期刊文献+
共找到8,438篇文章
< 1 2 250 >
每页显示 20 50 100
When Communication Networks Meet Federated Learning for Intelligence Interconnecting:A Comprehensive Survey and Future Perspective
1
作者 Sha Zongxuan Huo Ru +3 位作者 Sun Chuang Wang Shuo Huang Tao F.Richard Yu 《China Communications》 2025年第7期74-94,共21页
With the rapid development of network technologies,a large number of deployed edge devices and information systems generate massive amounts of data which provide good support for the advancement of data-driven intelli... With the rapid development of network technologies,a large number of deployed edge devices and information systems generate massive amounts of data which provide good support for the advancement of data-driven intelligent models.However,these data often contain sensitive information of users.Federated learning(FL),as a privacy preservation machine learning setting,allows users to obtain a well-trained model without sending the privacy-sensitive local data to the central server.Despite the promising prospect of FL,several significant research challenges need to be addressed before widespread deployment,including network resource allocation,model security,model convergence,etc.In this paper,we first provide a brief survey on some of these works that have been done on FL and discuss the motivations of the Communication Networks(CNs)and FL to mutually enable each other.We analyze the support of network technologies for FL,which requires frequent communication and emphasizes security,as well as the studies on the intelligence of many network scenarios and the improvement of network performance and security by the methods based on FL.At last,some challenges and broader perspectives are explored. 展开更多
关键词 communication networks federated learning intelligence interconnecting machine learning privacy preservation
在线阅读 下载PDF
3D laser structuring of supermetalphobic microstructures inside elastomer for multilayer high-density interconnect soft electronics
2
作者 Chengjun Zhang Qing Yang +5 位作者 Haoyu Li Zexiang Luo Yu Lu Jialiang Zhang Cheng Li Feng Chen 《International Journal of Extreme Manufacturing》 2025年第3期337-348,共12页
High-density interconnect(HDI)soft electronics that can integrate multiple individual functions into one miniaturized monolithic system is promising for applications related to smart healthcare,soft robotics,and human... High-density interconnect(HDI)soft electronics that can integrate multiple individual functions into one miniaturized monolithic system is promising for applications related to smart healthcare,soft robotics,and human-machine interactions.However,despite the recent advances,the development of three-dimensional(3D)soft electronics with both high resolution and high integration is still challenging because of the lack of efficient manufacturing methods to guarantee interlayer alignment of the high-density vias and reliable interlayer electrical conductivity.Here,an advanced 3D laser printing pathway,based on femtosecond laser direct writing(FLDW),is demonstrated for preparing liquid metal(LM)-based any layer HDI soft electronics.FLDW technology,with the characteristics of high spatial resolution and high precision,allows the maskless fabrication of high-resolution embedded LM microchannels and high-density vertical interconnect accesses for 3D integrated circuits.High-aspect-ratio blind/through LM microstructures are formed inside the elastomer due to the supermetalphobicity induced during laser ablation.The LM-based HDI circuit featuring high resolution(~1.5μm)and high integration(10-layer electrical interconnection)is achieved for customized soft electronics,including various customized multilayer passive electric components,soft multilayer circuit,and cross-scale multimode sensors.The 3D laser printing method provides a versatile approach for developing chip-level soft electronics. 展开更多
关键词 3D soft electronics liquid metal high-density interconnection femtosecond laser direct writing supermetalphobicity
在线阅读 下载PDF
DSP-free coherent receivers in frequency-synchronous optical networks for next-generation data center interconnects
3
作者 Lei Liu Feng Liu +2 位作者 Cheng Peng Bo Xue William Shieh 《Advanced Photonics Nexus》 2025年第3期141-148,共8页
Propelled by the rise of artificial intelligence,cloud services,and data center applications,next-generation,low-power,local-oscillator-less,digital signal processing(DSP)-free,and short-reach coherent optical communi... Propelled by the rise of artificial intelligence,cloud services,and data center applications,next-generation,low-power,local-oscillator-less,digital signal processing(DSP)-free,and short-reach coherent optical communication has evolved into an increasingly prominent area of research in recent years.Here,we demonstrate DSP-free coherent optical transmission by analog signal processing in frequency synchronous optical network(FSON)architecture,which supports polarization multiplexing and higher-order modulation formats.The FSON architecture that allows the numerous laser sources of optical transceivers within a data center can be quasi-synchronized by means of a tree-distributed homology architecture.In conjunction with our proposed pilot-tone assisted Costas loop for an analog coherent receiver,we achieve a record dual-polarization 224-Gb/s 16-QAM 5-km mismatch transmission with reset-free carrier phase recovery in the optical domain.Our proposed DSP-free analog coherent detection system based on the FSON makes it a promising solution for next-generation,low-power,and high-capacity coherent data center interconnects. 展开更多
关键词 digital signal processing-free data center interconnect frequency synchronous optical network analog signal processing
在线阅读 下载PDF
Machine learning facilitates the development of interconnecting layers for perovskite/silicon heterojunction tandem solar cells with proof-of-concept efficiency>38%
4
作者 Xuejiao Wang Guanlan Chen +12 位作者 Ying Liu Guangyi Wang Wei Han Jin Wang Pengfei Liu Jilei Wang Shaojuan Bao Bo Yu Ying Liu Xinliang Chen Shengzhi Xu Ying Zhao Xiaodan Zhang 《Journal of Semiconductors》 2025年第11期77-86,共10页
As the development of single-junction solar cells reaches a bottleneck,tandem solar cells have emerged as a critical pathway to further enhance power conversion efficiency.Among them,monolithic perovskite/silicon hete... As the development of single-junction solar cells reaches a bottleneck,tandem solar cells have emerged as a critical pathway to further enhance power conversion efficiency.Among them,monolithic perovskite/silicon heterojunction tandem solar cells are currently the fastest-growing technology,achieving the highest efficiencies at relatively low costs.The intercon-necting layer,which connects the two sub-cells,plays a crucial role in tandem cell performance.It collects electrons and holes from the respective sub-cells and facilitates recombination and tunneling at the interface.Therefore,the properties of the inter-connecting layer are pivotal to the overall device performance.In this work,we applied statistical analysis and machine learn-ing algorithms to systematically analyze the interconnecting layer.A comprehensive dataset on interconnecting layer parame-ters was established,and predictive modeling was performed using Lasso linear regression,random forest,and multilayer per-ceptron(a type of neural network).The analysis revealed key feature importance for experimental parameters,providing valu-able insights into the application of interconnecting layers in perovskite/silicon heterojunction tandem solar cells.The final opti-mized interconnecting layer can achieve a proof-of-concept efficiency of 38.17%,providing guidance and direction for the devel-opment of monolithic perovskite/silicon tandem solar cells. 展开更多
关键词 perovskite/silicon heterojunction tandem solar cells interconnecting layer machine learning
在线阅读 下载PDF
Enhanced interconnection and damping assignment passivity-based control for PM synchronous motors
5
作者 Mohamed Azzi Lotfi Baghli +2 位作者 Ehsan Jamshidpour Phatiphat Thounthong Noureddine Takorabet 《Global Energy Interconnection》 2025年第4期657-667,共11页
Permanent Magnet Synchronous Motors(PMSMs)are widely employed in high-performance drive applications due to their superior efficiency and dynamic capabilities.However,their control remains challenging owing to nonline... Permanent Magnet Synchronous Motors(PMSMs)are widely employed in high-performance drive applications due to their superior efficiency and dynamic capabilities.However,their control remains challenging owing to nonlinear dynamics,parameter variations,and unmeasurable external disturbances,particularly load torquefluctuations.This study proposes an enhanced Interconnection and Damp-ing Assignment Passivity-Based Control(IDA-PBC)scheme,formulated within the port-controlled Hamiltonian(PCH)framework,to address these limitations.A nonlinear disturbance observer is embedded to estimate and compensate,in real time,for lumped mis-matched disturbances arising from parameter uncertainties and external loads.Additionally,aflatness-based control strategy is employed to generate the desired current references within the nonlinear drive system,ensuring accurate tracking of time-varying speed commands.This integrated approach preserves the system’s energy-based structure,enabling systematic stability analysis while enhancing robustness.The proposed control architecture also maintains low complexity with a limited number of tunable parameters,facilitating practical implementation.Simulation and experimental results under various operating conditions demonstrate the effectiveness and robustness of the proposed method.Comparative analysis with conventional proportional-integral(PI)control and standard IDA-PBC strategies confirms its capability to handle disturbances and maintain dynamic performance. 展开更多
关键词 Hamiltonian energy control interconnection and damping assignment passivity-based control IDA-PBC Motor drives Permanent-magnet synchronous machine(PMSM) Speed control
在线阅读 下载PDF
Design and conductivity optimization of La_(0.3)Sr_(0.7)TiO_(3)/L_(a0.8)Sr_(0.2)MnO_(3) bi-layer structures as tubular segmented-in-series solid oxide fuel cell interconnect
6
作者 Rui Shi Yan'an Li +5 位作者 Jiutao Gao Ziyang Chen Xin Zhang Shanlin Zhang Zaheer Ud Din Babar Chengxin Li 《Journal of Rare Earths》 2025年第9期1920-1928,共9页
This study focused on meeting the stringent stability requirements of tubular segmented-in-series solid oxide fuel cells(SOFCs) in reducing and oxidizing atmospheres.To address this challenge,a bi-layer perovskite cer... This study focused on meeting the stringent stability requirements of tubular segmented-in-series solid oxide fuel cells(SOFCs) in reducing and oxidizing atmospheres.To address this challenge,a bi-layer perovskite ceramic interconnect was designed by controlling the oxygen partial pressure,because of the strong correlation between the conductivity of strontium-doped lanthanum titanate(LST) and the oxygen partial pressure.The LST powder was prepared using solid-phase and sol-gel methods,and their influence on particle size and sintering behavior was compared.LST/lanthanum strontium manganite(LSM) bi-layer ceramic interconnects with varying thicknesses were fabricated through screen printing and co-sintering.The results demonstrate favorable interfacial bonding and excellent chemical compatibility between the ceramic layers.The conductivity of the bi-layer interconnect exhibits a temperature-dependent behavior,peaking at 550℃.Simulation calculations and research findings validate that the co nductivity of the bi-layer interconnect is determined by the thickness of the LSM layer and the oxygen partial pressure at the interconnect interface.Optimal conductivity is achieved with a bilayer interconnect consisting of approximately 15 μm of LST and 4 μm of LSM.This can be attributed to the efficient regulation of oxygen partial pressure at the interface,effectively mitigating LSM decomposition caused by low oxygen partial pressure and the subsequent reduction in conductivity.These results provide valuable fundamental data and methodology for the development of high-performance interconnects for tubular segmented-in-series SOFCs. 展开更多
关键词 Tubular SOFCs interconnects BI-LAYER La_(0.3)Sr_(0.7)TiO_(3)/L_(a0.8)Sr_(0.2)MnO_(3) Electrical conductivity Rareearths
原文传递
Silicon-based optoelectronic heterogeneous integration for optical interconnection 被引量:2
7
作者 李乐良 李贵柯 +5 位作者 张钊 刘剑 吴南健 王开友 祁楠 刘力源 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第2期1-9,共9页
The performance of optical interconnection has improved dramatically in recent years.Silicon-based optoelectronic heterogeneous integration is the key enabler to achieve high performance optical interconnection,which ... The performance of optical interconnection has improved dramatically in recent years.Silicon-based optoelectronic heterogeneous integration is the key enabler to achieve high performance optical interconnection,which not only provides the optical gain which is absent from native Si substrates and enables complete photonic functionalities on chip,but also improves the system performance through advanced heterogeneous integrated packaging.This paper reviews recent progress of silicon-based optoelectronic heterogeneous integration in high performance optical interconnection.The research status,development trend and application of ultra-low loss optical waveguides,high-speed detectors,high-speed modulators,lasers and 2D,2.5D,3D and monolithic integration are focused on. 展开更多
关键词 silicon-based heterogeneous integration heterogeneous integrated materials heterogeneous integrated packaging optical interconnection
原文传递
Research on Scheduling Strategy of Flexible Interconnection Distribution Network Considering Distributed Photovoltaic and Hydrogen Energy Storage 被引量:1
8
作者 Yang Li Jianjun Zhao +2 位作者 Xiaolong Yang He Wang Yuyan Wang 《Energy Engineering》 EI 2024年第5期1263-1289,共27页
Distributed photovoltaic(PV)is one of the important power sources for building a new power system with new energy as the main body.The rapid development of distributed PV has brought new challenges to the operation of... Distributed photovoltaic(PV)is one of the important power sources for building a new power system with new energy as the main body.The rapid development of distributed PV has brought new challenges to the operation of distribution networks.In order to improve the absorption ability of large-scale distributed PV access to the distribution network,the AC/DC hybrid distribution network is constructed based on flexible interconnection technology,and a coordinated scheduling strategy model of hydrogen energy storage(HS)and distributed PV is established.Firstly,the mathematical model of distributed PV and HS system is established,and a comprehensive energy storage system combining seasonal hydrogen energy storage(SHS)and battery(BT)is proposed.Then,a flexible interconnected distribution network scheduling optimization model is established to minimize the total active power loss,voltage deviation and system operating cost.Finally,simulation analysis is carried out on the improved IEEE33 node,the NSGA-II algorithm is used to solve specific examples,and the optimal scheduling results of the comprehensive economy and power quality of the distribution network are obtained.Compared with the method that does not consider HS and flexible interconnection technology,the network loss and voltage deviation of this method are lower,and the total system cost can be reduced by 3.55%,which verifies the effectiveness of the proposed method. 展开更多
关键词 Seasonal hydrogen storage flexible interconnection AC/DC distribution network photovoltaic absorption scheduling strategy
在线阅读 下载PDF
Secure optical interconnects using orbital angular momentum beams multiplexing/multicasting 被引量:2
9
作者 Yifan Zhao Jun Liu +8 位作者 Shuhui Li Andong Wang Long Zhu Yan Luo Shi Chen Nan Zhou Shuang Zheng Jing Du Jian Wang 《Advanced Photonics Nexus》 2024年第1期26-35,共10页
Orbital angular momentum(OAM),described by an azimuthal phase term expej lθT,has unbound orthogonal states with different topological charges l.Therefore,with the explosive growth of global communication capacity,esp... Orbital angular momentum(OAM),described by an azimuthal phase term expej lθT,has unbound orthogonal states with different topological charges l.Therefore,with the explosive growth of global communication capacity,especially for short-distance optical interconnects,light-carrying OAM has proved its great potential to improve transmission capacity and spectral efficiency in the space-division multiplexing system due to its orthogonality,security,and compatibility with other techniques.Meanwhile,100-m freespace optical interconnects become an alternative solution for the“last mile”problem and provide interbuilding communication.We experimentally demonstrate a 260-m secure optical interconnect using OAM multiplexing and 16-ary quadrature amplitude modulation(16-QAM)signals.We study the beam wandering,power fluctuation,channel cross talk,bit-error-rate performance,and link security.Additionally,we also investigate the link performance for 1-to-9 multicasting at the range of 260 m.Considering that the power distribution may be affected by atmospheric turbulence,we introduce an offline feedback process to make it flexibly controllable. 展开更多
关键词 orbital angular momentum free-space optical interconnects security space-division multiplexing MULTICASTING
在线阅读 下载PDF
Efficient PbS quantum dots tandem solar cells through compatible interconnection layer
10
作者 Gomaa Mohamed Gomaa Khalaf Xinzhao Zhao +6 位作者 Mingyu Li Chunxia Li Salman Ali Tianjun Ma Hsien-Yi Hsu Jianbin Zhang Haisheng Song 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第11期47-57,共11页
Lead sulfide quantum dots(PbS QDs) hold unique characteristics, including bandgap tunability, solutionprocessability etc., which make them highly applicable in tandem solar cells(TSCs). In all QD TSCs, its efficiency ... Lead sulfide quantum dots(PbS QDs) hold unique characteristics, including bandgap tunability, solutionprocessability etc., which make them highly applicable in tandem solar cells(TSCs). In all QD TSCs, its efficiency lags much behind to their single junction counterparts due to the deficient interconnection layer(ICL) and defective subcells. To improve TSCs performance, we developed three kinds of ICL structures based on 1.34 and 0.96 e V PbS QDs subcells. The control, 1,2-ethanedithiol capped PbS QDs(PbS-EDT)/Au/tin dioxide(SnO_(2))/zinc oxide(Zn O), utilized SnO_(2) layer to obtain high surface compactness.However, its energy level mismatch causes incomplete recombination. Bypassing it, the second ICL(PbS-EDT/Au/Zn O) removed SnO_(2) and boosted the power conversion efficiency(PCE) from 5.75% to 8.69%. In the third ICL(PbS-EDT/poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine](PTAA)/Au/Zn O), a thin layer of PTAA can effectively fill fissures on the surface of PbS-EDT and also protect the front cells from solvent penetration. This TSC obtained a PCE of 9.49% with an open circuit voltage of 0.91 V, a short circuit current density of 15.47 m A/cm~2, and a fill factor of 67.7%. To the best of our knowledge, this was the highest PCE achieved by all PbS QD TSCs reported to date. These TSCs maintained stable performance for a long working time under ambient conditions. 展开更多
关键词 Quantum dots Tandem solar cell interconnection layer HYSTERESIS DEFECT
在线阅读 下载PDF
Decentralized Optimal Control and Stabilization of Interconnected Systems With Asymmetric Information
11
作者 Na Wang Xiao Liang +1 位作者 Hongdan Li Xiao Lu 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第3期698-707,共10页
The paper addresses the decentralized optimal control and stabilization problems for interconnected systems subject to asymmetric information.Compared with previous work,a closed-loop optimal solution to the control p... The paper addresses the decentralized optimal control and stabilization problems for interconnected systems subject to asymmetric information.Compared with previous work,a closed-loop optimal solution to the control problem and sufficient and necessary conditions for the stabilization problem of the interconnected systems are given for the first time.The main challenge lies in three aspects:Firstly,the asymmetric information results in coupling between control and estimation and failure of the separation principle.Secondly,two extra unknown variables are generated by asymmetric information(different information filtration)when solving forward-backward stochastic difference equations.Thirdly,the existence of additive noise makes the study of mean-square boundedness an obstacle.The adopted technique is proving and assuming the linear form of controllers and establishing the equivalence between the two systems with and without additive noise.A dual-motor parallel drive system is presented to demonstrate the validity of the proposed algorithm. 展开更多
关键词 Asymmetric information decentralized control forwardbackward stochastic difference equations interconnected system stalibization
在线阅读 下载PDF
Heuristic-Based Optimal Load Frequency Control with Offsite Backup Controllers in Interconnected Microgrids
12
作者 Aijia Ding Tingzhang Liu 《Energy Engineering》 EI 2024年第12期3735-3759,共25页
The primary factor contributing to frequency instability in microgrids is the inherent intermittency of renewable energy sources.This paper introduces novel dual-backup controllers utilizing advanced fractional order ... The primary factor contributing to frequency instability in microgrids is the inherent intermittency of renewable energy sources.This paper introduces novel dual-backup controllers utilizing advanced fractional order proportional integral derivative(FOPID)controllers to enhance frequency and tie-line power stability in microgrids amid increasing renewable energy integration.To improve load frequency control,the proposed controllers are applied to a two-area interconnectedmicrogrid system incorporating diverse energy sources,such as wind turbines,photovoltaic cells,diesel generators,and various storage technologies.A novelmeta-heuristic algorithm is adopted to select the optimal parameters of the proposed controllers.The efficacy of the advanced FOPID controllers is demonstrated through comparative analyses against traditional proportional integral derivative(PID)and FOPID controllers,showcasing superior performance inmanaging systemfluctuations.The optimization algorithm is also evaluated against other artificial intelligent methods for parameter optimization,affirming the proposed solution’s efficiency.The robustness of the intelligent controllers against system uncertainties is further validated under extensive power disturbances,proving their capability to maintain grid stability.The dual-controller configuration ensures redundancy,allowing them to operate as mutual backups,enhancing system reliability.This research underlines the importance of sophisticated control strategies for future-proofing microgrid operations against the backdrop of evolving energy landscapes. 展开更多
关键词 Fractional order PID interconnected microgrids load frequency control meta-heuristic algorithm parameter optimization
在线阅读 下载PDF
Optimizing Power Flow in Northern Cameroon’s Interconnected Grid: Challenges and Solutions
13
作者 Jean Ndoumbe Ivan Basile Kabeina +1 位作者 Michael Koumbou Piembe Martin Ndjock 《Journal of Power and Energy Engineering》 2024年第9期63-83,共21页
This paper presents an analysis of the power flow within the Northern Interconnected Grid of Cameroon. The Newton-Raphson method has been performed, known for its accuracy, under MATLAB software, to model and solve co... This paper presents an analysis of the power flow within the Northern Interconnected Grid of Cameroon. The Newton-Raphson method has been performed, known for its accuracy, under MATLAB software, to model and solve complex power flow equations. This study simulates a series of outage scenarios to evaluate the responsiveness of the grid. The results obtained underline the crucial importance of reactive power management and highlight the urgent need to consolidate the grid infrastructure of North Cameroon. To increase grid resilience and stability, the paper recommends the strategic integration of renewables and the development of interconnections with other power grids. These measures are presented as viable solutions to meet current and future energy distribution challenges, ensuring a reliable and sustainable power supply for Cameroon. 展开更多
关键词 Power Flow Northern interconnected Grid NEWTON-RAPHSON MATLAB Grid Stability
在线阅读 下载PDF
Effects of Dummy Thermal Vias on Interconnect Delay and Power Dissipation of Very Large Scale Integration Circuits
14
作者 XU Peng PAN Zhongliang 《Wuhan University Journal of Natural Sciences》 CAS CSCD 2018年第5期438-446,共9页
The interconnect temperature of very large scale integration(VLSI) circuits keeps rising due to self-heating and substrate temperature, which can increase the delay and power dissipation of interconnect wires. The t... The interconnect temperature of very large scale integration(VLSI) circuits keeps rising due to self-heating and substrate temperature, which can increase the delay and power dissipation of interconnect wires. The thermal vias are regarded as a promising method to improve the temperature performance of VLSI circuits. In this paper, the extra thermal vias were used to decrease the delay and power dissipation of interconnect wires of VLSI circuits. Two analytical models were presented for interconnect temperature, delay and power dissipation with adding extra dummy thermal vias. The influence of the number of thermal vias on the delay and power dissipation of interconnect wires was analyzed and the optimal via separation distance was investigated. The experimental results show that the adding extra dummy thermal vias can reduce the interconnect average temperature, maximum temperature, delay and power dissipation. Moreover, this method is also suitable for clock signal wires with a large root mean square current. 展开更多
关键词 very large scale integration (VLSI) circuits interconnect temperature interconnect delay thermal vias interconnect power dissipation
原文传递
Preparation of three-dimensional interconnected mesoporous anatase TiO_2-SiO_2 nanocomposites with high photocatalytic activities 被引量:4
15
作者 董维阳 姚有为 +2 位作者 孙尧俊 华伟明 庄国顺 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2016年第6期846-854,共9页
In this article, we report the preparation of a three-dimensional(3D) interconnected mesoporous anatase TiO2-SiO2 nanocomposite. The nanocomposite was obtained by using an ordered two-dimensional(2D) hexagonal mes... In this article, we report the preparation of a three-dimensional(3D) interconnected mesoporous anatase TiO2-SiO2 nanocomposite. The nanocomposite was obtained by using an ordered two-dimensional(2D) hexagonal mesoporous anatase 70 TiO2-30 SiO2-950 nanocomposite(crystallized at 950 °C for 2 h) as a precursor, NaO H as an etchant of SiO2 via a "creating mesopores in the pore walls" approach. Our strategy adopts mild conditions of creating pores such as diluted NaO H solution, appropriate temperature and solid/liquid ratio, etc. aiming at ensuring the integrities of mesopores architecture and anatase nanocrystals. XRD, TEM and N2 sorption techniques have been used to systematically investigate the physico-chemical properties of the nanocomposites. The results show that the intrawall mesopores are highly dense and uniform(average pore size 3.6 nm), and highly link the initial mesochannels in a 3D manner while retaining mesostructural integrity. There is no significant change to either crystallinity or size of the anatase nanocrystals before and after creating the intrawall mesopores. The photocatalytic degradation rates of rhodamine B(RhB, 0.303 min^–1) and methylene blue(MB, 0.757 min^–1) dyes on the resultant nanocomposite are very high, which are 5.1 and 5.3 times that of the precursor; even up to 16.5 and 24.1 times that of Degussa P25 photocatalyst, respectively. These results clearly demonstrate that the 3D interconnected mesopores structure plays an overwhelming role to the increments of activities. The 3D mesoporous anatase TiO2-SiO2 nanocomposite exhibits unexpected-high degradation activities to RhB and MB in the mesoporous metal oxide-based materials reported so far. Additionally, the nanocomposite is considerably stable and reusable. We believe that this method would pave the way for the preparation of other 3D highly interconnected mesoporous metal oxide-based materials with ultra-high performance. 展开更多
关键词 PREPARATION Mesoporous anatase crystal-silica nanocomposite Three dimensional interconnected mesopores architecture Photocatalytic degradation Organic pollutants
在线阅读 下载PDF
Texture Analysis of Damascene Copper Interconnects 被引量:2
16
作者 王晓冬 吉元 +4 位作者 钟涛兴 李志国 夏洋 刘丹敏 肖卫强 《Journal of Semiconductors》 EI CAS CSCD 北大核心 2008年第6期1136-1140,共5页
Texture and grain boundary character distribution of Cu interconnects with different line width for as-deposited and annealed conditions were measured by EBSD. All specimens appear mixed texture and (111) texture is... Texture and grain boundary character distribution of Cu interconnects with different line width for as-deposited and annealed conditions were measured by EBSD. All specimens appear mixed texture and (111) texture is the dominate component.As-deposited interconnects undergo the phenomenon of self-annealing at RT,in which some abnormally large grains are found. Lower aspect ratio of lines and anneal treatment procured larger grains and stronger (111) texture. Meanwhile, the intensity proportion of other textures with lower strain energy to (111) texture is decreased. As-deposited specimens reveal (111)(112? and (111) (231) components, (111) (110) component appeared and (111) (112? and (111) (231) components were developed during the annealing process. High angle boundaries are dominant in all specimens, boundaries with a misorientation of 55°-60° and ∑3 ones in higher proportion, followed by lower boundaries with a misorientation of 35°-40° and 29 boundaries. As the aspect ratio of lines and anneal treatment increase,there is a gradual in- crement in ∑3 boundaries and a decrease in ∑9 boundaries. 展开更多
关键词 Cu interconnects TEXTURE MISORIENTATION coincident site lattice boundaries EBSD
在线阅读 下载PDF
Stochastic Analysis of Interconnect Delay in the Presence of Process Variations 被引量:3
17
作者 李鑫 Janet M.Wang +1 位作者 唐卫清 吴慧中 《Journal of Semiconductors》 EI CAS CSCD 北大核心 2008年第2期304-309,共6页
Process variations can reduce the accuracy in estimation of interconnect performance. This work presents a process variation based stochastic model and proposes an effective analytical method to estimate interconnect ... Process variations can reduce the accuracy in estimation of interconnect performance. This work presents a process variation based stochastic model and proposes an effective analytical method to estimate interconnect delay. The technique decouples the stochastic interconnect segments by an improved decoupling method. Combined with a polynomial chaos expression (PCE), this paper applies the stochastic Galerkin method (SGM) to analyze the system response. A finite representation of interconnect delay is then obtained with the complex approximation method and the bisection method. Results from the analysis match well with those from SPICE. Moreover, the method shows good computational efficiency, as the running time is much less than the SPICE simulation's. 展开更多
关键词 coupled interconnects process variations stochastic modeling delay estimation stochastic Galerkin method polynomial chaos expression
在线阅读 下载PDF
Influence of Interconnection Configuration on Thermal Dissipation of ULSI Interconnect Systems 被引量:2
18
作者 肖夏 姚素英 阮刚 《Journal of Semiconductors》 EI CAS CSCD 北大核心 2006年第3期516-523,共8页
The effects of adjacent metal layers and space between metal lines on the temperature rise of multilevel ULSI interconnect lines are investigated by modeling a three-layer interconnect. The heat dissipation of various... The effects of adjacent metal layers and space between metal lines on the temperature rise of multilevel ULSI interconnect lines are investigated by modeling a three-layer interconnect. The heat dissipation of various metallization technologies concerning the metal and low-k dielectric employment is simulated in detail. The Joule heat generated in the interconnect is transferred mainly through the metal lines in each metal layer and through the path with the smallest thermal resistance in each Ield layer. The temperature rises of Al metallization are approximately pAl/pCu times higher than those of Cu metallization under the same conditions. In addition, a thermal problem in 0.13μm globe interconnects is studied for the worst case, in which there are no metal lines in the lower interconnect layers. Several types of dummy metal heat sinks are investigated and compared with regard to thermal efficiency,influence on parasitic capacitance,and optimal application by combined thermal and electrical simula- tion. 展开更多
关键词 ULSI interconnect heat dissipation geometrical configuration
在线阅读 下载PDF
Progress and Research on Interconnects Crosstalk in Deep Submicron Technology 被引量:2
19
作者 蔡懿慈 赵鑫 洪先龙 《Journal of Semiconductors》 EI CAS CSCD 北大核心 2003年第11期1121-1129,共9页
As develops in deep sub micron designs,the interconnect crosstalk becomes much more serious.Espe cially, the coupling inductance can not be ignored in gigahertz designs.So shield insertion is an efficient techniq... As develops in deep sub micron designs,the interconnect crosstalk becomes much more serious.Espe cially, the coupling inductance can not be ignored in gigahertz designs.So shield insertion is an efficient technique to reduce the inductive noise.In this paper,the characteristics of on chip mutual inductance (as well as self) for coplanar,micro stripline and stripline structures are introduced first.Then base on the coplanar interconnect structures,the effective coupling K eff model and the RLC explicit noise model are proposed respectively.The results of experiments show that these two models both have high fidelity. 展开更多
关键词 interconnect crosstalk crosstalk noise K eff model RLC explicit noise model
在线阅读 下载PDF
Carbon neutrality policy and interconnection scenario according to the perspective of Republic of Korea 被引量:3
20
作者 Jae Young Yoon Sunghwan Song 《Global Energy Interconnection》 EI CAS CSCD 2022年第5期524-530,共7页
The future energy policy,long-term energy supply plan,and necessity of power system interconnection are discussed considering the climate change agreement and national carbon neutrality policy.Although several studies... The future energy policy,long-term energy supply plan,and necessity of power system interconnection are discussed considering the climate change agreement and national carbon neutrality policy.Although several studies have been conducted on power system interconnection related projects,a few reviews have been performed related to the Greenhouse Gas Convention in North-East Asian(NEA)regions.Therefore,the future directions and possible scenarios on power system interconnection are studied by combining the issues by comprehensively considering carbon neutrality policy according to the perspective of Korea. 展开更多
关键词 Power interconnection scenarios Power supply and demand interconnection capacity Carbon neutrality.
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部