant closer.A case in point is the growing relationship between Malawi and China-two geographically and historically distinct countries that are finding powerful common ground and shared aspirations.
基金supported by the National Natural Science Foundation of China(Nos.42177124 and 41877277)Open Research Fund of State Key Laboratory of Geomechanics and Geotechnical Engineering,Institute of Rock and Soil Mechanics,Chinese Academy of Sciences(No.SKLGME022011)+2 种基金Fundamental Research Funds for the Central Universities(No.2024KYJD1011)Frontier Technologies R&D Program of Jiangsu(No.BF2024056)the Graduate Innovation Program of China University of Mining and Technology(No.KYCX25_3085)。
文摘Salt deposits in China predominantly originate from lake deposits,characterized by thin salt beds interspersed with numerous interlayers,collectively termed bedded salt formations.Historically,the solution mining practices have adopted the layered solution mining approach,inspired by coal mining techniques.However,this approach fails to account for the unique challenges of salt solution mining.Practical implementation is inefficient,costs escalate post-construction,and cavern geometry is constrained by salt beds thickness.Additionally,resource loss in abandoned beds and stability risks in adjacent mining zones remain unresolved.This study investigates mining scheme selection for low-grade salt deposits in Huai'an Salt Basin,introducing a continuous solution mining method that traverses multiple interlayers.Through comprehensive analysis of plastic deformation in caverns and surrounding rock,volume shrinkage rates,and economic costs comparing continuous and layered solution mining approaches,the results demonstrate that:(1)In the layered solution mining with horizontal interconnected wells scheme,plastic deformation zones propagate unevenly,posing interlayer connectivity risks.Concurrently,roof subsidence and floor heave destabilize the structure;(2)the continuous solution mining with horizontal interconnected wells scheme reduces plastic deformation zones to 3.4%of cavern volume,with volumetric shrinkage below 17%,markedly improving stability;(3)Economically,the continuous solution mining scheme generates caverns 2.43 times larger than the layered solution mining,slashing unit volume costs to 41.1%while enhancing resource recovery and long-term viability.The continuous method demonstrates distinct economic advantages and achieves higher resource utilization efficiency in solution mining compared to layered mining.Furthermore,its superior cavern stability presents strong potential for large-scale implementation.
文摘Chongqing,the only municipality directly under the central government in China’s central and western regions,is distinguished by its unique identity as both a“mountain city”and a“river city.”Recognized as the birthplace of Bayu culture,an influential ancient culture native to the Chongqing area,the city boasts a recorded history of more than 3,000 years.As a crucial strategic hub in the development of China’s western regions,Chongqing occupies a pivotal position in the interconnected networks fostered by the Belt and Road Initiative and the Yangtze River Economic Belt.Leveraging the golden waterway of the Yangtze River,the China-Europe Railway Express(Chengdu-Chongqing),and the New International Land-Sea Trade Corridor,Chongqing has emerged as a crucial gateway for China’s opening-up.
基金supported by the National Research Foundation of Korea(NRF)grants funded by the Korea government(MSIT)(Nos.RS-2024–00351052 and RS-2024–00450561)。
文摘Metal composites produced through the liquid metal dealloying(LMD)process feature an advanced matrix-matrix composite structure,where two metallic materials form a continuous,three-dimensional interconnected network.This study investigates the effects of Ti Cu precursor compositions on dealloying behavior and microstructural evolution in liquid Mg,using Ti_(50)Cu_(50)and Ti_(30)Cu_(70)precursors.The initial microstructure of the precursor significantly influences dealloying kinetics and phase transitions.The single-phase Ti_(50)Cu_(50)precursor exhibits a faster initial dealloying rate due to its homogeneous structure,yet complete dealloying requires 90 min.In contrast,the dualphase Ti_(30)Cu_(70)precursor achieves complete dealloying in 30 min,demonstrating the impact of a higher Cu concentration on accelerating the process kinetics.Additionally,the study explores the coarsening behavior and hardness variations during the LMD process,along with the microstructural characteristics of Mg-Ti composites fabricated from these two precursors.The findings highlight the critical role of precursor composition in tailoring the microstructure and properties of Mg-Ti composites produced through the LMD process,demonstrating its potential for advanced composite material manufacturing.
文摘In June 2024,the 78th session of the United Nations General Assembly unanimously adopted a resolution proposed by China,designating June 10 of each year as the International Day for Dialogue Among Civilizations.This initiative aimed to deepen global appreciation for the value of civilizational diversity,promote dialogue and mutual respect,and advance the construction of a more harmonious and interconnected world.
文摘The competence to distinguish points of view is an essential skill in today’s interconnected and information-rich world.Here’s why it is so important:区分观点的能力是当今互联互通、信息丰富的世界中一项必不可少的技能。以下是它如此重要的原因。
文摘This study presents the use of an innovative population-based algorithm called the Sine Cosine Algorithm and its metaheuristic form,Quasi Oppositional Sine Cosine Algorithm,to automatic generation control of a multiple-source-based interconnected power system that consists of thermal,gas,and hydro power plants.The Proportional-Integral-Derivative controller,which is utilized for automated generation control in an interconnected hybrid power systemwith aDClink connecting two regions,has been tuned using the proposed optimization technique.An Electric Vehicle is taken into consideration only as an electrical load.The Quasi Oppositional Sine Cosinemethod’s performance and efficacy have been compared to the Sine Cosine Algorithm and optimal output feedback controller tuning performance.Applying the QOSCA optimization technique,which has only been shown in this study in the context of an LFC research thus far,makes this paper unique.The main objective has been used to assess and compare the dynamic performances of the recommended controller along with QOSCA optimisation technic.The resilience of the controller is examined using two different system parameters:B(frequency bias parameter)and R(governor speed regulation).The sensitivity analysis results demonstrate the high reliability of the QOSCA algorithm-based controller.Once optimal controller gains are established for nominal conditions,step load perturbations up to±10%&±25%in the nominal values of the systemparameters and operational load condition do not require adjustment of the controller.Ultimately,a scenario is examined whereby EVs are used for area 1,and a single PID controller is used rather than three.
基金supported by the National Natural Science Foundation of China(21373056)the Science and Technology Commission of Shanghai Municipality(13DZ2275200)~~
文摘In this article, we report the preparation of a three-dimensional(3D) interconnected mesoporous anatase TiO2-SiO2 nanocomposite. The nanocomposite was obtained by using an ordered two-dimensional(2D) hexagonal mesoporous anatase 70 TiO2-30 SiO2-950 nanocomposite(crystallized at 950 °C for 2 h) as a precursor, NaO H as an etchant of SiO2 via a "creating mesopores in the pore walls" approach. Our strategy adopts mild conditions of creating pores such as diluted NaO H solution, appropriate temperature and solid/liquid ratio, etc. aiming at ensuring the integrities of mesopores architecture and anatase nanocrystals. XRD, TEM and N2 sorption techniques have been used to systematically investigate the physico-chemical properties of the nanocomposites. The results show that the intrawall mesopores are highly dense and uniform(average pore size 3.6 nm), and highly link the initial mesochannels in a 3D manner while retaining mesostructural integrity. There is no significant change to either crystallinity or size of the anatase nanocrystals before and after creating the intrawall mesopores. The photocatalytic degradation rates of rhodamine B(RhB, 0.303 min^–1) and methylene blue(MB, 0.757 min^–1) dyes on the resultant nanocomposite are very high, which are 5.1 and 5.3 times that of the precursor; even up to 16.5 and 24.1 times that of Degussa P25 photocatalyst, respectively. These results clearly demonstrate that the 3D interconnected mesopores structure plays an overwhelming role to the increments of activities. The 3D mesoporous anatase TiO2-SiO2 nanocomposite exhibits unexpected-high degradation activities to RhB and MB in the mesoporous metal oxide-based materials reported so far. Additionally, the nanocomposite is considerably stable and reusable. We believe that this method would pave the way for the preparation of other 3D highly interconnected mesoporous metal oxide-based materials with ultra-high performance.
文摘Many officials and planners in Jordan have advocated in the last decade extracting the deep brackish, thermal, and salty groundwater resources, desalinate them, and use them for household water supplies. Generally, such groundwater is non-renewable and is found in aquifers underlying fresh renewable groundwater bodies building the base support for them. The deep groundwater feeds the thermal mineralized springs issuing along the eastern escarpment of the Dead Sea-Jordan Rift Valley used for therapeutic purposes. In this article, the geologic set-up of the aquifer series underlying the different parts of the country is outlined to illustrate that all such aquifers extending from ground surface to the impermeable granitic Basement Complex are, in the majority of areas, directly or indirectly interconnected and that extractions from any aquifer, shallow or deep, are effectively taken from the same stock of the groundwater body. Hence, it is concluded that advocating the extraction of the deep salty or brackish groundwater is quasi extracting the same amount of groundwater from the overlying, shallower fresh water aquifers. The deep groundwater issues along the eastern escarpment of the Jordan Rift Valley and is used in household supplies, in irrigation and in spas as curative agent. In addition, the intended use of the deep groundwater to be extracted according to the suggested policy in household supplies requiring desalination, which is a costly unnecessary process accompanied with rigorous environmental ramifications of disposing off the desalination brines.
文摘Validating simulation model is one of the important aspects for modeling and simulation. Some methods of validating model are compared and analyzed. Several typical methods, such as TIC’s inequality coefficient, gray interconnected analysis, direct spectrum estimation, maximum entropy spectral estimation based on Burg or Marple, are chosen and programmed in C language. Some examples by using the program are given. The results show that the program is available and it is best to adopt multi methods for validating models.
文摘The robust stabilizating control problem for a class of uncertain nonlinear large-scale systems is discussed. Based on the theory of both input/output (I/O) linearization and decentralized variable structure control (VSC),two-level and decentralized variable structure control laws for this kind of systems are presented respectively,which achieve asymptotically stabilization despite the uncertainties and disturbances. At last,sirnulation of the disturbed two-pendulum system is given to illustrate the feasibility of proposed technique.
文摘A new type controller, fuzzy neural networks sliding mode controller (FNNSMC), is developed for a class of large scale systems with unknown bounds of high order interconnections and disturbances. Although sliding mode control is simple and insensitive to uncertainties and disturbances, there are two main problems in the sliding mode controller (SMC): control input chattering and the assumption of known bounds of uncertainties and disturbances. The FNNSMC, which incorporates the fuzzy neural networks (FNN) and the SMC, can eliminate the chattering by using the continuous output of the FNN to replace the discontinuous sign term in the SMC. The bounds of uncertainties and disturbances are also not required in the FNNSMC design. The simulation results show that the FNNSMC has more robustness than the SMC.
文摘Discussions about justice in cross-cultural context give rise to assorted theories. In this paper, issues surrounding communalism as a theory of justice in African culture will be examined with a view to show that its principles of care and fellow feeling could be worked out to address the problem of alienation from society characterizing some members of the contemporary African society. Recognition of the social dynamics of human society and relationships is of essence to communalism. As a theory of justice and a world view, communalism describes the human being as "being with others" and what that should be. The expression, "I am because we are, and because we are, I am" is the driving force of the communalistic society. Such a society is characterized by care, love, belongingness, solidarity, and interconnectedness. The aim of this paper is to highlight the manifestations of the idea of justice in communalism using leadership or governance, consensus in decision making, moral rules, punishment for wrong doing, and the equitable distribution of resources. It also aims to show that the communalist idea of justice is integrationist in outlook being constitutive of political and socio-economic elements, which the individual enjoys in practical terms as opposed to the paper rights, which citizens in much of the contemporary societies enjoy. The paper notes that drastic changes have occurred in the socio-economic relations within African societies as a consequence of acculturation subsequent to European colonization and these have had far reaching consequences.
文摘The central aim of this article is to account for communication’s diverse behavioral aspects: actional, motional, audio-visual, emotional, and intentional and their neural underpinnings. Based on neural substrates, the aforementioned aspects will be illuminated in terms of their interpersonal and socio-cultural dimensions active in human interaction. Culture in this context is to be approached, on the one hand, as a guideline identifying a given group or society in a given neuro-social space and taken, on the other hand, as a universal catalogue of synchronized human behavior. The framework we draw on our lines of reasoning incorporates Mirror Neurons theory and Neural Networks conception, equally referring to an interdisciplinary-grounded perspective.
文摘The deep aquifers in Jordan contain non-renewable and fossil groundwater and their extraction is quasi a mining process, which ends in the depletion of these resources. Although aquifers in the majority of groundwater basins in Jordan are vertically and horizontally interconnected stratification in different water quality horizons with generally increasing water salinity with the depth is observed. Many officials and planners advocate the extraction of deep salty and brackish water to be desalinated and used in household, industrial, and agricultural uses. In this article, the quality of the groundwater in the different deep aquifers and areas in Jordan is discussed. The results of this study show that the consequences of the deep groundwater exploitation are not restricted to depletion of the deep aquifers but also that the overlying fresh groundwater will, due to vertical and horizontal interconnectedness of the different aquifers, percolate down to replace the extracted deep groundwater. This will cause the down-percolating fresh groundwater to become salinized in the deep saline aquifers, which means that extracting the deep brackish and saline groundwater is not only an emptying process of the deep groundwater but also it is an emptying process of the fresh groundwater overlying them. The results allow to conclude that any extraction of the deep groundwater in areas lying to the north of Ras en Naqab Escarpment will have damaging impacts on the fresh groundwater in the overlying fresh groundwater aquifers. This article strongly advises not to extract the deep brackish and saline groundwater, but to conserve that groundwater as a base supporting the overlying fresh groundwater resources, and that will help in protecting the thermal mineralized water springs used in spas originating from these deep aquifers. The increasing water needs of the country can be covered by the desalination of seawater at Aqaba, which is the only viable option for Jordan at present and in the coming decades.
基金Funded by the National Natural Science Foundation of China(No.51878081).
文摘A high strength self-compacting pervious concrete(SCPC) with top-bottom interconnected pores was prepared in this paper. The frost-resisting durability of such SCPC in different deicing salt concentrations(0%, 3%, 5%, 10%, and 20%) was investigated. The mass-loss rate, relative dynamic modulus of elasticity, compressive strength, flexural strength and hydraulic conductivity of SCPC after 300 freeze-thaw cycles were measured to evaluate the frost-resisting durability. In addition, the microstructures of SCPC near the top-bottom interconnected pores after 300 freeze-thaw cycles were observed by SEM. The results show that the high strength SCPC possesses much better frost-resisting durability than traditional pervious concrete(TPC) after 300 freeze-thaw cycles, which can be used in heavy loading roads. The most serious freeze-thaw damage emerges in the SCPC immersed in the 3% of Na Cl solution, while there is no obvious damage in 20% of Na Cl solution. Furthermore, it can be deduced that the high strength SCPC can be used for 100 years in a cold environment.
基金Supported by National Natural Science Foundation of China(Grant Nos.51805155,51675152)Foundation for Innovative Research Groups of National Natural Science Foundation of China(Grant No.51621004)Open Fund in the State Key Laboratory of Advanced Design and Manufacture for Vehicle Body(Grant No.71575005)
文摘The current investigations primarily focus on using advanced suspensions to overcome the tradeo design of ride comfort and handling performance for mining vehicles. It is generally realized by adjusting spring sti ness or damping parameters through active control methods. However, some drawbacks regarding control complexity and uncertain reliability are inevitable for these advanced suspensions. Herein, a novel passive hydraulically interconnected suspension(HIS) system is proposed to achieve an improved ride-handling compromise of mining vehicles. A lumped-mass vehicle model involved with a mechanical–hydraulic coupled system is developed by applying the free-body diagram method. The transfer matrix method is used to derive the impedance of the hydraulic system, and the impedance is integrated to form the equation of motions for a mechanical–hydraulic coupled system. The modal analysis method is employed to obtain the free vibration transmissibilities and force vibration responses under di erent road excitations. A series of frequency characteristic analyses are presented to evaluate the isolation vibration performance between the mining vehicles with the proposed HIS and the conventional suspension. The analysis results prove that the proposed HIS system can e ectively suppress the pitch motion of sprung mass to guarantee the handling performance, and favorably provide soft bounce sti ness to improve the ride comfort. The distribution of dynamic forces between the front and rear wheels is more reasonable, and the vibration decay rate of sprung mass is increased e ectively. This research proposes a new suspension design method that can achieve the enhanced cooperative control of bounce and pitch motion modes to improve the ride comfort and handling performance of mining vehicles as an e ective passive suspension system.
基金Work supported by the Second Stage of Brain Korea 21 ProjectsWork(2010-0020163) supported by Priority Research Centers Program through the National Research Foundation (NRF) funded by the Ministry of Education,Science and Technology of Korea
文摘An advanced fuzzy C-mean (FCM) algorithm was proposed for the efficient regional clustering of multi-nodes interconnected systems. Due to various locational prices and regional coherencies for each node and point, modified similarity measure was considered to gather nodes having similar characteristics. The similarity measure was needed to contain locafi0nal prices as well as regional coherency. In order to consider the two properties simultaneously, distance measure of fuzzy C-mean algorithm had to be modified. Regional clustering algorithm for interconnected power systems was designed based on the modified fuzzy C-mean algorithm. The proposed algorithm produces proper classification for the interconnected power system and the results are demonstrated in the example of IEEE 39-bus interconnected electricity system.
基金supported by National Natural Science Foundation of China(Nos.61622304,61773201)Natural Science Foundation of Jiangsu Province,China(No.BK20160035)Fundamental Research Funds for the Central Universities,China(No.NE2015002)。
文摘This paper considers a fault-tolerant control and vibration suppression problem of flexible spacecraft.The attitude dynamics is modeled by an interconnected system,in which the rigid part and the flexible part are coupled with each other.Such a model allows us to use the interconnected system approach to analyze the flexible spacecraft.Both distributed and decentralized observer-based fault-tolerant control schemes are developed,under which the closed-loop stability of flexible spacecraft can be ensured by using the cycle-small-gain theorem.Compared with the traditional method,this paper considers the faults occurred not only in the rigid parts,but also in the flexible parts.In addition,the application of the interconnected system approach simplifies the system model of flexible spacecraft,thereby the difficulty of theoretical analysis and engineering practice of fault-tolerant control of flexible spacecraft are greatly reduced.Simulation results show the effectiveness of the proposed methods and the comparison of different fault-tolerant control approach.