Drug development remains a critical issue in the field of biomedicine.With the rapid advancement of information technologies such as artificial intelligence(AI)and the advent of the big data era,AI-assisted drug devel...Drug development remains a critical issue in the field of biomedicine.With the rapid advancement of information technologies such as artificial intelligence(AI)and the advent of the big data era,AI-assisted drug development has become a new trend,particularly in predicting drug-target associations.To address the challenge of drug-target prediction,AI-driven models have emerged as powerful tools,offering innovative solutions by effectively extracting features from complex biological data,accurately modeling molecular interactions,and precisely predicting potential drug-target outcomes.Traditional machine learning(ML),network-based,and advanced deep learning architectures such as convolutional neural networks(CNNs),graph convolutional networks(GCNs),and transformers play a pivotal role.This review systematically compiles and evaluates AI algorithms for drug-and drug combination-target predictions,highlighting their theoretical frameworks,strengths,and limitations.CNNs effectively identify spatial patterns and molecular features critical for drug-target interactions.GCNs provide deep insights into molecular interactions via relational data,whereas transformers increase prediction accuracy by capturing complex dependencies within biological sequences.Network-based models offer a systematic perspective by integrating diverse data sources,and traditional ML efficiently handles large datasets to improve overall predictive accuracy.Collectively,these AI-driven methods are transforming drug-target predictions and advancing the development of personalized therapy.This review summarizes the application of AI in drug development,particularly in drug-target prediction,and offers recommendations on models and algorithms for researchers engaged in biomedical research.It also provides typical cases to better illustrate how AI can further accelerate development in the fields of biomedicine and drug discovery.展开更多
Background:Triple-negative breast cancer(TNBC),characterized by its lack of traditional hormone receptors and HER2,presents a significant challenge in oncology due to its poor response to conventional therapies.Autoph...Background:Triple-negative breast cancer(TNBC),characterized by its lack of traditional hormone receptors and HER2,presents a significant challenge in oncology due to its poor response to conventional therapies.Autophagy is an important process for maintaining cellular homeostasis,and there are currently autophagy biomarkers that play an effective role in the clinical treatment of tumors.In contrast to targeting protein activity,intervention with proteinprotein interaction(PPI)can avoid unrelated crosstalk and regulate the autophagy process with minimal interference pathways.Methods:Here,we employed Naive Bayes,Decision Tree,and k-Nearest Neighbors to elucidate the complex PPI network associated with autophagy in TNBC,aiming to uncover novel therapeutic targets.Meanwhile,the candidate proteins interacting with Beclin 2 were initially screened in MDA-MB-231 cells using Beclin 2 as bait protein by immunoprecipitation-mass spectrometry assay,and the interaction relationship was verified by molecular docking and CO-IP experiments after intersection.Colony formation,cellular immunofluorescence,cell scratch and 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide(MTT)tests were used to predict the clinical therapeutic effects of manipulating candidate PPI.Results:By developing three PPI classification models and analyzing over 13,000 datasets,we identified 3733 previously unknown autophagy-related PPIs.Our network analysis revealed the central role of Beclin 2 in autophagy regulation,uncovering its interactions with 39 newly identified proteins.Notably,the CO-IP studies identified the substantial interaction between Beclin 2 and Ubiquilin 1,which was anticipated by our model and discovered in immunoprecipitation-mass spectrometry assay results.Subsequently,in vitro investigations showed that overexpressing Beclin 2 increased Ubiquilin 1,promoted autophagy-dependent cell death,and inhibited proliferation and metastasis in MDA-MB-231 cells.Conclusions:This study not only enhances our understanding of autophagy regulation in TNBC but also identifies the Beclin 2-Ubiquilin 1 axis as a promising target for precision therapy.These findings open new avenues for drug discovery and offer inspiration for more effective treatments for this aggressive cancer subtype.展开更多
为了充分利用特征间的高阶交互以提升点击率预测模型的预测精度,提出了一种基于图神经网络和注意力的点击率预测模型VBGA (vector-wise and bit-wise interaction model based on GNN and attention),该模型借助图神经网络和注意力机制...为了充分利用特征间的高阶交互以提升点击率预测模型的预测精度,提出了一种基于图神经网络和注意力的点击率预测模型VBGA (vector-wise and bit-wise interaction model based on GNN and attention),该模型借助图神经网络和注意力机制,为每个特征分别学习一个细粒度的权重,并将这种细粒度的特征权重输入到向量级交互层和元素级交互层联合预测点击率.VBGA模型主要由向量级交互层和元素级交互层构成,其中向量级交互层采用有向图来构建向量级的特征交互,实现无重复的显式特征交互,在减少计算量的同时,还可以实现更高阶的特征交叉,以获得更准确的预测精度.此外,本文还提出了一种交叉网络用于构建元素级特征交互.在Criteo和Avazu数据集上,与其他几种最先进的点击率预测模型进行了比较,实验结果表明,VBGA可以获得良好的预测结果.展开更多
Growing concern about the influence of climate change on flowering plants, pollinators, and the mutualistic interac- tions between them has led to a recent surge in research. Much of this research has addressed the co...Growing concern about the influence of climate change on flowering plants, pollinators, and the mutualistic interac- tions between them has led to a recent surge in research. Much of this research has addressed the consequences of warming for phenological and distributional shifts. In contrast, relatively little is known about the physiological responses of plants and insect pollinators to climate warming and, in particular, how these responses might affect plant-pollinator interactions. Here, we summa- rize the direct physiological effects of temperature on flowering plants and pollinating insects to highlight ways in which plant and pollinator responses could affect floral resources for pollinators, and pollination success for plants, respectively. We also con- sider the overall effects of these responses on plant-pollinator interaction networks. Plant responses to wanning, which include altered flower, nectar, and pollen production, could modify floral resource availability and reproductive output of pollinating in- sects. Similarly, pollinator responses, such as altered foraging activity, body size, and life span, could affect patterns of pollen flow and pollination success of flowering plants. As a result, network structure could be altered as interactions are gained and lost, weakened and strengthened, even without the gain or loss of species or temporal overlap. Future research that addresses not only how plant and pollinator physiology are affected by warming but also how responses scale up to affect interactions and networks should allow us to better understand and predict the effects of climate change on this important ecosystem service .展开更多
The interactions between the moving dislocation within matrix channel and the interfacial misfit dislocation networks on the two-phase interfaces in Ni-based single crystal superalloys are studied carefully via atomic...The interactions between the moving dislocation within matrix channel and the interfacial misfit dislocation networks on the two-phase interfaces in Ni-based single crystal superalloys are studied carefully via atomic modeling, with special focus on the factors influ- encing the critical bowing stress of moving dislocations in the matrix channel. The results show that the moving matrix dislocation type and its position with respect to the interfacial misfit dislocation segments have considerable influences on the interactions. If the moving matrix dislocation is pure screw, it reacts with the interracial misfit dislocation segments toward dislocation linear energy reduction, which decreases the critical bowing stress of screw dislocation due to dislocation linear energy release during the dislocation reactions. If the moving matrix dislocation is of 60^-mixed type, it is obstructed by the interaction between the mixed matrix dislocations and the misfit interfacial dislocation segments. As a result, the critical bowing stress increases significantly because extra interactive energy needs to be overcome. These two different effects on the critical bowing stress become in- creasingly significant when the moving matrix dislocation is very close to the interracial misfit dislocation segments. In addition, the matrix channel width also has a significant influence on the critical bowing stress, i.e. the narrower the matrix channel is, the higher the critical bowing stress is. The classical Orowan formula is modified to predict these effects on the critical bowing stress of moving matrix dislocation, which is in good agreement with the computational results.展开更多
Human-object interaction(HOIs)detection is a new branch of visual relationship detection,which plays an important role in the field of image understanding.Because of the complexity and diversity of image content,the d...Human-object interaction(HOIs)detection is a new branch of visual relationship detection,which plays an important role in the field of image understanding.Because of the complexity and diversity of image content,the detection of HOIs is still an onerous challenge.Unlike most of the current works for HOIs detection which only rely on the pairwise information of a human and an object,we propose a graph-based HOIs detection method that models context and global structure information.Firstly,to better utilize the relations between humans and objects,the detected humans and objects are regarded as nodes to construct a fully connected undirected graph,and the graph is pruned to obtain an HOI graph that only preserving the edges connecting human and object nodes.Then,in order to obtain more robust features of human and object nodes,two different attention-based feature extraction networks are proposed,which model global and local contexts respectively.Finally,the graph attention network is introduced to pass messages between different nodes in the HOI graph iteratively,and detect the potential HOIs.Experiments on V-COCO and HICO-DET datasets verify the effectiveness of the proposed method,and show that it is superior to many existing methods.展开更多
Almost all the cellular processes in a living system are controlled by proteins:They regulate gene expression,catalyze chemical reactions,transport small molecules across membranes,and transmit signal across membranes...Almost all the cellular processes in a living system are controlled by proteins:They regulate gene expression,catalyze chemical reactions,transport small molecules across membranes,and transmit signal across membranes.Even,a viral infection is often initiated through virus-host protein interactions.Protein-protein interactions(PPIs)are the physical contacts between two or more proteins and they represent complex biological functions.Nowadays,PPIs have been used to construct PPI networks to study complex pathways for revealing the functions of unknown proteins.Scientists have used PPIs to find the molecular basis of certain diseases and also some potential drug targets.In this review,we will discuss how PPI networks are essential to understand the molecular basis of virus-host relationships and several databases which are dedicated to virus-host interaction studies.Here,we present a short but comprehensive review on PPIs,including the experimental and computational methods of finding PPIs,the databases dedicated to virus-host PPIs,and the associated various applications in protein interaction networks of some lethal viruses with their hosts.展开更多
In the current information society, the dissemination mechanisms and evolution laws of individual or collective opinions and their behaviors are the research hot topics in the field of opinion dynamics. First, in this...In the current information society, the dissemination mechanisms and evolution laws of individual or collective opinions and their behaviors are the research hot topics in the field of opinion dynamics. First, in this paper, a two-layer network consisting of an individual-opinion layer and a collective-opinion layer is constructed, and a dissemination model of opinions incorporating higher-order interactions(i.e. OIHOI dissemination model) is proposed. Furthermore, the dynamic equations of opinion dissemination for both individuals and groups are presented. Using Lyapunov's first method,two equilibrium points, including the negative consensus point and positive consensus point, and the dynamic equations obtained for opinion dissemination, are analyzed theoretically. In addition, for individual opinions and collective opinions,some conditions for reaching negative consensus and positive consensus as well as the theoretical expression for the dissemination threshold are put forward. Numerical simulations are carried to verify the feasibility and effectiveness of the proposed theoretical results, as well as the influence of the intra-structure, inter-connections, and higher-order interactions on the dissemination and evolution of individual opinions. The main results are as follows.(i) When the intra-structure of the collective-opinion layer meets certain characteristics, then a negative or positive consensus is easier to reach for individuals.(ii) Both negative consensus and positive consensus perform best in mixed type of inter-connections in the two-layer network.(iii) Higher-order interactions can quickly eliminate differences in individual opinions, thereby enabling individuals to reach consensus faster.展开更多
Systems biology has become an effective approach for understanding the molecular mechanisms underlying the development of lung cancer.In this study,sequences of 100 non-small cell lung cancer (NSCLC)-related proteins ...Systems biology has become an effective approach for understanding the molecular mechanisms underlying the development of lung cancer.In this study,sequences of 100 non-small cell lung cancer (NSCLC)-related proteins were downloaded from the National Center for Biotechnology Information (NCBI) databases.The Theory of Coevolution was then used to build a protein-protein interaction (PPI) network of NSCLC.Adopting the reverse thinking approach,we analyzed the NSCLC proteins one at a time.Fifteen key proteins were identified and categorized into a special protein family F(K),which included Cyclin D1 (CCND1),E-cadherin (CDH1),Cyclin-dependent kinase inhibitor 2A (CDKN2A),chemokine (C-X-C motif) ligand 12 (CXCL12),epidermal growth factor (EGF),epidermal growth factor receptor (EGFR),TNF receptor superfamily,member 6(FAS),FK506 binding protein 12-rapamycin associated protein 1 (FRAP1),O-6-methylguanine-DNA methyltransferase (MGMT),parkinson protein 2,E3 ubiquitin protein ligase (PARK2),phosphatase and tensin homolog (PTEN),calcium channel voltage-dependent alpha 2/delta subunit 2 (CACNA2D2),tubulin beta class I (TUBB),SWI/SNF-related,matrix-associated,actin-dependent regulator of chromatin,subfamily a,member 2 (SMARCA2),and wingless-type MMTV integration site family,member 7A (WNT7A).Seven key nodes of the sub-network were identified,which included PARK2,WNT7A,SMARCA2,FRAP1,CDKN2A,CCND1,and EGFR.The PPI predictions of EGFR-EGF,PARK2-FAS,PTEN-FAS,and CACNA2D2-CDH1 were confirmed experimentally by retrieving the Biological General Repository for Interaction Datasets (BioGRID) and PubMed databases.We proposed that the 7 proteins could serve as potential diagnostic molecular markers for NSCLC.In accordance with the developmental mode of lung cancer established by Sekine et al.,we assumed that the occurrence and development of lung cancer were linked not only to gene loss in the 3p region (WNT7A,3p25) and genetic mutations in the 9p region but also to similar events in the regions of 1p36.2 (FRAP1),6q25.2-q27 (PARK2),and 11q13 (CCND1).Lastly,the invasion or metastasis of lung cancer happened.展开更多
基金supported by grants from the National Natural Science Foundation of China(Grant No.:T2341008)Intelligent and Precise Research on TCM for Spleen and Stomach Diseases(20233930063).
文摘Drug development remains a critical issue in the field of biomedicine.With the rapid advancement of information technologies such as artificial intelligence(AI)and the advent of the big data era,AI-assisted drug development has become a new trend,particularly in predicting drug-target associations.To address the challenge of drug-target prediction,AI-driven models have emerged as powerful tools,offering innovative solutions by effectively extracting features from complex biological data,accurately modeling molecular interactions,and precisely predicting potential drug-target outcomes.Traditional machine learning(ML),network-based,and advanced deep learning architectures such as convolutional neural networks(CNNs),graph convolutional networks(GCNs),and transformers play a pivotal role.This review systematically compiles and evaluates AI algorithms for drug-and drug combination-target predictions,highlighting their theoretical frameworks,strengths,and limitations.CNNs effectively identify spatial patterns and molecular features critical for drug-target interactions.GCNs provide deep insights into molecular interactions via relational data,whereas transformers increase prediction accuracy by capturing complex dependencies within biological sequences.Network-based models offer a systematic perspective by integrating diverse data sources,and traditional ML efficiently handles large datasets to improve overall predictive accuracy.Collectively,these AI-driven methods are transforming drug-target predictions and advancing the development of personalized therapy.This review summarizes the application of AI in drug development,particularly in drug-target prediction,and offers recommendations on models and algorithms for researchers engaged in biomedical research.It also provides typical cases to better illustrate how AI can further accelerate development in the fields of biomedicine and drug discovery.
基金the National Natural Science Foundation of China(Nos.22307009,82374155,82073997,82104376)the Sichuan Science and Technology Program(Nos.2023NSFSC1108,2024NSFTD0023)+1 种基金the Postdoctoral Research Project of Sichuan Provincethe Xinglin Scholar Research Promotion Project of Chengdu University of TCM.
文摘Background:Triple-negative breast cancer(TNBC),characterized by its lack of traditional hormone receptors and HER2,presents a significant challenge in oncology due to its poor response to conventional therapies.Autophagy is an important process for maintaining cellular homeostasis,and there are currently autophagy biomarkers that play an effective role in the clinical treatment of tumors.In contrast to targeting protein activity,intervention with proteinprotein interaction(PPI)can avoid unrelated crosstalk and regulate the autophagy process with minimal interference pathways.Methods:Here,we employed Naive Bayes,Decision Tree,and k-Nearest Neighbors to elucidate the complex PPI network associated with autophagy in TNBC,aiming to uncover novel therapeutic targets.Meanwhile,the candidate proteins interacting with Beclin 2 were initially screened in MDA-MB-231 cells using Beclin 2 as bait protein by immunoprecipitation-mass spectrometry assay,and the interaction relationship was verified by molecular docking and CO-IP experiments after intersection.Colony formation,cellular immunofluorescence,cell scratch and 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide(MTT)tests were used to predict the clinical therapeutic effects of manipulating candidate PPI.Results:By developing three PPI classification models and analyzing over 13,000 datasets,we identified 3733 previously unknown autophagy-related PPIs.Our network analysis revealed the central role of Beclin 2 in autophagy regulation,uncovering its interactions with 39 newly identified proteins.Notably,the CO-IP studies identified the substantial interaction between Beclin 2 and Ubiquilin 1,which was anticipated by our model and discovered in immunoprecipitation-mass spectrometry assay results.Subsequently,in vitro investigations showed that overexpressing Beclin 2 increased Ubiquilin 1,promoted autophagy-dependent cell death,and inhibited proliferation and metastasis in MDA-MB-231 cells.Conclusions:This study not only enhances our understanding of autophagy regulation in TNBC but also identifies the Beclin 2-Ubiquilin 1 axis as a promising target for precision therapy.These findings open new avenues for drug discovery and offer inspiration for more effective treatments for this aggressive cancer subtype.
文摘为了充分利用特征间的高阶交互以提升点击率预测模型的预测精度,提出了一种基于图神经网络和注意力的点击率预测模型VBGA (vector-wise and bit-wise interaction model based on GNN and attention),该模型借助图神经网络和注意力机制,为每个特征分别学习一个细粒度的权重,并将这种细粒度的特征权重输入到向量级交互层和元素级交互层联合预测点击率.VBGA模型主要由向量级交互层和元素级交互层构成,其中向量级交互层采用有向图来构建向量级的特征交互,实现无重复的显式特征交互,在减少计算量的同时,还可以实现更高阶的特征交叉,以获得更准确的预测精度.此外,本文还提出了一种交叉网络用于构建元素级特征交互.在Criteo和Avazu数据集上,与其他几种最先进的点击率预测模型进行了比较,实验结果表明,VBGA可以获得良好的预测结果.
文摘Growing concern about the influence of climate change on flowering plants, pollinators, and the mutualistic interac- tions between them has led to a recent surge in research. Much of this research has addressed the consequences of warming for phenological and distributional shifts. In contrast, relatively little is known about the physiological responses of plants and insect pollinators to climate warming and, in particular, how these responses might affect plant-pollinator interactions. Here, we summa- rize the direct physiological effects of temperature on flowering plants and pollinating insects to highlight ways in which plant and pollinator responses could affect floral resources for pollinators, and pollination success for plants, respectively. We also con- sider the overall effects of these responses on plant-pollinator interaction networks. Plant responses to wanning, which include altered flower, nectar, and pollen production, could modify floral resource availability and reproductive output of pollinating in- sects. Similarly, pollinator responses, such as altered foraging activity, body size, and life span, could affect patterns of pollen flow and pollination success of flowering plants. As a result, network structure could be altered as interactions are gained and lost, weakened and strengthened, even without the gain or loss of species or temporal overlap. Future research that addresses not only how plant and pollinator physiology are affected by warming but also how responses scale up to affect interactions and networks should allow us to better understand and predict the effects of climate change on this important ecosystem service .
基金supported by the financial support from NSFC (Grant 11472113 and Grant 11272130)
文摘The interactions between the moving dislocation within matrix channel and the interfacial misfit dislocation networks on the two-phase interfaces in Ni-based single crystal superalloys are studied carefully via atomic modeling, with special focus on the factors influ- encing the critical bowing stress of moving dislocations in the matrix channel. The results show that the moving matrix dislocation type and its position with respect to the interfacial misfit dislocation segments have considerable influences on the interactions. If the moving matrix dislocation is pure screw, it reacts with the interracial misfit dislocation segments toward dislocation linear energy reduction, which decreases the critical bowing stress of screw dislocation due to dislocation linear energy release during the dislocation reactions. If the moving matrix dislocation is of 60^-mixed type, it is obstructed by the interaction between the mixed matrix dislocations and the misfit interfacial dislocation segments. As a result, the critical bowing stress increases significantly because extra interactive energy needs to be overcome. These two different effects on the critical bowing stress become in- creasingly significant when the moving matrix dislocation is very close to the interracial misfit dislocation segments. In addition, the matrix channel width also has a significant influence on the critical bowing stress, i.e. the narrower the matrix channel is, the higher the critical bowing stress is. The classical Orowan formula is modified to predict these effects on the critical bowing stress of moving matrix dislocation, which is in good agreement with the computational results.
基金Project(51678075)supported by the National Natural Science Foundation of ChinaProject(2017GK2271)supported by the Hunan Provincial Science and Technology Department,China。
文摘Human-object interaction(HOIs)detection is a new branch of visual relationship detection,which plays an important role in the field of image understanding.Because of the complexity and diversity of image content,the detection of HOIs is still an onerous challenge.Unlike most of the current works for HOIs detection which only rely on the pairwise information of a human and an object,we propose a graph-based HOIs detection method that models context and global structure information.Firstly,to better utilize the relations between humans and objects,the detected humans and objects are regarded as nodes to construct a fully connected undirected graph,and the graph is pruned to obtain an HOI graph that only preserving the edges connecting human and object nodes.Then,in order to obtain more robust features of human and object nodes,two different attention-based feature extraction networks are proposed,which model global and local contexts respectively.Finally,the graph attention network is introduced to pass messages between different nodes in the HOI graph iteratively,and detect the potential HOIs.Experiments on V-COCO and HICO-DET datasets verify the effectiveness of the proposed method,and show that it is superior to many existing methods.
基金National Natural Science Foundation of China,No.31971180 and No.11474013.
文摘Almost all the cellular processes in a living system are controlled by proteins:They regulate gene expression,catalyze chemical reactions,transport small molecules across membranes,and transmit signal across membranes.Even,a viral infection is often initiated through virus-host protein interactions.Protein-protein interactions(PPIs)are the physical contacts between two or more proteins and they represent complex biological functions.Nowadays,PPIs have been used to construct PPI networks to study complex pathways for revealing the functions of unknown proteins.Scientists have used PPIs to find the molecular basis of certain diseases and also some potential drug targets.In this review,we will discuss how PPI networks are essential to understand the molecular basis of virus-host relationships and several databases which are dedicated to virus-host interaction studies.Here,we present a short but comprehensive review on PPIs,including the experimental and computational methods of finding PPIs,the databases dedicated to virus-host PPIs,and the associated various applications in protein interaction networks of some lethal viruses with their hosts.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.72031009 and 61473338)。
文摘In the current information society, the dissemination mechanisms and evolution laws of individual or collective opinions and their behaviors are the research hot topics in the field of opinion dynamics. First, in this paper, a two-layer network consisting of an individual-opinion layer and a collective-opinion layer is constructed, and a dissemination model of opinions incorporating higher-order interactions(i.e. OIHOI dissemination model) is proposed. Furthermore, the dynamic equations of opinion dissemination for both individuals and groups are presented. Using Lyapunov's first method,two equilibrium points, including the negative consensus point and positive consensus point, and the dynamic equations obtained for opinion dissemination, are analyzed theoretically. In addition, for individual opinions and collective opinions,some conditions for reaching negative consensus and positive consensus as well as the theoretical expression for the dissemination threshold are put forward. Numerical simulations are carried to verify the feasibility and effectiveness of the proposed theoretical results, as well as the influence of the intra-structure, inter-connections, and higher-order interactions on the dissemination and evolution of individual opinions. The main results are as follows.(i) When the intra-structure of the collective-opinion layer meets certain characteristics, then a negative or positive consensus is easier to reach for individuals.(ii) Both negative consensus and positive consensus perform best in mixed type of inter-connections in the two-layer network.(iii) Higher-order interactions can quickly eliminate differences in individual opinions, thereby enabling individuals to reach consensus faster.
基金supported by National Natural Science Foundation of China (No.91130009)Science and Technology Planning Project of Guangdong Province of China(No.2003A3080503)
文摘Systems biology has become an effective approach for understanding the molecular mechanisms underlying the development of lung cancer.In this study,sequences of 100 non-small cell lung cancer (NSCLC)-related proteins were downloaded from the National Center for Biotechnology Information (NCBI) databases.The Theory of Coevolution was then used to build a protein-protein interaction (PPI) network of NSCLC.Adopting the reverse thinking approach,we analyzed the NSCLC proteins one at a time.Fifteen key proteins were identified and categorized into a special protein family F(K),which included Cyclin D1 (CCND1),E-cadherin (CDH1),Cyclin-dependent kinase inhibitor 2A (CDKN2A),chemokine (C-X-C motif) ligand 12 (CXCL12),epidermal growth factor (EGF),epidermal growth factor receptor (EGFR),TNF receptor superfamily,member 6(FAS),FK506 binding protein 12-rapamycin associated protein 1 (FRAP1),O-6-methylguanine-DNA methyltransferase (MGMT),parkinson protein 2,E3 ubiquitin protein ligase (PARK2),phosphatase and tensin homolog (PTEN),calcium channel voltage-dependent alpha 2/delta subunit 2 (CACNA2D2),tubulin beta class I (TUBB),SWI/SNF-related,matrix-associated,actin-dependent regulator of chromatin,subfamily a,member 2 (SMARCA2),and wingless-type MMTV integration site family,member 7A (WNT7A).Seven key nodes of the sub-network were identified,which included PARK2,WNT7A,SMARCA2,FRAP1,CDKN2A,CCND1,and EGFR.The PPI predictions of EGFR-EGF,PARK2-FAS,PTEN-FAS,and CACNA2D2-CDH1 were confirmed experimentally by retrieving the Biological General Repository for Interaction Datasets (BioGRID) and PubMed databases.We proposed that the 7 proteins could serve as potential diagnostic molecular markers for NSCLC.In accordance with the developmental mode of lung cancer established by Sekine et al.,we assumed that the occurrence and development of lung cancer were linked not only to gene loss in the 3p region (WNT7A,3p25) and genetic mutations in the 9p region but also to similar events in the regions of 1p36.2 (FRAP1),6q25.2-q27 (PARK2),and 11q13 (CCND1).Lastly,the invasion or metastasis of lung cancer happened.