[Objective]This study was to reveal the essence of mechanism about how the alien invasive plants spread.[Method]Species niche and material/energy flow were used as basic research indicators to analyze the intrinsic me...[Objective]This study was to reveal the essence of mechanism about how the alien invasive plants spread.[Method]Species niche and material/energy flow were used as basic research indicators to analyze the intrinsic mechanism of alien plants invasion.[Result]Most of the invasive plants have not been explicitly defined and their effective control methods not brought forward.[Conclusion]Overrun of alien invasive plants depends on whether the niche of a species could be continuously met at spatial level.Based on this we put forward corresponding control measures,proposed an assumption to establish a cylinder-network model and discussed the definition of alien invasive plants.展开更多
Dissolved organic matter(DOM) is ubiquitous in the environment and has high reactivity.Once engineered nanoparticles(ENPs) are released into natural systems, interactions of DOM with ENPs may significantly affect ...Dissolved organic matter(DOM) is ubiquitous in the environment and has high reactivity.Once engineered nanoparticles(ENPs) are released into natural systems, interactions of DOM with ENPs may significantly affect the fate and transport of ENPs, as well as the bioavailability and toxicity of ENPs to organisms. However, because of the complexity of DOM and the shortage of useful characterization methods, large knowledge gaps exist in our understanding of the interactions between DOM and ENPs. In this article, we systematically reviewed the interactions between DOM and ENPs, discussed the effects of DOM on the environmental behavior of ENPs, and described the changes in bioavailability and toxicity of ENPs caused by DOM. Critical evaluations of published references suggest further need for assessing and predicting the influences of DOM on the transport,transformation, bioavailability, and toxicity of ENPs in the environment.展开更多
This review focuses on the occurrence and interactions of engineered nanoparticles(ENPs)and brominated flame retardants(BFRs)such as polybrominated diphenyl ethers(PBDEs)in water systems and the generation of highly c...This review focuses on the occurrence and interactions of engineered nanoparticles(ENPs)and brominated flame retardants(BFRs)such as polybrominated diphenyl ethers(PBDEs)in water systems and the generation of highly complex compounds in the environment.The release of ENPs and BFRs(e.g.PBDEs)to aquatic environments during their usage and disposal are summarised together with their key interaction mechanisms.The major interaction mechanisms including electrostatic,van derWaals,hydrophobic,molecular bridging and steric,hydrogen andπ-bonding,cation bridging and ligand exchange were identified.The presence of ENPs could influence the fate and behaviour of PBDEs through the interactions as well as induced reactions under certain conditions which increases the formation of complex compounds.The interaction leads to alteration of behaviour for PBDEs and their toxic effects to ecological receptors.The intermingled compound(ENPs-BFRs)would show different behaviour from the parental ENPs or BFRs,which are currently lack of investigation.This review provided insights on the interactions of ENPs and BFRs in artificial,environmental water systems and wastewater treatment plants(WWTPs),which are important for a comprehensive risk assessment.展开更多
A series of novel chalcone derivatives that contain the 1,1-dichloropropene moiety was designed and synthesized. Bioactivity assays showed that most of the target compounds exhibited moderate to good antiviral activit...A series of novel chalcone derivatives that contain the 1,1-dichloropropene moiety was designed and synthesized. Bioactivity assays showed that most of the target compounds exhibited moderate to good antiviral activity against tobacco mosaic virus(TMV) at 500 mg/m L. Among the target compounds,compound 7h showed the highest in vivo inactivation activity against TMV with the EC50 and EC90value of 45.6 and 327.5 mg/m L, respectively, which was similar to that of Ningnanmycin(46.9 and 329.4 mg/m L)and superior to that of Ribavirin(145.1 and 793.1 mg/m L). Meanwhile, the microscale thermophoresis and fluorescence spectroscopy experiments showed that the compound 7h had a strong interaction with the tobacco mosaic virus coat protein.展开更多
In this paper, the tropical air-sea interaction is discussed by using a simple air-sea coupled model, in which the inertia-gravity waves are filtered off and only the equatorial Rossby waves are reserved in both the a...In this paper, the tropical air-sea interaction is discussed by using a simple air-sea coupled model, in which the inertia-gravity waves are filtered off and only the equatorial Rossby waves are reserved in both the atmosphere and the ocean. There exist two kinds of air-sea interaction waves in the coupled model, that is, the high-frequency fast waves and the low-frequency slow waves. The phase speed of the fast waves is westward and the frequencies are close to those of the equatorial Rossby waves in the atmosphere. The slow waves propagate westward in the part of short wavelengths and eastward in that of long wavelengths. There exist instabilities for both the westward and eastward propagating slow waves. If the fast waves are filtered off, there is little effect on the slow waves which have great influence on the long range process in the tropical air-sea coupled system. According to the tropical air-sea interaction waves we obtain here, a possible explanation to the propagating process of ENSO events is given.展开更多
Lead(Pb) coprecipitation with jarosite is common in natural and engineered environments,such as acid mine drainage(AMD) sites and hydrometallurgical industry. Despite the high relevance for environmental impact, few s...Lead(Pb) coprecipitation with jarosite is common in natural and engineered environments,such as acid mine drainage(AMD) sites and hydrometallurgical industry. Despite the high relevance for environmental impact, few studies have examined the exact interaction of Pb with jarosite and the dissolution behavior of each phase. In the present work, we demonstrate that Pb mainly interacts with jarosite in four modes, namely incorporation, occlusion,physically mixing, and chemically mixing. For comparison, the four modes of Pb-bearing natrojarosite were synthesized and characterized separately. Batch dissolution experiments were undertaken on these synthetic Pb-bearing natrojarosites under pH_(2) to simulate the AMD environments. The introduction of Pb decreases the final Fe releasing efficiency of jarosite-type compounds from 18.18% to 3.45%-5.01%, showing a remarkable inhibition of their dissolution. For Pb releasing behavior, PbSO_(4) dissolves in preference to Pb-substituted natrojarosite, i.e.,(Na, Pb)-jarosite, which primarily results in the sharp increase of Pb releasing concentration(> 40 mg/L). PbSO_(4) occlusion by jarosite-type compounds can significantly reduce the release of Pb. The results of this study could provide useful information regarding Fe and Pb cycling in acidic natural and engineered environments.展开更多
In this study,we use the extended finite element method(XFEM)with a consideration of junction enrichment functions to investigate the mechanics of hydraulic fractures related to naturally cemented fractures.In the pro...In this study,we use the extended finite element method(XFEM)with a consideration of junction enrichment functions to investigate the mechanics of hydraulic fractures related to naturally cemented fractures.In the proposed numerical model,the lubrication equation is adopted to describe the fluid flow within fractures.The fluid-solid coupling systems of the hydraulic fracturing problem are solved using the Newton-Raphson method.The energy release rate criterion is used to determine the cross/arrest behavior between a hydraulic fracture(HF)and a cemented natural fracture(NF).The failure patterns and mechanisms of crack propagation at the intersection of natural fractures are discussed.Simulation results show that after crossing an NF,the failure mode along the cemented NF path may change from the tensile regime to the shear or mixed-mode regime.When an advancing HF kinks back toward the matrix,the failure mode may gradually switch back to the tensile-dominated regime.Key factors,including the length of the upper/lower portion of the cemented NF,horizontal stress anisotropy,and the intersection angle of the crack propagation are investigated in detail.An uncemented or partially cemented NF will form a more complex fracture network than a cemented NF.This study provides insight into the formation mechanism of fracture networks in formations that contain cemented NF.展开更多
A systematic analysis has been carried out to investigate the fields of application and interaction mechanism of polymeric carbohydrate, i.e. polysaccharides (including starch, dextrin, cellulose and cellulosic deriva...A systematic analysis has been carried out to investigate the fields of application and interaction mechanism of polymeric carbohydrate, i.e. polysaccharides (including starch, dextrin, cellulose and cellulosic derivatives) on various oxides and salt-type minerals in the article, interaction mechanisms of electrostatic, of hydrogen bonding, and of chemical interaction between polymeric carbohydrate and these minerals are put forward.展开更多
Geo-interfaces refer to the contact surfaces between multiple media within geological strata,as well as the transition zones that regulate the migration of three-phase matter,changes in physical states,and the deforma...Geo-interfaces refer to the contact surfaces between multiple media within geological strata,as well as the transition zones that regulate the migration of three-phase matter,changes in physical states,and the deformation and stability of rock and soil masses.Owing to the combined effects of natural factors and human activities,geo-interfaces play crucial roles in the emergence,propagation,and triggering of geological disasters.Over the past three decades,the material point method(MPM)has emerged as a preferred approach for addressing large deformation problems and simulating soil-water-structure interactions,making it an ideal tool for analyzing geo-interface behaviors.In this review,we offer a systematic summary of the basic concepts,classifications,and main characteristics of the geo-interface,and provide a comprehensive overview of recent advances and developments in simulating geo-interface using the MPM.We further present a brief description of various MPMs for modeling different types of geo-interfaces in geotechnical engineering applications and highlight the existing limitations and future research directions.This study aims to facilitate innovative applications of the MPM in modeling complex geo-interface problems,providing a reference for geotechnical practitioners and researchers.展开更多
Catalytic destruction is an ascendant technology for the abatement of volatile organic compounds(VOCs)originating fromsolvent-based industrial processes.The varied composition tends to influence each VOC’s catalytic ...Catalytic destruction is an ascendant technology for the abatement of volatile organic compounds(VOCs)originating fromsolvent-based industrial processes.The varied composition tends to influence each VOC’s catalytic behavior in the reaction mixture.We investigated the catalytic destruction of multi-component VOCs including dichloromethane(DCM)and ethyl acetate(EA),as representatives from pharmaceutical waste gases,over co-supported HxPO_(4)-RuOx/CeO_(2) catalyst.A mutual inhibitory effect relating to concentrations because of competitive adsorption was verified in the binary VOCs oxidation and EA posed a more negative effect on DCM oxidation owing to EA’s superior adsorption capacity.Preferential adsorption of EA on acidic sites(HxPO_(4)/CeO_(2))promoted DCM activation on basic sites(O^(2−))and the dominating EA oxidation blocked DCM’s access to oxidation centers(RuOx/CeO_(2)),resulting in boosted monochloromethane yield and increased chlorine deposition for DCM oxidation.The impaired redox ability of Ru species owing to chlorine deposition in turn jeopardized deep oxidation of EA and its by-products,leading to increased gaseous by-products such as acetic acid originating fromEA pyrolysis.Notably,DCM at low concentration slightly promoted EA conversion at low temperatures with or without water,consistent with the enhanced EA adsorption in co-adsorption analyses.This was mainly due to that DCM impeded the shielding effect of hydrolysate deposition from rapid EA hydrolysis depending on the decreased acidity.Moreover,water benefited EA hydrolysis but decreased CO_(2) selectivity while the generated water derived from EA was likely to affect DCM transformation.This work may provide theoretical guidance for the promotion of applied catalysts toward industrial applications.展开更多
Atlantic salmon(Salmo salar)represents the primary species in aquaculture.The gut microbiota plays a crucial role in nutrient processing and protection against pathogenic bacteria.Nonetheless,the composition and funct...Atlantic salmon(Salmo salar)represents the primary species in aquaculture.The gut microbiota plays a crucial role in nutrient processing and protection against pathogenic bacteria.Nonetheless,the composition and functionality of the gut microbiota in Salmo salar at different growth stages remain largely unexplored.This study investigated the alterations within the gut microbial communities and their associated metabolites across different growth stages of Salmo salar,specifically when the body weights were 1.0 kg(S1 group),2.0 kg(S2 group),4.0 kg(S3 group),and 6.0 kg(S4 group),using microbiome sequencing and liquid chromatographymass spectrometry(LC-MS)technology.Results indicated significant changes in the gut microbiota and metabolite profiles concurrent with fish growth.Notably,the abundance of Firmicutes decreased,and Proteobacteria increased,resulting in a decreased Firmicutes/Bacteroidetes(F/B)ratio.Concurrently,the abundance of potential pathogenic bacteria such as Stenotrophomonas,Vibrio,Aeromonas,Staphylococcaceae,Enterobacteriaceae,Enterococcaceae,and Haemophilus increased,whereas beneficial bacteria like Lactobacillus and Bacilli decreased.The gut microbiota in the S1 group exhibited an increase in the abundance of beneficial bacteria.Conversely,in the S2,S3,and S4 groups,the prevalence of pathogenic bacteria increased.Metabolic profiling revealed significant upregulation of arachidonic acid(ARA)and taurine in the S2 and S3 groups,while citric acid,riboflavin,and pantothenic acid notably increased in the S4 group.Particularly,several amino acids such as threonine,lysine,and serine in the gut microbiota metabolites were significantly reduced in the S2,S3,and S4 groups,correlating positively with the respective essential amino acid concentrations in muscle tissue.The S1 group exhibited a more active gut microbiota associated with amino acid metabolism,resulting in higher muscle amino acid content.This study identified gut microbiota and its metabolic products at different growth stages of Salmo salar,providing a scientific basis for proactive intervention of gut microbiota and improve the quality of aquatic products.展开更多
Verticillium wilt,caused by the infamous pathogen Verticillium dahliae,presents a primary constraint on cotton cul-tivation worldwide.The complexity of disease resistance in cotton and the largely unexplored interacti...Verticillium wilt,caused by the infamous pathogen Verticillium dahliae,presents a primary constraint on cotton cul-tivation worldwide.The complexity of disease resistance in cotton and the largely unexplored interaction dynamics between the cotton plant host and V.dahliae pathogen pose a crucial predicament for effectively managing cotton Verticillium wilt.Nevertheless,the most cost-effective approach to controlling this disease involves breeding and cul-tivating resistant cotton varieties,demanding a meticulous analysis of the mechanisms underlying cotton’s resistance to Verticillium wilt and the identification of pivotal genes.These aspects constitute focal points in disease-resistance breeding programs.In this review,we comprehensively discuss genetic inheritance associated with Verticillium wilt resistance in cotton,the advancements in molecular markers for disease resistance,the functional investiga-tion of resistance genes in cotton,the analysis of pathogenicity genes in V.dahliae,as well as the intricate interplay between cotton and this fungus.Moreover,we delve into the future prospects of cutting-edge research on cotton Verticillium wilt,aiming to proffer valuable insights for the effective management of this devastating fungus.展开更多
The exploration of unmanned aerial vehicle(UAV)swarm systems represents a focal point in the research of multiagent systems,with the investigation of their fission-fusion behavior holding significant theoretical and p...The exploration of unmanned aerial vehicle(UAV)swarm systems represents a focal point in the research of multiagent systems,with the investigation of their fission-fusion behavior holding significant theoretical and practical value.This review systematically examines the methods for fission-fusion of UAV swarms from the perspective of multi-agent systems,encompassing the composition of UAV swarm systems and fission-fusion conditions,information interaction mechanisms,and existing fission-fusion approaches.Firstly,considering the constituent units of UAV swarms and the conditions influencing fission-fusion,this paper categorizes and introduces the UAV swarm systems.It further examines the effects and limitations of fission-fusion methods across various categories and conditions.Secondly,a comprehensive analysis of the prevalent information interaction mechanisms within UAV swarms is conducted from the perspective of information interaction structures.The advantages and limitations of various mechanisms in the context of fission-fusion behaviors are summarized and synthesized.Thirdly,this paper consolidates the existing implementation research findings related to the fission-fusion behavior of UAV swarms,identifies unresolved issues in fission-fusion research,and discusses potential solutions.Finally,the paper concludes with a comprehensive summary and systematically outlines future research opportunities.展开更多
In the practical slope engineering,the stability of lower sliding mass(region A)with back tensile cracks of the jointed rock slope attracts more attentions,but the upper rock mass(region B)may also be unstable.Therefo...In the practical slope engineering,the stability of lower sliding mass(region A)with back tensile cracks of the jointed rock slope attracts more attentions,but the upper rock mass(region B)may also be unstable.Therefore,in this study,based on the stepped failure mode of bedding jointed rock slopes,considering the influence of the upper rock mass on the lower stepped sliding mass,the improved failure model for analyzing the interaction force(F_(AB))between two regions is constructed,and the safety factors(F_(S))of two regions and whole region are derived.In addition,this paper proposes a method to determine the existence of F_(AB) using their respective acceleration values(a_(A) and a_(B))when regions A and B are unstable.The influences of key parameters on two regions and the whole region are analyzed.The results show that the variation of the F_(AB) and F_(S) of two regions can be obtained accurately based on the improved failure model.The accuracy of the improved failure model is verified by comparative analysis.The research results can explain the interaction mechanism of two regions and the natural phenomenon of slope failure caused by the development of cracks.展开更多
Integrated energy systems(IES)are widely regarded as a key enabler of carbon neutrality,enabling the coordinated use of electricity,heat,and gas to support large-scale renewable integration.Yet their practical deploym...Integrated energy systems(IES)are widely regarded as a key enabler of carbon neutrality,enabling the coordinated use of electricity,heat,and gas to support large-scale renewable integration.Yet their practical deployment still faces major challenges,including rigid thermoelectric coupling,insufficient operational flexibility,and fragmented carbon and certificate market mechanisms.To address these issues,this study proposes a low-carbon economic dispatch model for integrated energy systems(IES)that reduces emissions and costs while improving renewable energy utilization.A coordinated framework integrating carbon capture,utilization,and storage,two-stage power-to-gas,combined heat and power,and ground-source heat pump technologies enhances multi-energy complementarity and overcomes the heat-led constraints of traditional combined heat and power systems.A unified carbon emission trading and green certificate trading mechanism is designed to balance economic and environmental goals through cross-market synergy.To address uncertainty,a distributionally robust chance-constrained model based on Kullback-Leibler divergence is introduced in Scenario 8.The model is solved using the GUROBI solver under multiple scenarios.Simulation results show a cost reduction from$56,166.66 to$25,840.32,carbon emission cuts from 801.38to 440.90 t,and wind/photovoltaic utilization rates reaching 98%,which fully demonstrates the effectiveness of the proposed framework in achieving cost-efficient low-carbon operation of IES.展开更多
Against the backdrop of in-depth globalization and the rise of cultural mutual learning,the international communication of China’s Intangible Cultural Heritage(ICH)has become a key vehicle for enhancing China’s cult...Against the backdrop of in-depth globalization and the rise of cultural mutual learning,the international communication of China’s Intangible Cultural Heritage(ICH)has become a key vehicle for enhancing China’s cultural soft power and engaging in global cultural dialogue.However,in cross-cultural contexts,this communication faces structural dilemmas at multiple levels.From a cross-cultural perspective,this study proposes targeted solutions to address these dilemmas.The ultimate goal is to promote the transformation of China’s ICH international communication from“symbolic display”to“meaning sharing”and from“cultural output”to“value resonance”,thereby enhancing the effectiveness of cross-cultural communication and advancing the global recognition of China’s ICH.展开更多
High complexity and uncertainty of air combat pose significant challenges to target intention prediction.Current interpolation methods for data pre-processing and wrangling have limitations in capturing interrelations...High complexity and uncertainty of air combat pose significant challenges to target intention prediction.Current interpolation methods for data pre-processing and wrangling have limitations in capturing interrelationships among intricate variable patterns.Accordingly,this study proposes a Mogrifier gate recurrent unit-D(Mog-GRU-D)model to address the com-bat target intention prediction issue under the incomplete infor-mation condition.The proposed model directly processes miss-ing data while reducing the independence between inputs and output states.A total of 1200 samples from twelve continuous moments are captured through the combat simulation system,each of which consists of seven dimensional features.To bench-mark the experiment,a missing valued dataset has been gener-ated by randomly removing 20%of the original data.Extensive experiments demonstrate that the proposed model obtains the state-of-the-art performance with an accuracy of 73.25%when dealing with incomplete information.This study provides possi-ble interpretations for the principle of target interactive mecha-nism,highlighting the model’s effectiveness in potential air war-fare implementation.展开更多
0 INTRODUCTION Pressure-stress coupling(PSC)refers to the bidirectional mechanical interaction between pore pressure and in-situ stress within subsurface formations(Hillis,2000).Variations in pore pressure redistribut...0 INTRODUCTION Pressure-stress coupling(PSC)refers to the bidirectional mechanical interaction between pore pressure and in-situ stress within subsurface formations(Hillis,2000).Variations in pore pressure redistribute the stress field,while evolving stress states in turn alter pore pressure.This reciprocity,governed by poroelasticity and multiphysics interactions,underlies a wide spectrum of geomechanical processes,including fracture initiation,fluid migration,reservoir evolution,and fault slip or seismicity(Xu et al.,2020).Conventional theories often treat pressure and stress as independent variables.展开更多
In order to explore the effect mechanism of solvent on the synthesis of the metal organic framework materials, the microscopic interaction between solvent and framework and the effects of N,N-dimethyl-formamide(DMF) o...In order to explore the effect mechanism of solvent on the synthesis of the metal organic framework materials, the microscopic interaction between solvent and framework and the effects of N,N-dimethyl-formamide(DMF) or N-methyl- 2-pyrrolidone(NMP) on solvothermal synthesis of [Zn4O(BDC)3]8 were investigated through a combined DFT and experimental study. XRD and SEM showed that the absorbability of NMP in the pore of [Zn4O(BDC)3]8 was weaker than that of DMF. The thermal decomposition temperature of [Zn4O(BDC)3]8 synthesized in DMF was higher than that in NMP according to TG and FT-IR. In addition, the nitrogen sorption isotherms indicated that NMP improved gas sorption property of [Zn4O(BDC)3]8. The COSMO optimized calculations indicated that the total energy of Zn4O(BDC)3 in NMP was higher than that in DMF, and compared with non-solvent system, the charge of zinc atoms decreased and the charge value was the smallest in NMP. Furthermore, the interaction of DMF, NMP or DEF in [Zn4O(BDC)3]8 crystal model was calculated by DFT method. The results suggested that NMP should be easier to be removed from pore of materials than DMF from the point of view of energy state. It can be concluded that NMP was a favorable solvent to synthesize [Zn4O(BDC)3]8 and the microscopic mechanism was that the binding force between Zn4O(BDC)3 and NMP molecule was weaker than DMF.展开更多
Artificial intelligence(AI)can sometimes resolve difficulties that other advanced technologies and humans cannot.In medical diagnostics,AI has the advantage of processing figure recognition,especially for images with ...Artificial intelligence(AI)can sometimes resolve difficulties that other advanced technologies and humans cannot.In medical diagnostics,AI has the advantage of processing figure recognition,especially for images with similar characteristics that are difficult to distinguish with the naked eye.However,the mechanisms of this advanced technique should be well-addressed to elucidate clinical issues.In this letter,regarding an original study presented by Takayama et al,we suggest that the authors should effectively illustrate the mechanism and detailed procedure that artificial intelligence techniques processing the acquired images,including the recognition of non-obvious difference between the normal parts and pathological ones,which were impossible to be distinguished by naked eyes,such as the basic constitutional elements of pixels and grayscale,special molecules or even some metal ions which involved into the diseases occurrence.展开更多
基金Supported by Joint Research Fund from National Natural Science Foundation of China(NSFC)-Yunnan Province(U0933601)Students Research Fund from Southwest Forestry University(1001)~~
文摘[Objective]This study was to reveal the essence of mechanism about how the alien invasive plants spread.[Method]Species niche and material/energy flow were used as basic research indicators to analyze the intrinsic mechanism of alien plants invasion.[Result]Most of the invasive plants have not been explicitly defined and their effective control methods not brought forward.[Conclusion]Overrun of alien invasive plants depends on whether the niche of a species could be continuously met at spatial level.Based on this we put forward corresponding control measures,proposed an assumption to establish a cylinder-network model and discussed the definition of alien invasive plants.
基金supported by the National Key Research and Development Program of China (2016YFA0203102)the National Natural Science Foundation of China (Nos. 21227012, 21337004, 21507147)
文摘Dissolved organic matter(DOM) is ubiquitous in the environment and has high reactivity.Once engineered nanoparticles(ENPs) are released into natural systems, interactions of DOM with ENPs may significantly affect the fate and transport of ENPs, as well as the bioavailability and toxicity of ENPs to organisms. However, because of the complexity of DOM and the shortage of useful characterization methods, large knowledge gaps exist in our understanding of the interactions between DOM and ENPs. In this article, we systematically reviewed the interactions between DOM and ENPs, discussed the effects of DOM on the environmental behavior of ENPs, and described the changes in bioavailability and toxicity of ENPs caused by DOM. Critical evaluations of published references suggest further need for assessing and predicting the influences of DOM on the transport,transformation, bioavailability, and toxicity of ENPs in the environment.
文摘This review focuses on the occurrence and interactions of engineered nanoparticles(ENPs)and brominated flame retardants(BFRs)such as polybrominated diphenyl ethers(PBDEs)in water systems and the generation of highly complex compounds in the environment.The release of ENPs and BFRs(e.g.PBDEs)to aquatic environments during their usage and disposal are summarised together with their key interaction mechanisms.The major interaction mechanisms including electrostatic,van derWaals,hydrophobic,molecular bridging and steric,hydrogen andπ-bonding,cation bridging and ligand exchange were identified.The presence of ENPs could influence the fate and behaviour of PBDEs through the interactions as well as induced reactions under certain conditions which increases the formation of complex compounds.The interaction leads to alteration of behaviour for PBDEs and their toxic effects to ecological receptors.The intermingled compound(ENPs-BFRs)would show different behaviour from the parental ENPs or BFRs,which are currently lack of investigation.This review provided insights on the interactions of ENPs and BFRs in artificial,environmental water systems and wastewater treatment plants(WWTPs),which are important for a comprehensive risk assessment.
基金supported by the National Natural Science Foundation of China(Nos.21362004,21562013)Subsidy Project for Outstanding Key Laboratory of Guizhou Province in China(20154004)
文摘A series of novel chalcone derivatives that contain the 1,1-dichloropropene moiety was designed and synthesized. Bioactivity assays showed that most of the target compounds exhibited moderate to good antiviral activity against tobacco mosaic virus(TMV) at 500 mg/m L. Among the target compounds,compound 7h showed the highest in vivo inactivation activity against TMV with the EC50 and EC90value of 45.6 and 327.5 mg/m L, respectively, which was similar to that of Ningnanmycin(46.9 and 329.4 mg/m L)and superior to that of Ribavirin(145.1 and 793.1 mg/m L). Meanwhile, the microscale thermophoresis and fluorescence spectroscopy experiments showed that the compound 7h had a strong interaction with the tobacco mosaic virus coat protein.
文摘In this paper, the tropical air-sea interaction is discussed by using a simple air-sea coupled model, in which the inertia-gravity waves are filtered off and only the equatorial Rossby waves are reserved in both the atmosphere and the ocean. There exist two kinds of air-sea interaction waves in the coupled model, that is, the high-frequency fast waves and the low-frequency slow waves. The phase speed of the fast waves is westward and the frequencies are close to those of the equatorial Rossby waves in the atmosphere. The slow waves propagate westward in the part of short wavelengths and eastward in that of long wavelengths. There exist instabilities for both the westward and eastward propagating slow waves. If the fast waves are filtered off, there is little effect on the slow waves which have great influence on the long range process in the tropical air-sea coupled system. According to the tropical air-sea interaction waves we obtain here, a possible explanation to the propagating process of ENSO events is given.
基金supported by the National Natural Science Foundation of China for Distinguished Young Scholars (No. 51825403)the National Natural Science Foundation of China (No. 51904355)the National Key R&D Program of China (No. 2020YFC1909201)。
文摘Lead(Pb) coprecipitation with jarosite is common in natural and engineered environments,such as acid mine drainage(AMD) sites and hydrometallurgical industry. Despite the high relevance for environmental impact, few studies have examined the exact interaction of Pb with jarosite and the dissolution behavior of each phase. In the present work, we demonstrate that Pb mainly interacts with jarosite in four modes, namely incorporation, occlusion,physically mixing, and chemically mixing. For comparison, the four modes of Pb-bearing natrojarosite were synthesized and characterized separately. Batch dissolution experiments were undertaken on these synthetic Pb-bearing natrojarosites under pH_(2) to simulate the AMD environments. The introduction of Pb decreases the final Fe releasing efficiency of jarosite-type compounds from 18.18% to 3.45%-5.01%, showing a remarkable inhibition of their dissolution. For Pb releasing behavior, PbSO_(4) dissolves in preference to Pb-substituted natrojarosite, i.e.,(Na, Pb)-jarosite, which primarily results in the sharp increase of Pb releasing concentration(> 40 mg/L). PbSO_(4) occlusion by jarosite-type compounds can significantly reduce the release of Pb. The results of this study could provide useful information regarding Fe and Pb cycling in acidic natural and engineered environments.
基金financially supported by the National Science Foundation of China(Grant Nos.51804033 and 51936001)Natural Science Foundation of Jiangsu Province(Grant No.BK20170457)+3 种基金Program of Great Wall Scholar(Grant No.CIT&TCD20180313)Jointly Projects of Beijing Natural Science FoundationBeijing Municipal Education Commission(Grant No.KZ201810017023)Beijing Youth Talent Support Program(CIT&TCD201804037).
文摘In this study,we use the extended finite element method(XFEM)with a consideration of junction enrichment functions to investigate the mechanics of hydraulic fractures related to naturally cemented fractures.In the proposed numerical model,the lubrication equation is adopted to describe the fluid flow within fractures.The fluid-solid coupling systems of the hydraulic fracturing problem are solved using the Newton-Raphson method.The energy release rate criterion is used to determine the cross/arrest behavior between a hydraulic fracture(HF)and a cemented natural fracture(NF).The failure patterns and mechanisms of crack propagation at the intersection of natural fractures are discussed.Simulation results show that after crossing an NF,the failure mode along the cemented NF path may change from the tensile regime to the shear or mixed-mode regime.When an advancing HF kinks back toward the matrix,the failure mode may gradually switch back to the tensile-dominated regime.Key factors,including the length of the upper/lower portion of the cemented NF,horizontal stress anisotropy,and the intersection angle of the crack propagation are investigated in detail.An uncemented or partially cemented NF will form a more complex fracture network than a cemented NF.This study provides insight into the formation mechanism of fracture networks in formations that contain cemented NF.
文摘A systematic analysis has been carried out to investigate the fields of application and interaction mechanism of polymeric carbohydrate, i.e. polysaccharides (including starch, dextrin, cellulose and cellulosic derivatives) on various oxides and salt-type minerals in the article, interaction mechanisms of electrostatic, of hydrogen bonding, and of chemical interaction between polymeric carbohydrate and these minerals are put forward.
基金supported by the National Science Fund for Distinguished Young Scholars of China(Grant No.42225702)the National Natural Science Foundation of China(Grant Nos.42461160266 and 52379106).
文摘Geo-interfaces refer to the contact surfaces between multiple media within geological strata,as well as the transition zones that regulate the migration of three-phase matter,changes in physical states,and the deformation and stability of rock and soil masses.Owing to the combined effects of natural factors and human activities,geo-interfaces play crucial roles in the emergence,propagation,and triggering of geological disasters.Over the past three decades,the material point method(MPM)has emerged as a preferred approach for addressing large deformation problems and simulating soil-water-structure interactions,making it an ideal tool for analyzing geo-interface behaviors.In this review,we offer a systematic summary of the basic concepts,classifications,and main characteristics of the geo-interface,and provide a comprehensive overview of recent advances and developments in simulating geo-interface using the MPM.We further present a brief description of various MPMs for modeling different types of geo-interfaces in geotechnical engineering applications and highlight the existing limitations and future research directions.This study aims to facilitate innovative applications of the MPM in modeling complex geo-interface problems,providing a reference for geotechnical practitioners and researchers.
基金supported by the National Natural Science Foundation of China (Nos.21906087 and 52070168)the Key R&D Plan of Zhejiang Province (No.2023C03127)the Fundamental Research Funds for the Central Universities (No.226-2022-00150).
文摘Catalytic destruction is an ascendant technology for the abatement of volatile organic compounds(VOCs)originating fromsolvent-based industrial processes.The varied composition tends to influence each VOC’s catalytic behavior in the reaction mixture.We investigated the catalytic destruction of multi-component VOCs including dichloromethane(DCM)and ethyl acetate(EA),as representatives from pharmaceutical waste gases,over co-supported HxPO_(4)-RuOx/CeO_(2) catalyst.A mutual inhibitory effect relating to concentrations because of competitive adsorption was verified in the binary VOCs oxidation and EA posed a more negative effect on DCM oxidation owing to EA’s superior adsorption capacity.Preferential adsorption of EA on acidic sites(HxPO_(4)/CeO_(2))promoted DCM activation on basic sites(O^(2−))and the dominating EA oxidation blocked DCM’s access to oxidation centers(RuOx/CeO_(2)),resulting in boosted monochloromethane yield and increased chlorine deposition for DCM oxidation.The impaired redox ability of Ru species owing to chlorine deposition in turn jeopardized deep oxidation of EA and its by-products,leading to increased gaseous by-products such as acetic acid originating fromEA pyrolysis.Notably,DCM at low concentration slightly promoted EA conversion at low temperatures with or without water,consistent with the enhanced EA adsorption in co-adsorption analyses.This was mainly due to that DCM impeded the shielding effect of hydrolysate deposition from rapid EA hydrolysis depending on the decreased acidity.Moreover,water benefited EA hydrolysis but decreased CO_(2) selectivity while the generated water derived from EA was likely to affect DCM transformation.This work may provide theoretical guidance for the promotion of applied catalysts toward industrial applications.
基金supported by the Key R&D Program of Shandong Province(No.2021LZGC027)the Shandong Provincial Natural Science Foundation(No.ZR202102250235)+1 种基金the Major Agricultural Application Technology Innovation Projects in Shandong Province(No.SD2019YY 006)the‘First Class Fishery Discipline’Program in Shandong Province,China。
文摘Atlantic salmon(Salmo salar)represents the primary species in aquaculture.The gut microbiota plays a crucial role in nutrient processing and protection against pathogenic bacteria.Nonetheless,the composition and functionality of the gut microbiota in Salmo salar at different growth stages remain largely unexplored.This study investigated the alterations within the gut microbial communities and their associated metabolites across different growth stages of Salmo salar,specifically when the body weights were 1.0 kg(S1 group),2.0 kg(S2 group),4.0 kg(S3 group),and 6.0 kg(S4 group),using microbiome sequencing and liquid chromatographymass spectrometry(LC-MS)technology.Results indicated significant changes in the gut microbiota and metabolite profiles concurrent with fish growth.Notably,the abundance of Firmicutes decreased,and Proteobacteria increased,resulting in a decreased Firmicutes/Bacteroidetes(F/B)ratio.Concurrently,the abundance of potential pathogenic bacteria such as Stenotrophomonas,Vibrio,Aeromonas,Staphylococcaceae,Enterobacteriaceae,Enterococcaceae,and Haemophilus increased,whereas beneficial bacteria like Lactobacillus and Bacilli decreased.The gut microbiota in the S1 group exhibited an increase in the abundance of beneficial bacteria.Conversely,in the S2,S3,and S4 groups,the prevalence of pathogenic bacteria increased.Metabolic profiling revealed significant upregulation of arachidonic acid(ARA)and taurine in the S2 and S3 groups,while citric acid,riboflavin,and pantothenic acid notably increased in the S4 group.Particularly,several amino acids such as threonine,lysine,and serine in the gut microbiota metabolites were significantly reduced in the S2,S3,and S4 groups,correlating positively with the respective essential amino acid concentrations in muscle tissue.The S1 group exhibited a more active gut microbiota associated with amino acid metabolism,resulting in higher muscle amino acid content.This study identified gut microbiota and its metabolic products at different growth stages of Salmo salar,providing a scientific basis for proactive intervention of gut microbiota and improve the quality of aquatic products.
基金supported by National Natural Science Foundation of China(32201752)Xinjiang Tianchi Talents Program (TCYC2023TP02)Key Project of the Natural Science Foundation of Xinjiang Production and Construction Corps (2024DA001)
文摘Verticillium wilt,caused by the infamous pathogen Verticillium dahliae,presents a primary constraint on cotton cul-tivation worldwide.The complexity of disease resistance in cotton and the largely unexplored interaction dynamics between the cotton plant host and V.dahliae pathogen pose a crucial predicament for effectively managing cotton Verticillium wilt.Nevertheless,the most cost-effective approach to controlling this disease involves breeding and cul-tivating resistant cotton varieties,demanding a meticulous analysis of the mechanisms underlying cotton’s resistance to Verticillium wilt and the identification of pivotal genes.These aspects constitute focal points in disease-resistance breeding programs.In this review,we comprehensively discuss genetic inheritance associated with Verticillium wilt resistance in cotton,the advancements in molecular markers for disease resistance,the functional investiga-tion of resistance genes in cotton,the analysis of pathogenicity genes in V.dahliae,as well as the intricate interplay between cotton and this fungus.Moreover,we delve into the future prospects of cutting-edge research on cotton Verticillium wilt,aiming to proffer valuable insights for the effective management of this devastating fungus.
基金supported by the National Natural Science Foundation of China(U20B2042).
文摘The exploration of unmanned aerial vehicle(UAV)swarm systems represents a focal point in the research of multiagent systems,with the investigation of their fission-fusion behavior holding significant theoretical and practical value.This review systematically examines the methods for fission-fusion of UAV swarms from the perspective of multi-agent systems,encompassing the composition of UAV swarm systems and fission-fusion conditions,information interaction mechanisms,and existing fission-fusion approaches.Firstly,considering the constituent units of UAV swarms and the conditions influencing fission-fusion,this paper categorizes and introduces the UAV swarm systems.It further examines the effects and limitations of fission-fusion methods across various categories and conditions.Secondly,a comprehensive analysis of the prevalent information interaction mechanisms within UAV swarms is conducted from the perspective of information interaction structures.The advantages and limitations of various mechanisms in the context of fission-fusion behaviors are summarized and synthesized.Thirdly,this paper consolidates the existing implementation research findings related to the fission-fusion behavior of UAV swarms,identifies unresolved issues in fission-fusion research,and discusses potential solutions.Finally,the paper concludes with a comprehensive summary and systematically outlines future research opportunities.
基金Projects(52208369,52309138,52108320)supported by the National Natural Science Foundation of ChinaProjects(2023NSFSC0284,2025ZNSFSC0409)supported by the Sichuan Science and Technology Program,ChinaProject(U22468214)supported by the Joint Fund Project for Railway Basic Research by the National Natural Science Foundation of China and China State Railway Group Co.,Ltd.
文摘In the practical slope engineering,the stability of lower sliding mass(region A)with back tensile cracks of the jointed rock slope attracts more attentions,but the upper rock mass(region B)may also be unstable.Therefore,in this study,based on the stepped failure mode of bedding jointed rock slopes,considering the influence of the upper rock mass on the lower stepped sliding mass,the improved failure model for analyzing the interaction force(F_(AB))between two regions is constructed,and the safety factors(F_(S))of two regions and whole region are derived.In addition,this paper proposes a method to determine the existence of F_(AB) using their respective acceleration values(a_(A) and a_(B))when regions A and B are unstable.The influences of key parameters on two regions and the whole region are analyzed.The results show that the variation of the F_(AB) and F_(S) of two regions can be obtained accurately based on the improved failure model.The accuracy of the improved failure model is verified by comparative analysis.The research results can explain the interaction mechanism of two regions and the natural phenomenon of slope failure caused by the development of cracks.
文摘Integrated energy systems(IES)are widely regarded as a key enabler of carbon neutrality,enabling the coordinated use of electricity,heat,and gas to support large-scale renewable integration.Yet their practical deployment still faces major challenges,including rigid thermoelectric coupling,insufficient operational flexibility,and fragmented carbon and certificate market mechanisms.To address these issues,this study proposes a low-carbon economic dispatch model for integrated energy systems(IES)that reduces emissions and costs while improving renewable energy utilization.A coordinated framework integrating carbon capture,utilization,and storage,two-stage power-to-gas,combined heat and power,and ground-source heat pump technologies enhances multi-energy complementarity and overcomes the heat-led constraints of traditional combined heat and power systems.A unified carbon emission trading and green certificate trading mechanism is designed to balance economic and environmental goals through cross-market synergy.To address uncertainty,a distributionally robust chance-constrained model based on Kullback-Leibler divergence is introduced in Scenario 8.The model is solved using the GUROBI solver under multiple scenarios.Simulation results show a cost reduction from$56,166.66 to$25,840.32,carbon emission cuts from 801.38to 440.90 t,and wind/photovoltaic utilization rates reaching 98%,which fully demonstrates the effectiveness of the proposed framework in achieving cost-efficient low-carbon operation of IES.
文摘Against the backdrop of in-depth globalization and the rise of cultural mutual learning,the international communication of China’s Intangible Cultural Heritage(ICH)has become a key vehicle for enhancing China’s cultural soft power and engaging in global cultural dialogue.However,in cross-cultural contexts,this communication faces structural dilemmas at multiple levels.From a cross-cultural perspective,this study proposes targeted solutions to address these dilemmas.The ultimate goal is to promote the transformation of China’s ICH international communication from“symbolic display”to“meaning sharing”and from“cultural output”to“value resonance”,thereby enhancing the effectiveness of cross-cultural communication and advancing the global recognition of China’s ICH.
基金supported by the Aeronautical Science Foundation of China(2020Z023053002).
文摘High complexity and uncertainty of air combat pose significant challenges to target intention prediction.Current interpolation methods for data pre-processing and wrangling have limitations in capturing interrelationships among intricate variable patterns.Accordingly,this study proposes a Mogrifier gate recurrent unit-D(Mog-GRU-D)model to address the com-bat target intention prediction issue under the incomplete infor-mation condition.The proposed model directly processes miss-ing data while reducing the independence between inputs and output states.A total of 1200 samples from twelve continuous moments are captured through the combat simulation system,each of which consists of seven dimensional features.To bench-mark the experiment,a missing valued dataset has been gener-ated by randomly removing 20%of the original data.Extensive experiments demonstrate that the proposed model obtains the state-of-the-art performance with an accuracy of 73.25%when dealing with incomplete information.This study provides possi-ble interpretations for the principle of target interactive mecha-nism,highlighting the model’s effectiveness in potential air war-fare implementation.
基金supported by the National Natural Science Foundation of China(Nos.U24B6002,42488101)the Key R&D Program of Shandong Province,China(No.2024CXPT076)the Independent innovation research program of China University of Petroleum(East China)(No.21CX06001A)。
文摘0 INTRODUCTION Pressure-stress coupling(PSC)refers to the bidirectional mechanical interaction between pore pressure and in-situ stress within subsurface formations(Hillis,2000).Variations in pore pressure redistribute the stress field,while evolving stress states in turn alter pore pressure.This reciprocity,governed by poroelasticity and multiphysics interactions,underlies a wide spectrum of geomechanical processes,including fracture initiation,fluid migration,reservoir evolution,and fault slip or seismicity(Xu et al.,2020).Conventional theories often treat pressure and stress as independent variables.
基金Project(51104185)supported by the National Natural Science Foundation of ChinaProject(2010QZZD003)supported by the Key Project of Central South University of Fundamental Research Funds for the Central Universities of China
文摘In order to explore the effect mechanism of solvent on the synthesis of the metal organic framework materials, the microscopic interaction between solvent and framework and the effects of N,N-dimethyl-formamide(DMF) or N-methyl- 2-pyrrolidone(NMP) on solvothermal synthesis of [Zn4O(BDC)3]8 were investigated through a combined DFT and experimental study. XRD and SEM showed that the absorbability of NMP in the pore of [Zn4O(BDC)3]8 was weaker than that of DMF. The thermal decomposition temperature of [Zn4O(BDC)3]8 synthesized in DMF was higher than that in NMP according to TG and FT-IR. In addition, the nitrogen sorption isotherms indicated that NMP improved gas sorption property of [Zn4O(BDC)3]8. The COSMO optimized calculations indicated that the total energy of Zn4O(BDC)3 in NMP was higher than that in DMF, and compared with non-solvent system, the charge of zinc atoms decreased and the charge value was the smallest in NMP. Furthermore, the interaction of DMF, NMP or DEF in [Zn4O(BDC)3]8 crystal model was calculated by DFT method. The results suggested that NMP should be easier to be removed from pore of materials than DMF from the point of view of energy state. It can be concluded that NMP was a favorable solvent to synthesize [Zn4O(BDC)3]8 and the microscopic mechanism was that the binding force between Zn4O(BDC)3 and NMP molecule was weaker than DMF.
基金Supported by the Dean Responsible Project of Gansu Medical College,No.GY-2023FZZ01University Teachers Innovation Fund Project of Gansu Province,No.2023A-182and Key Research Project of Pingliang Science and Technology,No.PL-STK-2021A-004.
文摘Artificial intelligence(AI)can sometimes resolve difficulties that other advanced technologies and humans cannot.In medical diagnostics,AI has the advantage of processing figure recognition,especially for images with similar characteristics that are difficult to distinguish with the naked eye.However,the mechanisms of this advanced technique should be well-addressed to elucidate clinical issues.In this letter,regarding an original study presented by Takayama et al,we suggest that the authors should effectively illustrate the mechanism and detailed procedure that artificial intelligence techniques processing the acquired images,including the recognition of non-obvious difference between the normal parts and pathological ones,which were impossible to be distinguished by naked eyes,such as the basic constitutional elements of pixels and grayscale,special molecules or even some metal ions which involved into the diseases occurrence.