In the past three decades, numerous papers have bee n publishedon the dynamics of rotating discs. most of them have focused on the ma thematical modeling and solution for a specific interactive force, such as a n elas...In the past three decades, numerous papers have bee n publishedon the dynamics of rotating discs. most of them have focused on the ma thematical modeling and solution for a specific interactive force, such as a n elastic force produced by a stationary spring or a damping force from a statio nary viscous damper. Few of them have looked into the instability mechanisms. This study has established a generalized approach to investigate the instability mechanisms that are involved in the interaction between a rotating and an arbit rary interactive force. An energy flux equation has been developed, which leads to the following conclusions: (1) The possibility of the occurrence of instability due to any interactive forc es may be identified based on the energy flux analysis, even without solving equ ations. (2) Instabilities will occur if the interactive forces are in phase with the vel ocity measured at the interactive point from the coordinates rotating with the d isc. (3) Instability cannot occur when a rotating disc is subjected to a stationary c onstant lateral force, but a stationary harmonic lateral force, a moving constan t lateral force or a moving harmonic lateral force may cause instability. (4) Conservative forces may only cause coupling instability associated with two modes, and non-conservative forces usually cause terminal instability where onl y one mode is involved.展开更多
Dear Editor,This letter proposes a novel Nash bargaining solution-based multiobjective model predictive control(MPC)scheme to deal with the interaction force control and the path-following problem of the constrained i...Dear Editor,This letter proposes a novel Nash bargaining solution-based multiobjective model predictive control(MPC)scheme to deal with the interaction force control and the path-following problem of the constrained interactive robot.Considering the elastic interaction force model,a mechanical trade-off always exists between the interaction force and position,which means that neither force nor path following can satisfy their desired demands completely.Based on this consideration,two irreconcilable control specifications,the force object function and the position track object function,are proposed,and a new multi-objective MPC scheme is then designed.展开更多
The adsorption of dedecyltrimethylammoium chloride(DTAC) and hexadecyltrimethylammoium chloride(CTAC) on muscovite mica substrates was examined using atomic force microscopy(AFM). Adsorption morphology images and inte...The adsorption of dedecyltrimethylammoium chloride(DTAC) and hexadecyltrimethylammoium chloride(CTAC) on muscovite mica substrates was examined using atomic force microscopy(AFM). Adsorption morphology images and interaction forces of cationic surfactants at solid-solution interfaces were measured in tapping mode and Pico Force mode, respectively. The images demonstrated that the adsorbed structure was varied by a variety of surfactant concentrations. The adsorbed layer on mica was monolayer at first, and then became bilayer. A striped adsorbed structure was observed in a higher concentration of CTAC,which could not be found in any other concentrations of DTAC. For force measurements, the repulsive force was exponentially decreasing with the concentration increasing till a net attractive force appeared. A largest attractive force could be observed at a certain concentration, which was close to the point of charge neutralization. The results also showed a significant impact of hydrocarbon chain length on adsorption. An adsorption simulation was established to give a clear understanding of the interaction between cationic surfactants and mica.展开更多
The parallel processing based on the free running model test was adopted to predict the interaction force coefficients (flow straightening coefficient and wake fraction) of ship maneuvering. And the multipopulation ...The parallel processing based on the free running model test was adopted to predict the interaction force coefficients (flow straightening coefficient and wake fraction) of ship maneuvering. And the multipopulation genetic algorithm (MPGA) based on real coding that can contemporarily process the data of free running model and simulation of ship maneuvering was applied to solve the problem. Accordingly the optimal individual was obtained using the method of genetic algorithm. The parallel processing of multiopulation solved the prematurity in the identification for single population, meanwhile, the parallel processing of the data of ship maneuvering (turning motion and zigzag motion) is an attempt to solve the coefficient drift problem. In order to validate the method, the interaction force coefficients were verified by the procedure and these coefficients measured were compared with those ones identified. The maximum error is less than 5%, and the identification is an effective method.展开更多
A comprehension of railway dynamic behavior implies the measure of wheel-rail contact forces which are affected by disturbances and errors that are often difficult to be quantified. In this study, a benchmark test cas...A comprehension of railway dynamic behavior implies the measure of wheel-rail contact forces which are affected by disturbances and errors that are often difficult to be quantified. In this study, a benchmark test case is proposed, and a bogie with a layout used on some European locomotives such as SIEMENS El90 is studied. In this layout, an additional shaft on which brake disks are installed is used to transmit the braking torque to the wheelset through a single-stage gearbox. Using a mixed approach based on finite element techniques and statistical considerations, it is possible to evaluate an optimal layout for strain gauge positioning and to optimize the measurement system to diminish the effects of noise and disturbance. We also conducted preliminary evaluations on the precision and frequency response of the proposed system.展开更多
It is very difficult,for the component-type ship mathematical model,to estimate the interaction force coefficients among the hull,propeller and rudder. Some coefficients such as wake fraction and flow straightening co...It is very difficult,for the component-type ship mathematical model,to estimate the interaction force coefficients among the hull,propeller and rudder. Some coefficients such as wake fraction and flow straightening coefficient were studied from the model tests in diffierent loading conditions and the normal force of rudder was tested in captive model tests to obtain the coefficients. From these results of the tests,the flow straightening coefficients increase with the increase of trims or drafts. Similarly,wake fraction coefficients are larger for the large drafts,however,become small as the trims increase. The resistance is obviously different in fully loaded condition with the trims by stern,however ,the difference is not evident when the draft decreases and the bulbous bow is above the water surface.展开更多
There is an intrinsic traction force in the technological development which has various manifestations. It is from nonlinear interaction that occurs among the essential elements of technology and among the relevant te...There is an intrinsic traction force in the technological development which has various manifestations. It is from nonlinear interaction that occurs among the essential elements of technology and among the relevant technology. It is not the only decisive factor but to interweave with other tensions in the development of technology.展开更多
Motion intention recognition is considered the key technology for enhancing the training effectiveness of upper limb rehabilitation robots for stroke patients,but traditional recognition systems are difficult to simul...Motion intention recognition is considered the key technology for enhancing the training effectiveness of upper limb rehabilitation robots for stroke patients,but traditional recognition systems are difficult to simultaneously balance real-time performance and reliability.To achieve real-time and accurate upper limb motion intention recognition,a multi-modal fusion method based on surface electromyography(sEMG)signals and arrayed flexible thin-film pressure(AFTFP)sensors was proposed.Through experimental tests on 10 healthy subjects(5 males and 5 females,age 23±2 years),sEMG signals and human-machine interaction force(HMIF)signals were collected during elbow flexion,extension,and shoulder internal and external rotation.The AFTFP signals based on dynamic calibration compensation and the sEMG signals were processed for feature extraction and fusion,and the recognition performance of single signals and fused signals was compared using a support vector machine(SVM).The experimental results showed that the sEMG signals consistently appeared 175±25 ms earlier than the HMIF signals(p<0.01,paired t-test).In offline conditions,the recognition accuracy of the fused signals exceeded 99.77%across different time windows.Under a 0.1 s time window,the real-time recognition accuracy of the fused signals was 14.1%higher than that of the single sEMG signal,and the system’s end-to-end delay was reduced to less than 100 ms.The AFTFP sensor is applied to motion intention recognition for the first time.And its low-cost,high-density array design provided an innovative solution for rehabilitation robots.The findings demonstrate that the AFTFP sensor adopted in this study effectively enhances intention recognition performance.The fusion of its output HMIF signals with sEMG signals combines the advantages of both modalities,enabling real-time and accurate motion intention recognition.This provides efficient command output for human-machine interaction in scenarios such as stroke rehabilitation.展开更多
The flotation of diasporic bauxite is to separate diaspore(valuable mineral)from aluminosilicate minerals(gangue minerals,mainly including kaolinite,illite and pyrophyllite),and the microscopic interaction force betwe...The flotation of diasporic bauxite is to separate diaspore(valuable mineral)from aluminosilicate minerals(gangue minerals,mainly including kaolinite,illite and pyrophyllite),and the microscopic interaction force between the two types of minerals and air bubbles determines the separation efficiency.In this paper,based on the extended Derjaguin-Landau-Verwey-Overbeek(DLVO)theory,the van der Waals,electrostatic and hydrophobic interaction between particles of the four minerals mentioned above and air bubbles in collectorless solution were calculated first,and then diaspore and kaolinite were taken as examples to analyze the influence of various factors such as electrolyte concentration,mineral particle size,air bubble size,collector type(dodecylamine hydrochloride(DAH)and sodium oleate(NaOL))and concentration,and pulp pH on the interactions between the particles of valuable mineral and gangue minerals and air bubbles.The results showed that the total extended DLVO interactions between the four minerals and air bubbles were repulsive in most cases in collectorless solution.The increase in electrolyte concentration reduced the interaction force or even changed the direction of the force under certain circumstances.The addition of DAH and NaOL can reduce the adhesion energy barrier of kaolinitebubble and diaspore-bubble respectively.Each type of minerals exhibited a specific interface interaction response with air bubbles in each collector with different pH values.The research results have theoretical guiding significance for the optimization and directional control of diasporic bauxite flotation conditions.展开更多
In order to enhance the authenticity and accuracy of passenger evacuation simulation in ships, a new multi-grid model was proposed on the basis of a traditional cellular automata model. In the new model finer lattices...In order to enhance the authenticity and accuracy of passenger evacuation simulation in ships, a new multi-grid model was proposed on the basis of a traditional cellular automata model. In the new model finer lattices were used, interaction of force among pedestrians or between pedestrians and constructions was considered, and static floor fields in a multi-level exit environment were simplified into cabin and exit static floor fields. Compared with the traditional cellular automata model, the multi-grid model enhanced the continuity of the passengers'track and the precision of the boundary qualifications. The functions of the dislocation distribution of passengers as well as partial overlap of tracks due to congestion were realized. Furthermore, taking the typical cabin environment as an example, the two models were used to analyze passenger evacuation under the same conditions. It was found that the laws of passenger evacuation simulated by the two models are similar, while the simulation's authenticity and accuracy are enhanced by the multi-grid model.展开更多
Understanding the regulatory mechanism of self-assembly processes is a necessity to modulate nanostructures and their properties. Herein, we have studied the mechanism of self-assembly in the C3 symmetric 1,3,5-benzen...Understanding the regulatory mechanism of self-assembly processes is a necessity to modulate nanostructures and their properties. Herein, we have studied the mechanism of self-assembly in the C3 symmetric 1,3,5-benzentricarboxylic amino acid methyl ester enantiomers(TPE) in a mixed solvent system consisting of methanol and water. The resultant chiral structure was used for chiral recognition. The formation of chiral structures from the synergistic effect of multiple noncovalent interaction forces was confirmed by various techniques. Molecular dynamics simulations were used to characterize the time evolution of TPE structure and properties in solution. The theoretical results were consistent with the experimental results. Furthermore, the chiral structure assembled by the building blocks of TPE molecules was highly stereoselective for diamine compounds.展开更多
Based on the single-chain structure model of magnetorheological fluids, a formu la for the calculation of shear stresses was established. The interaction force of two magnetic particles in an infinite single-chain wa...Based on the single-chain structure model of magnetorheological fluids, a formu la for the calculation of shear stresses was established. The interaction force of two magnetic particles in an infinite single-chain was deduced using a new theoretical model which is founded on Ampere' molecular curr ent hypothesis, dipole theory and Ampere' law. Furthermore, the resultant force on a particle was then deduced by taking into account of the action caused by al l the other particles in the single-chain. A predictive formula for shear stres ses was made corresponding to the case that MR fluids were sheared by a small an gle and the calculating results fit well on the order with the yield stresses of the commercial MR fluids.展开更多
A theoretical model based on BCT lattice structure was developed.Resultant force in the BCT lattice structure was deduced,following the interaction force of two kinds of magnetic particles.According to empirical FroHl...A theoretical model based on BCT lattice structure was developed.Resultant force in the BCT lattice structure was deduced,following the interaction force of two kinds of magnetic particles.According to empirical FroHlich-Kermelly law,the relationship between the magnetic induction and the magnetic field was discussed,and a predictive formula of shear stresses of the BCT lattice structure model was established for the case of small shear deformation.Compared with the experimental data for different particle volume fractions,the theoretical results of the shear stress indicate the effects of the saturation magnetization and the external magnetic field on the shear stress.展开更多
The paper analyze the polarization of study dielectric that produced field by dipole, medium field plays an important role in electromagnetic wave radiation. The electric field expression for electric dipole electric ...The paper analyze the polarization of study dielectric that produced field by dipole, medium field plays an important role in electromagnetic wave radiation. The electric field expression for electric dipole electric field distribution in ordinary textbooks only give a special direction, This paper introduces in detail the formula of the electric dipole in the space of an arbitrary point excitation electric field, and use computer sottware to simulate the distribution pattern of electric dipole, and gives some typical figures for reference.展开更多
Studies of interactions between wind and saltating particles (i.e., the wind-saltation interaction) are usually conducted without consideration of the downwind air pressure gradient. However, in a wind tunnel with l...Studies of interactions between wind and saltating particles (i.e., the wind-saltation interaction) are usually conducted without consideration of the downwind air pressure gradient. However, in a wind tunnel with limited size, this gradient is required to maintain the movement of the saltation cloud. Attempts are made to investigate the effects of the downwind air pressure gradient on the wind-saltation interaction in a saltation boundary layer based on the experimental results from a wind tunnel with a relatively small cross-sectional area. The wind-saltation interaction is characterized by airborne stress, grain-borne stress, and the force exerted on the wind by the saltation cloud. Basic equations were developed for wind-saltation interactions without and with a downwind air pressure gradient. The results reveal that unacceptable values of negative grain-borne stress and negative force exerted on the wind by the saltation cloud are obtained if the downwind air pressure gradient is ignored. When this air pressure gradient is defined using the measured wind velocity profiles in the presence of saltation and the downwind air pressure gradient is taken into account, reasonable values for grain-borne stress and the force exerted on the wind by the saltation cloud are obtained. These results suggest that attention must be paid to the effects of downwind air pressure gradients when studying the wind-saltation interaction in a wind tunnel. Consideration of the downwind air pressure gradient, inertial forces, and other unidentified variables will provide a more thorough understanding of the interactions within a saltation boundary layer.展开更多
Based on the principle of vehicle-track coupling dynamics, SIMPACK multi-body dynamics software is used to establish a C80 wagon line-coupled multi-body dynamics model with 73 degrees of freedom. And the reasonablenes...Based on the principle of vehicle-track coupling dynamics, SIMPACK multi-body dynamics software is used to establish a C80 wagon line-coupled multi-body dynamics model with 73 degrees of freedom. And the reasonableness of the line-coupled dynamics model is verified by using the maximum residual acceleration, the nonlinear critical speed of the wagon. The experimental results show that the established vehicle line coupling dynamics model meets the requirements of vehicle line coupling dynamics modeling.展开更多
The discrete element method(DEM)model calculates interaction forces between each pair of particles.However,it becomes computational expensive especially when the number of particles is large.In this study,a novel arti...The discrete element method(DEM)model calculates interaction forces between each pair of particles.However,it becomes computational expensive especially when the number of particles is large.In this study,a novel artificial neural network(ANN)model is proposed to replace the model of interaction forces between multiple particles in DEM including contact force and electrostatic force.The ANN model combines the residual network(ResNet)with the physics informed neural network(PINN).The physical loss term is derived from the Newton's third law about internal forces in multi-particle system.The performance of the ANN model is evaluated based on the DEM simulation data of 100,200,and 300-particle system in a wall-bounded 2D swirling flow.It is found that the computing time is reduced nearly an order of magnitude(7–10 times)compared with the DEM model.In addition,the accuracy of the ANN model achieves the R^(2)>0.93 with only≤2%particles are not well predicted.展开更多
Robot teleoperation plays an important role in industrial manufacturing in unknown and dangerous environments beyond human reach.In telerobotic manufacturing tasks,environmental interaction forces may vary significant...Robot teleoperation plays an important role in industrial manufacturing in unknown and dangerous environments beyond human reach.In telerobotic manufacturing tasks,environmental interaction forces may vary significantly from task to task.Therefore,it is crucial to provide operators with the specific proportional feedback of environmental interaction forces to enhance their environmental awareness and manipulation capabilities.However,variable time delays and various scales of environmental interaction force feedback seriously affect the system stability,which should be rigorously addressed when designing control parameters.To cope with these difficulties,a position and scaled force tracking control framework is proposed and the LyapunovKrasovskii theory is used to obtain a simple algebraic stability criterion with the scaling factor of the environmental interaction force feedback.In addition,a low-pass filter-based radial basis function neural network is designed to avoid the effect of the measurement noise and the sudden change of the non-passive environmental interaction force on the system stability.Compared with different controllers in various telerobotic manufacturing tasks such as heavy lifting,cutting,and polishing,our proposed method achieves better position and scaled force tracking performance.展开更多
Fluid-particle systems as commonly encountered in chemical, metallurgical and petroleum industries are mostly polydisperse in nature. However, the relations used to describe fluid-particle interactions are originally ...Fluid-particle systems as commonly encountered in chemical, metallurgical and petroleum industries are mostly polydisperse in nature. However, the relations used to describe fluid-particle interactions are originally derived from monodisperse systems, with ad hoc modifications to account for polydispersity. In previous work it was shown that for bidisperse systems with moderate diameter ratios of 1:2 to 1:4, this approach leads to discrepancies, and a correction factor is needed. In this work we demonstrate that this correction factor also holds for more extreme diameter ratios of 1:5, 1:7 and 1: 10, although the force on the large particles is slightly overestimated when using the correction factor. The main origin of the correction is that the void surrounding the large particles becomes less in case ofa bidisperse mixture, as compared to a monodisperse system with the same volume fraction. We further investigated this discrepancy by calculating the volume per particle by means of Voronoi tessellation.展开更多
Exoskeleton robots and their control methods have been extensively developed to aid post-stroke rehabilitation. Most of the existing methods using linear controllers are designed for position control and are not suita...Exoskeleton robots and their control methods have been extensively developed to aid post-stroke rehabilitation. Most of the existing methods using linear controllers are designed for position control and are not suitable for human-machine interaction(HMI) force control, as the interaction system between the human body and exoskeleton is uncertain and nonlinear. We present an approach for HMI force control via model reference adaptive impedance control(MRAIC) to solve this problem in case of index finger exoskeleton control. First, a dynamic HMI model, which is based on a position control inner loop, is formulated. Second, the theoretical MRAC framework is implemented in the control system. Then, the adaptive controllers are designed according to the Lyapunov stability theory. To verify the performance of the proposed method, we compare it with a proportional-integral-derivative(PID) method in the time domain with real experiments and in the frequency domain with simulations. The results illustrate the effectiveness and robustness of the proposed method in solving the nonlinear HMI force control problem in hand exoskeleton.展开更多
文摘In the past three decades, numerous papers have bee n publishedon the dynamics of rotating discs. most of them have focused on the ma thematical modeling and solution for a specific interactive force, such as a n elastic force produced by a stationary spring or a damping force from a statio nary viscous damper. Few of them have looked into the instability mechanisms. This study has established a generalized approach to investigate the instability mechanisms that are involved in the interaction between a rotating and an arbit rary interactive force. An energy flux equation has been developed, which leads to the following conclusions: (1) The possibility of the occurrence of instability due to any interactive forc es may be identified based on the energy flux analysis, even without solving equ ations. (2) Instabilities will occur if the interactive forces are in phase with the vel ocity measured at the interactive point from the coordinates rotating with the d isc. (3) Instability cannot occur when a rotating disc is subjected to a stationary c onstant lateral force, but a stationary harmonic lateral force, a moving constan t lateral force or a moving harmonic lateral force may cause instability. (4) Conservative forces may only cause coupling instability associated with two modes, and non-conservative forces usually cause terminal instability where onl y one mode is involved.
基金supported by the National Natural Science Foundation of China(62303095)the Natural Science Foundation of Sichuan Province(2023NSFSC0872).
文摘Dear Editor,This letter proposes a novel Nash bargaining solution-based multiobjective model predictive control(MPC)scheme to deal with the interaction force control and the path-following problem of the constrained interactive robot.Considering the elastic interaction force model,a mechanical trade-off always exists between the interaction force and position,which means that neither force nor path following can satisfy their desired demands completely.Based on this consideration,two irreconcilable control specifications,the force object function and the position track object function,are proposed,and a new multi-objective MPC scheme is then designed.
基金Project(50974134)supported by the National Natural Science Foundation of China
文摘The adsorption of dedecyltrimethylammoium chloride(DTAC) and hexadecyltrimethylammoium chloride(CTAC) on muscovite mica substrates was examined using atomic force microscopy(AFM). Adsorption morphology images and interaction forces of cationic surfactants at solid-solution interfaces were measured in tapping mode and Pico Force mode, respectively. The images demonstrated that the adsorbed structure was varied by a variety of surfactant concentrations. The adsorbed layer on mica was monolayer at first, and then became bilayer. A striped adsorbed structure was observed in a higher concentration of CTAC,which could not be found in any other concentrations of DTAC. For force measurements, the repulsive force was exponentially decreasing with the concentration increasing till a net attractive force appeared. A largest attractive force could be observed at a certain concentration, which was close to the point of charge neutralization. The results also showed a significant impact of hydrocarbon chain length on adsorption. An adsorption simulation was established to give a clear understanding of the interaction between cationic surfactants and mica.
基金the Knowledge-based Ship-designHyper-integrated Platform (KSHIP) of Ministry ofEducation, China
文摘The parallel processing based on the free running model test was adopted to predict the interaction force coefficients (flow straightening coefficient and wake fraction) of ship maneuvering. And the multipopulation genetic algorithm (MPGA) based on real coding that can contemporarily process the data of free running model and simulation of ship maneuvering was applied to solve the problem. Accordingly the optimal individual was obtained using the method of genetic algorithm. The parallel processing of multiopulation solved the prematurity in the identification for single population, meanwhile, the parallel processing of the data of ship maneuvering (turning motion and zigzag motion) is an attempt to solve the coefficient drift problem. In order to validate the method, the interaction force coefficients were verified by the procedure and these coefficients measured were compared with those ones identified. The maximum error is less than 5%, and the identification is an effective method.
文摘A comprehension of railway dynamic behavior implies the measure of wheel-rail contact forces which are affected by disturbances and errors that are often difficult to be quantified. In this study, a benchmark test case is proposed, and a bogie with a layout used on some European locomotives such as SIEMENS El90 is studied. In this layout, an additional shaft on which brake disks are installed is used to transmit the braking torque to the wheelset through a single-stage gearbox. Using a mixed approach based on finite element techniques and statistical considerations, it is possible to evaluate an optimal layout for strain gauge positioning and to optimize the measurement system to diminish the effects of noise and disturbance. We also conducted preliminary evaluations on the precision and frequency response of the proposed system.
基金the Foundation Item "Knowledge-based Ship-design Hyper-integrated Platform(KSHIP)" of Ministry of Education of China
文摘It is very difficult,for the component-type ship mathematical model,to estimate the interaction force coefficients among the hull,propeller and rudder. Some coefficients such as wake fraction and flow straightening coefficient were studied from the model tests in diffierent loading conditions and the normal force of rudder was tested in captive model tests to obtain the coefficients. From these results of the tests,the flow straightening coefficients increase with the increase of trims or drafts. Similarly,wake fraction coefficients are larger for the large drafts,however,become small as the trims increase. The resistance is obviously different in fully loaded condition with the trims by stern,however ,the difference is not evident when the draft decreases and the bulbous bow is above the water surface.
文摘There is an intrinsic traction force in the technological development which has various manifestations. It is from nonlinear interaction that occurs among the essential elements of technology and among the relevant technology. It is not the only decisive factor but to interweave with other tensions in the development of technology.
基金supported by Guangdong Basic and Applied Basic Research Foundation(No.2024A1515012810).
文摘Motion intention recognition is considered the key technology for enhancing the training effectiveness of upper limb rehabilitation robots for stroke patients,but traditional recognition systems are difficult to simultaneously balance real-time performance and reliability.To achieve real-time and accurate upper limb motion intention recognition,a multi-modal fusion method based on surface electromyography(sEMG)signals and arrayed flexible thin-film pressure(AFTFP)sensors was proposed.Through experimental tests on 10 healthy subjects(5 males and 5 females,age 23±2 years),sEMG signals and human-machine interaction force(HMIF)signals were collected during elbow flexion,extension,and shoulder internal and external rotation.The AFTFP signals based on dynamic calibration compensation and the sEMG signals were processed for feature extraction and fusion,and the recognition performance of single signals and fused signals was compared using a support vector machine(SVM).The experimental results showed that the sEMG signals consistently appeared 175±25 ms earlier than the HMIF signals(p<0.01,paired t-test).In offline conditions,the recognition accuracy of the fused signals exceeded 99.77%across different time windows.Under a 0.1 s time window,the real-time recognition accuracy of the fused signals was 14.1%higher than that of the single sEMG signal,and the system’s end-to-end delay was reduced to less than 100 ms.The AFTFP sensor is applied to motion intention recognition for the first time.And its low-cost,high-density array design provided an innovative solution for rehabilitation robots.The findings demonstrate that the AFTFP sensor adopted in this study effectively enhances intention recognition performance.The fusion of its output HMIF signals with sEMG signals combines the advantages of both modalities,enabling real-time and accurate motion intention recognition.This provides efficient command output for human-machine interaction in scenarios such as stroke rehabilitation.
基金supported by the National Natural Science Foundation of China(No.51904240,51904239,52104268)the Natural Science Foundation of Shaanxi Province(No.2020JQ-752,2021JQ-571)+3 种基金the Postdoctoral Science Foundation of China(No.2019M653877XB)the Outstanding Youth Science Foundation of Xi’an University of Science and Technology(No.2019YQ3-08)the Huo Yingdong Education Foundation(No.171102)the 2019 Merit-based Science and Technology Project Foundation for Shannxi Overseas-educated Scholars(No.14).
文摘The flotation of diasporic bauxite is to separate diaspore(valuable mineral)from aluminosilicate minerals(gangue minerals,mainly including kaolinite,illite and pyrophyllite),and the microscopic interaction force between the two types of minerals and air bubbles determines the separation efficiency.In this paper,based on the extended Derjaguin-Landau-Verwey-Overbeek(DLVO)theory,the van der Waals,electrostatic and hydrophobic interaction between particles of the four minerals mentioned above and air bubbles in collectorless solution were calculated first,and then diaspore and kaolinite were taken as examples to analyze the influence of various factors such as electrolyte concentration,mineral particle size,air bubble size,collector type(dodecylamine hydrochloride(DAH)and sodium oleate(NaOL))and concentration,and pulp pH on the interactions between the particles of valuable mineral and gangue minerals and air bubbles.The results showed that the total extended DLVO interactions between the four minerals and air bubbles were repulsive in most cases in collectorless solution.The increase in electrolyte concentration reduced the interaction force or even changed the direction of the force under certain circumstances.The addition of DAH and NaOL can reduce the adhesion energy barrier of kaolinitebubble and diaspore-bubble respectively.Each type of minerals exhibited a specific interface interaction response with air bubbles in each collector with different pH values.The research results have theoretical guiding significance for the optimization and directional control of diasporic bauxite flotation conditions.
基金Supported by the Ph.D Programs Foundation of Ministryof Education of China under Grant No.201023041108the Fundamental Research Funds for the Central Universities under Grant No.61004008
文摘In order to enhance the authenticity and accuracy of passenger evacuation simulation in ships, a new multi-grid model was proposed on the basis of a traditional cellular automata model. In the new model finer lattices were used, interaction of force among pedestrians or between pedestrians and constructions was considered, and static floor fields in a multi-level exit environment were simplified into cabin and exit static floor fields. Compared with the traditional cellular automata model, the multi-grid model enhanced the continuity of the passengers'track and the precision of the boundary qualifications. The functions of the dislocation distribution of passengers as well as partial overlap of tracks due to congestion were realized. Furthermore, taking the typical cabin environment as an example, the two models were used to analyze passenger evacuation under the same conditions. It was found that the laws of passenger evacuation simulated by the two models are similar, while the simulation's authenticity and accuracy are enhanced by the multi-grid model.
基金supported by the National Natural Science Foundation of China(No.21962003)the Natural Science Foundation of Jiangsu Province(No.BK20190056)the“Fundamental Research Funds for the Central Universities”(No.021514380014)。
文摘Understanding the regulatory mechanism of self-assembly processes is a necessity to modulate nanostructures and their properties. Herein, we have studied the mechanism of self-assembly in the C3 symmetric 1,3,5-benzentricarboxylic amino acid methyl ester enantiomers(TPE) in a mixed solvent system consisting of methanol and water. The resultant chiral structure was used for chiral recognition. The formation of chiral structures from the synergistic effect of multiple noncovalent interaction forces was confirmed by various techniques. Molecular dynamics simulations were used to characterize the time evolution of TPE structure and properties in solution. The theoretical results were consistent with the experimental results. Furthermore, the chiral structure assembled by the building blocks of TPE molecules was highly stereoselective for diamine compounds.
基金Funded by the"863"Hi tech Research and Development Program of China(No.2001AA33P020)
文摘Based on the single-chain structure model of magnetorheological fluids, a formu la for the calculation of shear stresses was established. The interaction force of two magnetic particles in an infinite single-chain was deduced using a new theoretical model which is founded on Ampere' molecular curr ent hypothesis, dipole theory and Ampere' law. Furthermore, the resultant force on a particle was then deduced by taking into account of the action caused by al l the other particles in the single-chain. A predictive formula for shear stres ses was made corresponding to the case that MR fluids were sheared by a small an gle and the calculating results fit well on the order with the yield stresses of the commercial MR fluids.
基金the Ministry of Education of China(No.NCET-04-0725 and PCSIRT)
文摘A theoretical model based on BCT lattice structure was developed.Resultant force in the BCT lattice structure was deduced,following the interaction force of two kinds of magnetic particles.According to empirical FroHlich-Kermelly law,the relationship between the magnetic induction and the magnetic field was discussed,and a predictive formula of shear stresses of the BCT lattice structure model was established for the case of small shear deformation.Compared with the experimental data for different particle volume fractions,the theoretical results of the shear stress indicate the effects of the saturation magnetization and the external magnetic field on the shear stress.
文摘The paper analyze the polarization of study dielectric that produced field by dipole, medium field plays an important role in electromagnetic wave radiation. The electric field expression for electric dipole electric field distribution in ordinary textbooks only give a special direction, This paper introduces in detail the formula of the electric dipole in the space of an arbitrary point excitation electric field, and use computer sottware to simulate the distribution pattern of electric dipole, and gives some typical figures for reference.
基金the funding received from the Natural Science Foundation of China (40638038)
文摘Studies of interactions between wind and saltating particles (i.e., the wind-saltation interaction) are usually conducted without consideration of the downwind air pressure gradient. However, in a wind tunnel with limited size, this gradient is required to maintain the movement of the saltation cloud. Attempts are made to investigate the effects of the downwind air pressure gradient on the wind-saltation interaction in a saltation boundary layer based on the experimental results from a wind tunnel with a relatively small cross-sectional area. The wind-saltation interaction is characterized by airborne stress, grain-borne stress, and the force exerted on the wind by the saltation cloud. Basic equations were developed for wind-saltation interactions without and with a downwind air pressure gradient. The results reveal that unacceptable values of negative grain-borne stress and negative force exerted on the wind by the saltation cloud are obtained if the downwind air pressure gradient is ignored. When this air pressure gradient is defined using the measured wind velocity profiles in the presence of saltation and the downwind air pressure gradient is taken into account, reasonable values for grain-borne stress and the force exerted on the wind by the saltation cloud are obtained. These results suggest that attention must be paid to the effects of downwind air pressure gradients when studying the wind-saltation interaction in a wind tunnel. Consideration of the downwind air pressure gradient, inertial forces, and other unidentified variables will provide a more thorough understanding of the interactions within a saltation boundary layer.
文摘Based on the principle of vehicle-track coupling dynamics, SIMPACK multi-body dynamics software is used to establish a C80 wagon line-coupled multi-body dynamics model with 73 degrees of freedom. And the reasonableness of the line-coupled dynamics model is verified by using the maximum residual acceleration, the nonlinear critical speed of the wagon. The experimental results show that the established vehicle line coupling dynamics model meets the requirements of vehicle line coupling dynamics modeling.
基金support from National Natural Science Foundation of China(grant No.22308212)Science and Technology Innovation Committee of Shenzhen Municipality(grant Nos.RCBS 20200714114910354,JCYJ 20220530141016036)the fruitful discussion with Dr.Jerol Soibam from Malardalen University.
文摘The discrete element method(DEM)model calculates interaction forces between each pair of particles.However,it becomes computational expensive especially when the number of particles is large.In this study,a novel artificial neural network(ANN)model is proposed to replace the model of interaction forces between multiple particles in DEM including contact force and electrostatic force.The ANN model combines the residual network(ResNet)with the physics informed neural network(PINN).The physical loss term is derived from the Newton's third law about internal forces in multi-particle system.The performance of the ANN model is evaluated based on the DEM simulation data of 100,200,and 300-particle system in a wall-bounded 2D swirling flow.It is found that the computing time is reduced nearly an order of magnitude(7–10 times)compared with the DEM model.In addition,the accuracy of the ANN model achieves the R^(2)>0.93 with only≤2%particles are not well predicted.
基金supported by the National Natural Science Foundation of China(Grant Nos.52188102,52105515,62373161)。
文摘Robot teleoperation plays an important role in industrial manufacturing in unknown and dangerous environments beyond human reach.In telerobotic manufacturing tasks,environmental interaction forces may vary significantly from task to task.Therefore,it is crucial to provide operators with the specific proportional feedback of environmental interaction forces to enhance their environmental awareness and manipulation capabilities.However,variable time delays and various scales of environmental interaction force feedback seriously affect the system stability,which should be rigorously addressed when designing control parameters.To cope with these difficulties,a position and scaled force tracking control framework is proposed and the LyapunovKrasovskii theory is used to obtain a simple algebraic stability criterion with the scaling factor of the environmental interaction force feedback.In addition,a low-pass filter-based radial basis function neural network is designed to avoid the effect of the measurement noise and the sudden change of the non-passive environmental interaction force on the system stability.Compared with different controllers in various telerobotic manufacturing tasks such as heavy lifting,cutting,and polishing,our proposed method achieves better position and scaled force tracking performance.
基金funded by the Nederlandse Organisatievoor Wetenschappelijk Onderzoek(Netherlands Organization forScientific Research,NWO)
文摘Fluid-particle systems as commonly encountered in chemical, metallurgical and petroleum industries are mostly polydisperse in nature. However, the relations used to describe fluid-particle interactions are originally derived from monodisperse systems, with ad hoc modifications to account for polydispersity. In previous work it was shown that for bidisperse systems with moderate diameter ratios of 1:2 to 1:4, this approach leads to discrepancies, and a correction factor is needed. In this work we demonstrate that this correction factor also holds for more extreme diameter ratios of 1:5, 1:7 and 1: 10, although the force on the large particles is slightly overestimated when using the correction factor. The main origin of the correction is that the void surrounding the large particles becomes less in case ofa bidisperse mixture, as compared to a monodisperse system with the same volume fraction. We further investigated this discrepancy by calculating the volume per particle by means of Voronoi tessellation.
基金Project supported by the National Natural Science Foundation of China(No.51221004)
文摘Exoskeleton robots and their control methods have been extensively developed to aid post-stroke rehabilitation. Most of the existing methods using linear controllers are designed for position control and are not suitable for human-machine interaction(HMI) force control, as the interaction system between the human body and exoskeleton is uncertain and nonlinear. We present an approach for HMI force control via model reference adaptive impedance control(MRAIC) to solve this problem in case of index finger exoskeleton control. First, a dynamic HMI model, which is based on a position control inner loop, is formulated. Second, the theoretical MRAC framework is implemented in the control system. Then, the adaptive controllers are designed according to the Lyapunov stability theory. To verify the performance of the proposed method, we compare it with a proportional-integral-derivative(PID) method in the time domain with real experiments and in the frequency domain with simulations. The results illustrate the effectiveness and robustness of the proposed method in solving the nonlinear HMI force control problem in hand exoskeleton.