期刊文献+
共找到796篇文章
< 1 2 40 >
每页显示 20 50 100
自适应IMM-UKF机动目标跟踪算法
1
作者 周晓 牟新刚 +2 位作者 柯文 苏盈 王丽 《系统工程与电子技术》 北大核心 2025年第8期2686-2695,共10页
针对跟踪复杂机动目标过程中由于目标运动状态发生变化导致的跟踪误差较大的问题,提出一种自适应交互多模型无迹卡尔曼滤波(interacting multiple model unscented Kalman filter,IMM-UKF)算法,使用模型概率后验信息和模型似然函数自适... 针对跟踪复杂机动目标过程中由于目标运动状态发生变化导致的跟踪误差较大的问题,提出一种自适应交互多模型无迹卡尔曼滤波(interacting multiple model unscented Kalman filter,IMM-UKF)算法,使用模型概率后验信息和模型似然函数自适应修正马尔可夫转移概率矩阵(transition probability matrix,TPM)。设计模型概率校正方法和模型转移加速方法,两种方法分别作用于模型稳定阶段和模型转移阶段,提高模型概率准确度和模型转移响应速度,减小状态估计误差。最后,通过两种场景下的实验验证所提算法在目标具有复杂运动状态下的性能,并与传统方法进行对比分析,在目标做机动运动时,位置精度和速度精度分别提高了15%和26%,验证了算法的有效性和可行性。 展开更多
关键词 目标跟踪 交互多模型 自适应 无迹卡尔曼滤波
在线阅读 下载PDF
基于IMM-PFF的锂离子电池剩余寿命预测
2
作者 王帅 李义婷 +2 位作者 陈黎飞 苏小红 周寿斌 《电子学报》 北大核心 2025年第5期1520-1532,共13页
针对单一容量衰退模型在锂离子电池剩余寿命(Remaining Useful Life,RUL)预测中工况泛化能力不足的问题,本文提出一种基于交互式多模型粒子流滤波(Interactive Multiple Model Particle Flow Filter,IMM-PFF)的预测方法.通过粒子流滤波... 针对单一容量衰退模型在锂离子电池剩余寿命(Remaining Useful Life,RUL)预测中工况泛化能力不足的问题,本文提出一种基于交互式多模型粒子流滤波(Interactive Multiple Model Particle Flow Filter,IMM-PFF)的预测方法.通过粒子流滤波对指数、多项式和生物模型进行协同状态估计,并基于交互式多模型框架动态融合多模型预测结果,从而自适应匹配电池衰退的多阶段特性.将美国NASA、马里兰大学等不同工况的锂离子电池退化数据集划分为3个时期,对本文的方法进行验证.结果表明,相比单一模型粒子滤波方法,IMM-PFF的容量预测均方根误差和剩余寿命预测误差分别降低24.3%和4.5%,为复杂工况下的锂离子电池寿命预测提供了高精度、强鲁棒性的新思路. 展开更多
关键词 锂离子电池 剩余寿命 粒子流滤波 交互式多模型 状态估计
在线阅读 下载PDF
基于IFFRLS-IMMUKF的商用车磷酸铁锂电池SOC估算
3
作者 吴华伟 何成泽 +3 位作者 洪强 周小高 李明金 顾亚娟 《储能科学与技术》 北大核心 2025年第10期3996-4008,共13页
荷电状态(SOC)作为电动汽车剩余容量的表征参数,它的准确预估可以保障电动汽车的安全可靠性。针对复杂环境下电池SOC难以精确估算的问题,本工作基于动力电池特性构建了等效电路模型,并对电池模型状态方程进行了离散化的推演,在获得离散... 荷电状态(SOC)作为电动汽车剩余容量的表征参数,它的准确预估可以保障电动汽车的安全可靠性。针对复杂环境下电池SOC难以精确估算的问题,本工作基于动力电池特性构建了等效电路模型,并对电池模型状态方程进行了离散化的推演,在获得离散化状态方程的基础上,将金豺优化算法与遗忘因子递推最小二乘法(FFRLS)相结合提出了改进遗忘递推最小二乘法对电池模型进行了参数辨识。同时,联合交互式多模型无迹卡尔曼滤波(IMMUKF)算法对电池SOC进行估算,并在对常温和高温条件下的动态应力(DST)和联邦城市驾驶工况(FUDS)进行试验验证。结果表明,基于IFFRLS-IMMUKF的锂电池SOC估算方法,其平均绝对值误差在0.8%之内,对磷酸铁锂电池有较高的SOC估算精度。 展开更多
关键词 金豺优化算法 遗忘因子递推最小二乘法 交互式多模型无迹卡尔曼滤波 荷电状态
在线阅读 下载PDF
Target Tracking Using the Interactive Multiple Model Method 被引量:6
4
作者 张劲松 杨位钦 胡士强 《Journal of Beijing Institute of Technology》 EI CAS 1998年第3期299-304,共6页
Aim To develop a practical target tracking algorithm for different motion modes. Methods After creation of the new model, it was implemented by computer simulation to prove its performance and compared with the of... Aim To develop a practical target tracking algorithm for different motion modes. Methods After creation of the new model, it was implemented by computer simulation to prove its performance and compared with the often-used current statistical model. Results The simulation results show that the new IMM (interactive multiple model) have low tracking error in both maneuVering segment and non^Inaneuwi segment while the current statistical model bas muCh higher tracking error in non-maneuvering segment. Conclusion In the point of trackintaccuracy, the new IMM method is much better than the current acceleration method. It can develop into a practical target hacking method. 展开更多
关键词 interactive multiple model TRACKING maneuvering target Kalman filter
在线阅读 下载PDF
3D Human Motion Tracking by Using Interactive Multiple Models 被引量:1
5
作者 仝明磊 边后琴 《Journal of Shanghai Jiaotong university(Science)》 EI 2011年第4期420-428,共9页
Of different model-based methods in vision based human tracking,many state of the art works focus on the stochastic optimization method to search in a very high dimensional space and try to find the optimal solution a... Of different model-based methods in vision based human tracking,many state of the art works focus on the stochastic optimization method to search in a very high dimensional space and try to find the optimal solution according to a proper likelihood function.Seldom works perform a framework of interactive multiple models (IMM) to track a human for challenging problems,such as uncertainty of motion styles,imprecise detection of feature points and ambiguity of joint location.This paper presents a two-layer filter framework based on IMM to track human motion.First,a method of model based points location is proposed to detect key feature points automatically and the filter in the first layer is performed to estimate the undetected points.Second,multiple models of motion are learned by the prior motion data with ridge regression and the IMM algorithm is used to estimate the quaternion vectors of joints rotation.Finally,experiments using real images sequences,simulation videos and 3D voxel data demonstrate that this human tracking framework is efficient. 展开更多
关键词 interactive multiple models(imm) human tracking automatic location occlusion prediction
原文传递
Inclusive Multiple Models(IMM)for predicting groundwater levels and treating heterogeneity 被引量:1
6
作者 Rahman Khatibi Ata Allah Nadiri 《Geoscience Frontiers》 SCIE CAS CSCD 2021年第2期713-724,共12页
An explicit model management framework is introduced for predictive Groundwater Levels(GWL),particularly suitable to Observation Wells(OWs)with sparse and possibly heterogeneous data.The framework implements Multiple ... An explicit model management framework is introduced for predictive Groundwater Levels(GWL),particularly suitable to Observation Wells(OWs)with sparse and possibly heterogeneous data.The framework implements Multiple Models(MM)under the architecture of organising them at levels,as follows:(i)Level 0:treat heterogeneity in the data,e.g.Self-Organised Mapping(SOM)to classify the OWs;and decide on model structure,e.g.formulate a grey box model to predict GWLs.(ii)Level 1:construct MMs,e.g.two Fuzzy Logic(FL)and one Neurofuzzy(NF)models.(iii)Level 2:formulate strategies to combine the MM at Level 1,for which the paper uses Artificial Neural Networks(Strategy 1)and simple averaging(Strategy 2).Whilst the above model management strategy is novel,a critical view is presented,according to which modelling practices are:Inclusive Multiple Modelling(IMM)practices contrasted with existing practices,branded by the paper as Exclusionary Multiple Modelling(EMM).Scientific thinking over IMMs is captured as a framework with four dimensions:Model Reuse(MR),Hierarchical Recursion(HR),Elastic Learning Environment(ELE)and Goal Orientation(GO)and these together make the acronym of RHEO.Therefore,IMM-RHEO is piloted in the aquifer of Tabriz Plain with sparse and possibly heterogeneous data.The results provide some evidence that(i)IMM at two levels improves on the accuracy of individual models;and(ii)model combinations in IMM practices bring‘model-learning’into fashion for learning with the goal to explain baseline conditions and impacts of subsequent management changes. 展开更多
关键词 Artificial intelligence Exclusionary multiple modelling(EMM) Groundwater level prediction Inclusive multiple modelling(imm) model management practices
在线阅读 下载PDF
一种模型非等维交互的IMM-UKF机动目标跟踪算法
7
作者 刘新宇 杨兴云 +1 位作者 舒立鹏 唐旭 《火炮发射与控制学报》 北大核心 2025年第4期82-88,95,共8页
为解决高炮跟踪机动目标时的状态估计问题,使高炮火控系统能够对进行间歇机动的目标进行运动模式辨识和状态估计,提出了一种模型非等维交互的交互式多模型无迹卡尔曼滤波(IMM-UKF)算法。该算法对应匀加速运动及匀速转弯运动,将匀加速、... 为解决高炮跟踪机动目标时的状态估计问题,使高炮火控系统能够对进行间歇机动的目标进行运动模式辨识和状态估计,提出了一种模型非等维交互的交互式多模型无迹卡尔曼滤波(IMM-UKF)算法。该算法对应匀加速运动及匀速转弯运动,将匀加速、匀速、协同转弯模型组合成两个运动模型组合滤波器。以三维并行的方式滤波,对各模型的共有状态分量进行有限交互以降低计算量,并采用残差滤波和系统误差矩阵模糊自适应的方法提高模型辨识稳定性和滤波精度。仿真结果表明,该算法比传统IMM算法精度更高且执行时间更短,模型辨识的稳定性也更好。 展开更多
关键词 机动目标 状态估计 交互式多模型 并行滤波
在线阅读 下载PDF
基于IMM-SRCKF对机动目标的多弹协同被动定位算法
8
作者 张雨格 耿建强 +3 位作者 杨光宇 朱苏朋 侯振乾 符文星 《空天防御》 2025年第2期58-65,共8页
针对空中机动目标的定位跟踪问题,提出一种基于交互多模型(Interacting Multiple Model,IMM)和平方根容积卡尔曼滤波(Square Root Cubature Kalman Filter,SRCKF)的多弹协同被动定位算法。首先,分析机动目标运动方式,确定其运动方程。然... 针对空中机动目标的定位跟踪问题,提出一种基于交互多模型(Interacting Multiple Model,IMM)和平方根容积卡尔曼滤波(Square Root Cubature Kalman Filter,SRCKF)的多弹协同被动定位算法。首先,分析机动目标运动方式,确定其运动方程。然后,建立多弹协同场景的系统模型,并设计被动定位算法:采用平方根容积卡尔曼滤波提高算法对目标的定位精度,并避免计算过程中协方差阵失去正定性;采用交互多模型算法,解决目标运动状态模型不匹配时的滤波发散问题。对比仿真结果表明,IMM-SRCKF算法能够有效利用多弹的量测信息,完成对机动目标的协同被动定位,具备良好的定位精度和鲁棒性。 展开更多
关键词 多弹协同 被动定位 机动目标 平方根容积卡尔曼滤波 交互多模型
在线阅读 下载PDF
基于航向修正的机动扩展目标自适应IMM跟踪算法研究
9
作者 陈升富 程飞龙 +1 位作者 郭锐 戚国庆 《兵器装备工程学报》 北大核心 2025年第5期1-7,共7页
针对传统机动目标跟踪算法难以改善对机动扩展目标跟踪精度的问题,将改进的交互多模型算法应用到机动扩展目标跟踪,并在目标机动时刻引入航向信息更新量测。在交互式多模型算法中引入随机超曲面模型,实现扩展目标外形识别;提出一种转移... 针对传统机动目标跟踪算法难以改善对机动扩展目标跟踪精度的问题,将改进的交互多模型算法应用到机动扩展目标跟踪,并在目标机动时刻引入航向信息更新量测。在交互式多模型算法中引入随机超曲面模型,实现扩展目标外形识别;提出一种转移概率矩阵修正函数以解决传统交互多模型算法对机动目标模型匹配概率估计较低的问题;通过监测扩展目标外形特征信息偏差,估计目标机动下的运动航向角并作为新的量测信息,进一步提高在机动状态下对扩展目标的质心跟踪和外形估计精度。仿真结果验证了所提方法对提高机动扩展目标跟踪效果的有效性和可行性。 展开更多
关键词 扩展目标跟踪 交互式多模型 转移概率矩阵 航向信息 模型概率估计
在线阅读 下载PDF
ADAPTIVE MULTIPLE MODEL FILTER USING IMM AND STF
10
作者 梁彦 潘泉 +1 位作者 周东华 张洪才 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2000年第3期-,共5页
In fault identification, the Strong Tracking Filter (STF) has strong ability to track the change of some parameters by whitening filtering innovation. In this paper, the authors give out a modified STF by searching th... In fault identification, the Strong Tracking Filter (STF) has strong ability to track the change of some parameters by whitening filtering innovation. In this paper, the authors give out a modified STF by searching the fading factor based on the Least Squared Estimation. In hybrid estimation, the well known Interacting Multiple Model (IMM) Technique can model the change of the system modes. So one can design a new adaptive filter — SIMM. In this filter, our modified STF is a parameter adaptive part and IMM is a mode adaptive part. The benefit of the new filter is that the number of models can be reduced considerably. The simulations show that SIMM greatly improves accuracy of velocity and acceleration compared with the standard IMM to track the maneuvering target when 2 model conditional estimators are used in both filters. And the computation burden of SIMM increases only 6% compared with IMM. 展开更多
关键词 tracking maneuvering targets interacting multiple model adaptive filtering Kalman filtering strong tracking filter
在线阅读 下载PDF
跟踪空间多模式机动目标的稳健IMM算法
11
作者 卢山 李晴 张世源 《中国惯性技术学报》 北大核心 2025年第2期189-195,共7页
针对空间非合作多模式机动目标跟踪中传统交互多模型(IMM)算法模型概率计算奇异,造成算法失效的问题,提出了稳健IMM算法。考虑空间目标的常见机动模式,设计了以C-W方程、扩维C-W方程、渐消C-W方程为子模型的IMM模型集,以较低的计算复杂... 针对空间非合作多模式机动目标跟踪中传统交互多模型(IMM)算法模型概率计算奇异,造成算法失效的问题,提出了稳健IMM算法。考虑空间目标的常见机动模式,设计了以C-W方程、扩维C-W方程、渐消C-W方程为子模型的IMM模型集,以较低的计算复杂度实现了模型集与真实系统匹配程度的提高。进一步,对传统IMM算法中模型概率计算过程出现奇异的现象进行了分析,设计了一种改进的模型概率更新方法,避免了目标发生机动模式切换或状态突变时算法无法准确估计目标状态甚至终止估计的问题。仿真结果表明,所提算法较传统IMM算法的位置精度提高了18.4%以上,验证了所提算法能够实现对非合作目标多种机动状态的稳定相对状态估计。 展开更多
关键词 机动目标 相对状态估计 机动模式 交互多模型
在线阅读 下载PDF
An interacting multiple model-based two-stage Kalman filter for vehicle positioning 被引量:2
12
作者 徐启敏 李旭 +1 位作者 李斌 宋向辉 《Journal of Southeast University(English Edition)》 EI CAS 2017年第2期177-181,共5页
To address the problem that a general augmented state Kalman filter or a two-stage Kalman filter cannot achieve satisfactory positioning performance when facing uncertain noise of the micro-electro-mechanical system(... To address the problem that a general augmented state Kalman filter or a two-stage Kalman filter cannot achieve satisfactory positioning performance when facing uncertain noise of the micro-electro-mechanical system(MEMS) inertial sensors, a novel interacting multiple model-based two-stage Kalman filter(IMM-TSKF) is proposed to adapt to the uncertain inertial sensor noise. Three bias filters are developed based on different noise characteristics to cover a wide range of noise levels. Then, an accurate estimation of biases is calculated by the interacting multiple model algorithm to correct the bias-free filter. Thus, the vehicle positioning system can achieve good performance when suffering from uncertain inertial sensor noise. The experimental results indicate that the average position error of the proposed IMMTSKF is 25% lower than that of the general TSKF. 展开更多
关键词 interacting multiple modelimm two-stage filter uncertain noise vehicle positioning
在线阅读 下载PDF
Maneuvering target tracking using threshold interacting multiple model algorithm
13
作者 徐迈 山秀明 徐保国 《Journal of Southeast University(English Edition)》 EI CAS 2005年第4期440-444,共5页
To avoid missing track caused by the target maneuvers in automatic target tracking system, a new maneuvering target tracking technique called threshold interacting multiple model (TIMM) is proposed. This algorithm i... To avoid missing track caused by the target maneuvers in automatic target tracking system, a new maneuvering target tracking technique called threshold interacting multiple model (TIMM) is proposed. This algorithm is based on the interacting multiple model (IMM) method and applies a threshold controller to improve tracking accuracy. It is also applicable to other advanced algorithms of IMM. In this research, we also compare the position and velocity root mean square (RMS) errors of TIMM and IMM algorithms with two different examples. Simulation results show that the TIMM algorithm is superior to the traditional IMM alzorithm in estimation accuracy. 展开更多
关键词 maneuvering target tracking Kalman filter interacting multiple model imm threshold interacting multiple model (Timm
在线阅读 下载PDF
一种基于模型概率单调性变化的自适应IMM-UKF改进算法 被引量:3
14
作者 王平波 陈强 +2 位作者 卫红凯 贾耀君 沙浩然 《电子与信息学报》 EI CAS CSCD 北大核心 2024年第1期41-48,共8页
针对现有交互式多模型(IMM)算法模型间切换迟滞和转换速率慢的缺点,提出一种基于模型概率单调性变化的自适应交互式多模型无迹卡尔曼滤波改进算法(mIMM-UKF)。该算法利用后验信息模型概率的单调性,对马尔可夫转移概率矩阵及模型估计概... 针对现有交互式多模型(IMM)算法模型间切换迟滞和转换速率慢的缺点,提出一种基于模型概率单调性变化的自适应交互式多模型无迹卡尔曼滤波改进算法(mIMM-UKF)。该算法利用后验信息模型概率的单调性,对马尔可夫转移概率矩阵及模型估计概率进行二次修正,加快了匹配模型的切换速度及转换速率。仿真结果表明,与现有算法相比,该算法通过快速切换匹配模型,有效提高了水下目标跟踪精度。 展开更多
关键词 水下目标跟踪 imm-UKF算法 自适应 转移概率矩阵 单调性
在线阅读 下载PDF
基于改进自适应IMM算法的高速列车组合定位 被引量:4
15
作者 王小敏 雷筱 张亚东 《电子与信息学报》 EI CAS CSCD 北大核心 2024年第3期817-825,共9页
针对列车高精度定位问题,该文提出基于改进自适应交互多模型(IMM)的高速列车高精度组合定位方法。首先,根据列车定位需求和各传感器特点,设计了卫星接收器、轮轴测速传感器、测速雷达以及单轴陀螺仪4种传感器的组合定位方案。然后,针对... 针对列车高精度定位问题,该文提出基于改进自适应交互多模型(IMM)的高速列车高精度组合定位方法。首先,根据列车定位需求和各传感器特点,设计了卫星接收器、轮轴测速传感器、测速雷达以及单轴陀螺仪4种传感器的组合定位方案。然后,针对IMM融合滤波算法因先验信息不准导致固定参数设置不当的问题,引入Sage-Husa自适应滤波和转移概率矩阵(TPM)自适应更新集成为自适应IMM算法。针对多模型切换的滞后问题,利用子模型似然函数值能快速反映模型变化趋势的特点,将似然函数值设为判定标志,并引入判定窗对TPM矩阵元素进行修正,有效提升了模型的切换速度。最后,基于改进自适应IMM算法对4种传感器定位信息进行融合滤波,实现高速列车的高精度组合定位。仿真结果表明:改进后的算法相比其他自适应IMM算法提升定位精度1.6%~14.7%,并且能通过提高模型间切换速度来有效降低位置误差峰值,同时具备较好的抗噪性能。 展开更多
关键词 列车定位 交互式多模型 Sage-Husa自适应滤波算法 马尔可夫转移概率矩阵 判定窗
在线阅读 下载PDF
具有噪声信息与状态模型不确定系统的IMM自适应滤波 被引量:2
16
作者 马天力 张扬 +2 位作者 高嵩 刘盼 陈超波 《控制与决策》 EI CSCD 北大核心 2024年第5期1604-1611,共8页
卡尔曼滤波器广泛用于解决线性高斯系统的状态估计问题.然而,在实际应用中过程噪声和系统模型参数先验信息未知,且量测受到异常值干扰,给准确估计系统状态带来极大困难.针对具有噪声信息和状态模型不确定的动态系统,提出一种广义交互式... 卡尔曼滤波器广泛用于解决线性高斯系统的状态估计问题.然而,在实际应用中过程噪声和系统模型参数先验信息未知,且量测受到异常值干扰,给准确估计系统状态带来极大困难.针对具有噪声信息和状态模型不确定的动态系统,提出一种广义交互式多模型自适应滤波算法.该算法设计多个模型并行的方式对系统不确定进行处理,对于每个模型,建立Skew-T分布非对称重尾噪声表示模型,为了解决过程噪声与系统协方差相互耦合难以求解的问题,利用逆威沙特分布对系统预测协方差矩阵进行描述,并通过变分贝叶斯推理递归计算系统状态的后验分布.仿真结果和实验验证表明,在噪声信息和状态模型不确定条件下,所提出算法具有较高的估计精度. 展开更多
关键词 交互式多模型 过程噪声 Skew-T分布 变分贝叶斯 自适应滤波 时变噪声
原文传递
Interacting Multiple Model Algorithm with the Unscented Particle Filter (UPF) 被引量:9
17
作者 邓小龙 谢剑英 倪宏伟 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2005年第4期366-371,共6页
Combining interacting multiple model (IMM) and unscented particle filter (UPF), a new multiple model filtering algorithm is presented. Multiple models can be adapted to targets' high maneu- vering. Particle filte... Combining interacting multiple model (IMM) and unscented particle filter (UPF), a new multiple model filtering algorithm is presented. Multiple models can be adapted to targets' high maneu- vering. Particle filter can be used to deal with the nonlinear or non-Gaussian problems and the unscented Kalman filter (UKF) can improve the approximate accuracy. Compared with other interacting multiple model algorithms in the simulations, the results demonstrate the validity of the new filtering method. 展开更多
关键词 interacting multiple model UPF UKF nonlinear/non-Gaussian
在线阅读 下载PDF
Data Fusion Algorithm for Multi-Sensor Dynamic System Based on Interacting Multiple Model 被引量:3
18
作者 陈志锋 蔡云泽 《Journal of Shanghai Jiaotong university(Science)》 EI 2015年第3期265-272,共8页
This paper presents a data fusion algorithm for dynamic system with multi-sensor and uncertain system models. The algorithm is mainly based on Kalman filter and interacting multiple model(IMM). It processes crosscorre... This paper presents a data fusion algorithm for dynamic system with multi-sensor and uncertain system models. The algorithm is mainly based on Kalman filter and interacting multiple model(IMM). It processes crosscorrelated sensor noises by using augmented fusion before model interacting. And eigenvalue decomposition is utilized to reduce calculation complexity and implement parallel computing. In simulation part, the feasibility of the algorithm was tested and verified, and the relationship between sensor number and the estimation precision was studied. Results show that simply increasing the number of sensor cannot always improve the performance of the estimation. Type and number of sensors should be optimized in practical applications. 展开更多
关键词 MULTI-SENSOR cross-correlated noises augmented fusion interacting multiple model(imm)
原文传递
GPS/BDS/INS tightly coupled integration accuracy improvement using an improved adaptive interacting multiple model with classified measurement update 被引量:19
19
作者 Houzeng HAN Jian WANG Mingyi DU 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2018年第3期556-566,共11页
An Extended Kalman Filter(EKF) is commonly used to fuse raw Global Navigation Satellite System(GNSS) measurements and Inertial Navigation System(INS) derived measurements. However, the Conventional EKF(CEKF) s... An Extended Kalman Filter(EKF) is commonly used to fuse raw Global Navigation Satellite System(GNSS) measurements and Inertial Navigation System(INS) derived measurements. However, the Conventional EKF(CEKF) suffers the problem for which the uncertainty of the statistical properties to dynamic and measurement models will degrade the performance.In this research, an Adaptive Interacting Multiple Model(AIMM) filter is developed to enhance performance. The soft-switching property of Interacting Multiple Model(IMM) algorithm allows the adaptation between two levels of process noise, namely lower and upper bounds of the process noise. In particular, the Sage adaptive filtering is applied to adapt the measurement covariance on line. In addition, a classified measurement update strategy is utilized, which updates the pseudorange and Doppler observations sequentially. A field experiment was conducted to validate the proposed algorithm, the pseudorange and Doppler observations from Global Positioning System(GPS) and Bei Dou Navigation Satellite System(BDS) were post-processed in differential mode.The results indicate that decimeter-level positioning accuracy is achievable with AIMM for GPS/INS and GPS/BDS/INS configurations, and the position accuracy is improved by 35.8%, 34.3% and 33.9% for north, east and height components, respectively, compared to the CEKF counterpartfor GPS/BDS/INS. Degraded performance for BDS/INS is obtained due to the lower precision of BDS pseudorange observations. 展开更多
关键词 Adaptive filtering BeiDou navigation satellite system (BDS) Classified measurement update Global positioning system (GPS) Inertial navigation system (INS) Interacting multiple model Tightly coupled
原文传递
Modeling of UAV path planning based on IMM under POMDP framework 被引量:4
20
作者 YANG Qiming ZHANG Jiandong SHI Guoqing 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2019年第3期545-554,共10页
In order to enhance the capability of tracking targets autonomously of unmanned aerial vehicle (UAV), the partially observable Markov decision process (POMDP) model for UAV path planning is established based on the PO... In order to enhance the capability of tracking targets autonomously of unmanned aerial vehicle (UAV), the partially observable Markov decision process (POMDP) model for UAV path planning is established based on the POMDP framework. The elements of the POMDP model are analyzed and described. The state transfer law in the model can be described by the method of interactive multiple model (IMM) due to the diversity of the target motion law, which is used to switch the motion model to accommodate target maneuvers, and hence improving the tracking accuracy. The simulation results show that the model can achieve efficient planning for the UAV route, and effective tracking for the target. Furthermore, the path planned by this model is more reasonable and efficient than that by using the single state transition law. 展开更多
关键词 PARTIALLY OBSERVABLE MARKOV decision process (POMDP) interactive multiple model (imm) filtering path planning target tracking state transfer law
在线阅读 下载PDF
上一页 1 2 40 下一页 到第
使用帮助 返回顶部