Flows and transport phenomena in confined spaces have emerged as a key direction in modern fluid dynamics research[1].Scaling down the hydrodynamic length of a system does not simply lead to a laminar flow in low Reyn...Flows and transport phenomena in confined spaces have emerged as a key direction in modern fluid dynamics research[1].Scaling down the hydrodynamic length of a system does not simply lead to a laminar flow in low Reynolds number,but reveals plenty of new phenomena with novel technological implications.Unlike in macroscale systems,fluid behavior at micro-and nanoscales is governed by forces that act at or near the interfaces,including surface tension,wettability,van der Waals interactions,and electrostatic effects,etc.These interfacial forces produce new hydrodynamics and mass transport phenomena that have not been observed on large scales,which are widely used in multidisciplinary areas.展开更多
文摘Flows and transport phenomena in confined spaces have emerged as a key direction in modern fluid dynamics research[1].Scaling down the hydrodynamic length of a system does not simply lead to a laminar flow in low Reynolds number,but reveals plenty of new phenomena with novel technological implications.Unlike in macroscale systems,fluid behavior at micro-and nanoscales is governed by forces that act at or near the interfaces,including surface tension,wettability,van der Waals interactions,and electrostatic effects,etc.These interfacial forces produce new hydrodynamics and mass transport phenomena that have not been observed on large scales,which are widely used in multidisciplinary areas.