期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Weight Analysis of Impact Factors of Interbedded Anti-Inclined Slopes Block-Flexure Toppling Based on Support Vector Regression 被引量:1
1
作者 Bocheng Zhang Huiming Tang +2 位作者 Yibing Ning Kun Fang Ding Xia 《Journal of Earth Science》 SCIE CAS CSCD 2024年第2期568-582,共15页
Block-flexure toppling failure is frequently encountered in interbedded anti-inclined rock(IAR)slopes,and seriously threatens the construction of hydropower infrastructure.In this study,we first investigated the Lean ... Block-flexure toppling failure is frequently encountered in interbedded anti-inclined rock(IAR)slopes,and seriously threatens the construction of hydropower infrastructure.In this study,we first investigated the Lean Reservoir area’s geological setting and the Linda landslide’s characteristics.Then,uniform design and random design were used to design 110 training datasets and 31 testing datasets,respectively.Afterwards,the toppling response was obtained by using the discrete element code.Finally,support vector regression was used to obtain the influence weights of 21 impact factors.The results show that the influence weight of the slope angle and rock formation dip angle on the toppling deformation among tertiary impact factors is 25.96%and 17.28%,respectively,which are much greater than the other 19 impact factors within the research range.For the primary impact factors,the influence weight is sorted from large to small as slope geometry parameters,joints parameters,and rock mechanics parameters.Joints parameters,especially the geometric parameters,cannot be ignored when evaluating the stability of IAR slopes.Through numerical simulation,it was qualitatively determined that failure surfaces of slopes were controlled by cross joints and that the rocks in the slope toe play a role in preventing slope deformation. 展开更多
关键词 interbedded anti-inclined slopes block-flexure toppling impact factors numerical simulation support vector regression engineering geology
原文传递
Theoretical study on stability evolution of soft and hard interbedded bedding reservoir slopes 被引量:1
2
作者 WU Qiong ZHANG Bo +3 位作者 TANG Hui-ming WANG di LIU Zhi-qi LIN Zhi-wei 《Journal of Mountain Science》 SCIE CSCD 2023年第9期2744-2755,共12页
Soft and hard interbedded bedding rock slopes,which is prone to failure,are widely distributed in the Three Gorges Reservoir,China.Limit equilibrium method(LEM)is commonly used to analyze the stability of bedding rock... Soft and hard interbedded bedding rock slopes,which is prone to failure,are widely distributed in the Three Gorges Reservoir,China.Limit equilibrium method(LEM)is commonly used to analyze the stability of bedding rock slopes that have a single failure plane.However,this method cannot accurately estimate the stability of soft and hard interbedded bedding reservoir slopes because the strength parameters of a soft and hard interbedded rock mass vary spatially along the bedding plane and deteriorate with time due to periodic fluctuations of reservoir level.A modified LEM is proposed to evaluate the stability evolution of soft and hard interbedded bedding reservoir slopes considering the spatial variation and temporal deterioration of shear strength parameters of rock masses and bedding planes.In the modified LEM,the S-curve model is used to define the spatial variation of shear strength parameters,and general deterioration equations of shear strength parameters with the increasing number of wettingdrying cycles(WDC)are proposed to describe the temporal deterioration.Also,this method is applied to evaluate the stability evolution of a soft and hard interbedded bedding reservoir slope,located at the Three Gorges Reservoir.The results show that neglecting the spatial variation and temporal deterioration of shear strength parameters may overestimate slope stability.Finally,the modified LEM provides useful guidance to reasonably evaluate the long-term stability of soft and hard interbedded bedding reservoir slopes in reservoir area. 展开更多
关键词 Soft and hard interbedded rock slope Limit equilibrium method Spatial variation Wetting and drying cycles Plane failure Stability evolution
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部