Recently,a round-robin differential phase-shift(RRDPS) protocol was proposed[Nature 509,475(2014)],in which the amount of leakage is bounded without monitoring the signal disturbance.Introducing states of the phas...Recently,a round-robin differential phase-shift(RRDPS) protocol was proposed[Nature 509,475(2014)],in which the amount of leakage is bounded without monitoring the signal disturbance.Introducing states of the phase-encoded Bennett-Brassard 1984 protocol(PE-BB84) to the RRDPS,this paper presents another quantum key distribution protocol called round-robin differential quadrature phase-shift(RRDQPS) quantum key distribution.Regarding a train of many pulses as a single packet,the sender modulates the phase of each pulse by one of {0,π/2,π,3π/2},then the receiver measures each packet with a Mach-Zehnder interferometer having a phase basis of 0 or π/2.The RRDQPS protocol can be implemented with essential similar hardware to the PE-BB84,so it has great compatibility with the current quantum system.Here we analyze the security of the RRDQPS protocol against the intercept-resend attack and the beam-splitting attack.Results show that the proposed protocol inherits the advantages arising from the simplicity of the RRDPS protocol and is more robust against these attacks than the original protocol.展开更多
We investigate the existing arbitrated quantum signature schemes as well as their cryptanalysis, including intercept- resend attack and denial-of-service attack. By exploring the loopholes of these schemes, a maliciou...We investigate the existing arbitrated quantum signature schemes as well as their cryptanalysis, including intercept- resend attack and denial-of-service attack. By exploring the loopholes of these schemes, a malicious signatory may success- fully disavow signed messages, or the receiver may actively negate the signature from the signatory without being detected. By modifying the existing schemes, we develop counter-measures to these attacks using Bell states. The newly proposed scheme puts forward the security of arbitrated quantum signature. Furthermore, several valuable topics are also presented for further research of the quantum signature scheme.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61505261 and 11304397)the National Basic Research Program of China(Grant No.2013CB338002)
文摘Recently,a round-robin differential phase-shift(RRDPS) protocol was proposed[Nature 509,475(2014)],in which the amount of leakage is bounded without monitoring the signal disturbance.Introducing states of the phase-encoded Bennett-Brassard 1984 protocol(PE-BB84) to the RRDPS,this paper presents another quantum key distribution protocol called round-robin differential quadrature phase-shift(RRDQPS) quantum key distribution.Regarding a train of many pulses as a single packet,the sender modulates the phase of each pulse by one of {0,π/2,π,3π/2},then the receiver measures each packet with a Mach-Zehnder interferometer having a phase basis of 0 or π/2.The RRDQPS protocol can be implemented with essential similar hardware to the PE-BB84,so it has great compatibility with the current quantum system.Here we analyze the security of the RRDQPS protocol against the intercept-resend attack and the beam-splitting attack.Results show that the proposed protocol inherits the advantages arising from the simplicity of the RRDPS protocol and is more robust against these attacks than the original protocol.
基金supported by the National Natural Science Foundation of China(Grant No.61272501)Beijing Natural Science Foundation(Grant No.4132056)the National Key Basic Research Program of China(973 Program)(Grant No.2012CB315905)
文摘We investigate the existing arbitrated quantum signature schemes as well as their cryptanalysis, including intercept- resend attack and denial-of-service attack. By exploring the loopholes of these schemes, a malicious signatory may success- fully disavow signed messages, or the receiver may actively negate the signature from the signatory without being detected. By modifying the existing schemes, we develop counter-measures to these attacks using Bell states. The newly proposed scheme puts forward the security of arbitrated quantum signature. Furthermore, several valuable topics are also presented for further research of the quantum signature scheme.