期刊文献+
共找到4,350篇文章
< 1 2 218 >
每页显示 20 50 100
Elucidating the role of artificial intelligence in drug development from the perspective of drug-target interactions 被引量:1
1
作者 Boyang Wang Tingyu Zhang +4 位作者 Qingyuan Liu Chayanis Sutcharitchan Ziyi Zhou Dingfan Zhang Shao Li 《Journal of Pharmaceutical Analysis》 2025年第3期489-500,共12页
Drug development remains a critical issue in the field of biomedicine.With the rapid advancement of information technologies such as artificial intelligence(AI)and the advent of the big data era,AI-assisted drug devel... Drug development remains a critical issue in the field of biomedicine.With the rapid advancement of information technologies such as artificial intelligence(AI)and the advent of the big data era,AI-assisted drug development has become a new trend,particularly in predicting drug-target associations.To address the challenge of drug-target prediction,AI-driven models have emerged as powerful tools,offering innovative solutions by effectively extracting features from complex biological data,accurately modeling molecular interactions,and precisely predicting potential drug-target outcomes.Traditional machine learning(ML),network-based,and advanced deep learning architectures such as convolutional neural networks(CNNs),graph convolutional networks(GCNs),and transformers play a pivotal role.This review systematically compiles and evaluates AI algorithms for drug-and drug combination-target predictions,highlighting their theoretical frameworks,strengths,and limitations.CNNs effectively identify spatial patterns and molecular features critical for drug-target interactions.GCNs provide deep insights into molecular interactions via relational data,whereas transformers increase prediction accuracy by capturing complex dependencies within biological sequences.Network-based models offer a systematic perspective by integrating diverse data sources,and traditional ML efficiently handles large datasets to improve overall predictive accuracy.Collectively,these AI-driven methods are transforming drug-target predictions and advancing the development of personalized therapy.This review summarizes the application of AI in drug development,particularly in drug-target prediction,and offers recommendations on models and algorithms for researchers engaged in biomedical research.It also provides typical cases to better illustrate how AI can further accelerate development in the fields of biomedicine and drug discovery. 展开更多
关键词 Artificial intelligence Drug-target interactions Deep learning Machine learning Drug combination Network pharmacology
暂未订购
Deep learning identification of novel autophagic protein-protein interactions and experimental validation of Beclin 2-Ubiquilin 1 axis in triple-negative breast cancer
2
作者 XIANG LI WENKE JIN +4 位作者 LIFENG WU HUAN WANG XIN XIE WEI HUANG BO LIU 《Oncology Research》 SCIE 2025年第1期67-81,共15页
Background:Triple-negative breast cancer(TNBC),characterized by its lack of traditional hormone receptors and HER2,presents a significant challenge in oncology due to its poor response to conventional therapies.Autoph... Background:Triple-negative breast cancer(TNBC),characterized by its lack of traditional hormone receptors and HER2,presents a significant challenge in oncology due to its poor response to conventional therapies.Autophagy is an important process for maintaining cellular homeostasis,and there are currently autophagy biomarkers that play an effective role in the clinical treatment of tumors.In contrast to targeting protein activity,intervention with proteinprotein interaction(PPI)can avoid unrelated crosstalk and regulate the autophagy process with minimal interference pathways.Methods:Here,we employed Naive Bayes,Decision Tree,and k-Nearest Neighbors to elucidate the complex PPI network associated with autophagy in TNBC,aiming to uncover novel therapeutic targets.Meanwhile,the candidate proteins interacting with Beclin 2 were initially screened in MDA-MB-231 cells using Beclin 2 as bait protein by immunoprecipitation-mass spectrometry assay,and the interaction relationship was verified by molecular docking and CO-IP experiments after intersection.Colony formation,cellular immunofluorescence,cell scratch and 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide(MTT)tests were used to predict the clinical therapeutic effects of manipulating candidate PPI.Results:By developing three PPI classification models and analyzing over 13,000 datasets,we identified 3733 previously unknown autophagy-related PPIs.Our network analysis revealed the central role of Beclin 2 in autophagy regulation,uncovering its interactions with 39 newly identified proteins.Notably,the CO-IP studies identified the substantial interaction between Beclin 2 and Ubiquilin 1,which was anticipated by our model and discovered in immunoprecipitation-mass spectrometry assay results.Subsequently,in vitro investigations showed that overexpressing Beclin 2 increased Ubiquilin 1,promoted autophagy-dependent cell death,and inhibited proliferation and metastasis in MDA-MB-231 cells.Conclusions:This study not only enhances our understanding of autophagy regulation in TNBC but also identifies the Beclin 2-Ubiquilin 1 axis as a promising target for precision therapy.These findings open new avenues for drug discovery and offer inspiration for more effective treatments for this aggressive cancer subtype. 展开更多
关键词 Triple-negative breast cancer(TNBC) AUTOPHAGY Protein-protein interactions(PPI) Artificial intelligence(AI) Beclin 2 Ubiquilin 1
暂未订购
PPIS-MFH:集成ViT的多特征混合网络预测蛋白质相互作用位点
3
作者 胡昭龙 胡春玲 +1 位作者 胡瑞捷 郭龙菊 《计算机科学》 北大核心 2025年第S2期185-193,共9页
通过深入研究蛋白质-蛋白质相互作用位点(PPIS),能够揭示生命在分子层面运作的深层原理。然而现有方法鉴定PPIS复杂且耗时,需要更精确的模型进行PPIS预测。尽管基于注意力机制和卷积神经网络(CNN)的深度学习方法在PPIS预测方面取得了进... 通过深入研究蛋白质-蛋白质相互作用位点(PPIS),能够揭示生命在分子层面运作的深层原理。然而现有方法鉴定PPIS复杂且耗时,需要更精确的模型进行PPIS预测。尽管基于注意力机制和卷积神经网络(CNN)的深度学习方法在PPIS预测方面取得了进展,但在氨基酸特性表征上仍存在局限。为了有效捕捉蛋白质序列中远距离的依赖关系,并准确地表征氨基酸的特性,提出了一种用于预测蛋白质-蛋白质相互作用位点的多特征混合网络(Multi-feature hybrid networks)——PPIS-MFH,通过结合全局序列特征与局部序列特征对PPIS进行预测。对于局部序列特征,PPIS-MFH模型融合了Vision Transformer(ViT)模块,该模块能够捕获蛋白质序列中的远距离依赖性,并提取局部特征。对于全局序列特征,模型PPIS-MFH通过由文本卷积神经网络(TextCNN)并引入注意力机制的文本循环神经网络(TextRNN-Attention)构成的特征交叉网络,利用双向门控循环单元网络来识别蛋白质序列中氨基酸间的内在联系。在4个数据集上对PPIS-MFH模型进行了评估,将其与8种同类方法进行了比较。实验结果显示在大多数指标上,所提方法优于其他的同类方法。 展开更多
关键词 蛋白质-蛋白质相互作用位点 注意力机制 文本卷积神经网络 双向门控循环单元网络 特征交叉网络
在线阅读 下载PDF
胰高血糖素样肽1受体激动剂替西帕肽治疗阿尔茨海默病的潜在靶点
4
作者 张晓敏 杜朋洋 +1 位作者 张秀萍 薛国芳 《中国组织工程研究》 北大核心 2026年第23期6122-6133,共12页
背景:胰高血糖素样肽1受体激动剂作为神经退行性疾病治疗的新型候选药物,已在阿尔茨海默病临床研究中取得突破性进展,其中索马鲁肽等药物已推进至Ⅲ期临床试验阶段。然而,目前对于该类药物神经保护效应的分子作用机制仍存在显著的知识... 背景:胰高血糖素样肽1受体激动剂作为神经退行性疾病治疗的新型候选药物,已在阿尔茨海默病临床研究中取得突破性进展,其中索马鲁肽等药物已推进至Ⅲ期临床试验阶段。然而,目前对于该类药物神经保护效应的分子作用机制仍存在显著的知识缺口。目的:创新性地整合多组学分析技术与网络药理学方法,系统解析阿尔茨海默病病理相关基因谱系与替西帕肽潜在作用靶点的交集网络,鉴定关键调控基因,并通过体内外实验验证其分子机制。方法:采用多维度研究策略:①基于DisGeNET数据库(整合了多种疾病相关的基因组学数据库)构建阿尔茨海默病差异表达基因谱。②通过PubChem数据库(小分子生物活性数据库)获取替西帕肽结构并筛选潜在靶点。③应用DAVID数据库开展GO功能注释及KEGG通路富集分析。④结合STRING数据库与Cytoscape 3.9.1构建蛋白质互作网络,经拓扑网络分析筛选关键基因。⑤细胞水平验证:将HT22细胞分为对照组、模型组(β-淀粉样蛋白1-42寡聚体处理36 h建立HT22细胞阿尔茨海默病体外模型)、给药组(先以β-淀粉样蛋白1-42寡聚体预处理24 h,再加入替西帕肽共处理12 h),通过Western blot分析血管紧张素Ⅱ2型受体蛋白表达,ELISA检测突触蛋白1、突触后致密物质95等突触功能标志物表达水平。⑥动物实验验证:实验分为3组,对照组为WT型C57BL/6小鼠,腹腔注射生理盐水;模型组为3xTg小鼠(拟阿尔茨海默症小鼠),腹腔注射生理盐水;给药组为3xTg小鼠,腹腔注射20 nmol/L替西帕肽;均为隔日1次,共给药15次。使用水迷宫技术分析阿尔茨海默病模型小鼠的认知行为学改善;使用Western blot定量分析β-淀粉样蛋白(6E10)、磷酸化的Tau蛋白(P-tau-181)的表达情况。结果与结论:①从DisGeNET数据库筛选出阿尔茨海默病相关联的基因,共得到3397个关联基因;根据蛋白关联度筛选出了10个连接度最高的关键基因:AGTR2、NTSR1、NTSR2、GHSR、C5AR1、C3AR1、OPRM1、SSTR2、OPRD1、STAT3;GO富集分析和KEGG通路分析,提示替西帕肽可能通过改善神经受体-配体功能来改善阿尔茨海默病。②细胞实验提示,替西帕肽可能通过改善阿尔茨海默病的突触功能来发挥治疗作用,血管紧张素Ⅱ2型受体可能是替西帕肽治疗阿尔茨海默病的潜在靶点。③动物实验提示,替西帕肽能够改善3xTg小鼠的认知能力,改善3xTg小鼠模型脑内的异常β-淀粉样蛋白沉积和Tau蛋白磷酸化。④结论:揭示血管紧张素Ⅱ2型受体是替西帕肽作用于阿尔茨海默病病理进程的关键分子靶点,替西帕肽可能通过调控血管紧张素Ⅱ2型受体介导的突触功能改善来治疗阿尔茨海默病。 展开更多
关键词 替西帕肽 阿尔茨海默病 网络药理学 血管紧张素Ⅱ2型受体 蛋白互作网络 突触功能
暂未订购
基于图神经网络和注意力的点击率预测模型
5
作者 张峰 张涛 +2 位作者 花强 董春茹 朱杰 《河北大学学报(自然科学版)》 北大核心 2026年第1期93-103,共11页
为了充分利用特征间的高阶交互以提升点击率预测模型的预测精度,提出了一种基于图神经网络和注意力的点击率预测模型VBGA (vector-wise and bit-wise interaction model based on GNN and attention),该模型借助图神经网络和注意力机制... 为了充分利用特征间的高阶交互以提升点击率预测模型的预测精度,提出了一种基于图神经网络和注意力的点击率预测模型VBGA (vector-wise and bit-wise interaction model based on GNN and attention),该模型借助图神经网络和注意力机制,为每个特征分别学习一个细粒度的权重,并将这种细粒度的特征权重输入到向量级交互层和元素级交互层联合预测点击率.VBGA模型主要由向量级交互层和元素级交互层构成,其中向量级交互层采用有向图来构建向量级的特征交互,实现无重复的显式特征交互,在减少计算量的同时,还可以实现更高阶的特征交叉,以获得更准确的预测精度.此外,本文还提出了一种交叉网络用于构建元素级特征交互.在Criteo和Avazu数据集上,与其他几种最先进的点击率预测模型进行了比较,实验结果表明,VBGA可以获得良好的预测结果. 展开更多
关键词 点击率预测 注意力机制 图神经网络 多阶特征交互
在线阅读 下载PDF
基于多尺度双流网络的深度伪造检测方法
6
作者 蒋翠玲 程梓源 +1 位作者 俞新贵 万永菁 《计算机工程》 北大核心 2026年第1期242-253,共12页
人脸深度伪造技术的滥用给社会和个人带来了极大的安全隐患,因此深度伪造检测技术已成为当今研究的热点。目前基于深度学习的伪造检测技术在高质量(HQ)数据集上效果较好,但在低质量(LQ)数据集和跨数据集上的检测效果不佳。为提升深度伪... 人脸深度伪造技术的滥用给社会和个人带来了极大的安全隐患,因此深度伪造检测技术已成为当今研究的热点。目前基于深度学习的伪造检测技术在高质量(HQ)数据集上效果较好,但在低质量(LQ)数据集和跨数据集上的检测效果不佳。为提升深度伪造检测的泛化性,提出一种基于多尺度双流网络(MSDSnet)的深度伪造检测方法。MSDSnet输入分为空域特征流和高频噪声特征流,首先采用多尺度融合(MSF)模块捕获不同情况下图像在空域被篡改的粗粒度人脸特征和伪造图像的细粒度高频噪声特征信息,然后通过MSF模块将空域流和高频噪声流的双流特征充分融合,由多模态交互注意力(MIA)模块进一步交互以充分学习双流特征信息,最后利用FcaNet(Frequency Channel Attention Network)获取伪造人脸特征的全局信息并完成检测分类。实验结果表明,该方法在HQ数据集Celeb-DF v2上的准确率为98.54%,在LQ数据集FaceForensics++上的准确率为93.11%,同时在跨数据集上的实验效果也优于其他同类方法。 展开更多
关键词 深度伪造检测 双流网络 多尺度融合 多模态交互注意力 高频噪声
在线阅读 下载PDF
交互式连接图注意力网络知识图谱补全方法
7
作者 李丹 《科学技术创新》 2026年第2期81-84,共4页
为应对知识图谱补全中现有模型获取特征不全面的难题,重点研究交互式连接图注意力网络知识图谱补全方法,该方法由RotatE预训练模型、编码器和解码器三个模块构成,强调全局特征的重要性。确定知识图谱补全模型结构后,制定了相应的实验方... 为应对知识图谱补全中现有模型获取特征不全面的难题,重点研究交互式连接图注意力网络知识图谱补全方法,该方法由RotatE预训练模型、编码器和解码器三个模块构成,强调全局特征的重要性。确定知识图谱补全模型结构后,制定了相应的实验方案,合理把握数据集、软硬件、参数设置、评价指标等要素。对比实验结果显示,该模型的综合性能更为优越。 展开更多
关键词 知识图谱 交互式连接 神经网络
在线阅读 下载PDF
基于FAST网络的毫米波雷达端到端手势识别
8
作者 郑好 李浩然 +3 位作者 彭国梁 郑志鹏 胡芬 郇战 《现代电子技术》 北大核心 2026年第1期8-14,共7页
针对目前的毫米波雷达手势识别方法存在预处理步骤复杂、效率差和精度低等不足,文中提出FAST网络模型。首先,该模型使用复值线性层构建傅里叶网络,以离散傅里叶变换值对傅里叶网络进行权重初始化,雷达原始数据经过傅里叶网络后得到距离... 针对目前的毫米波雷达手势识别方法存在预处理步骤复杂、效率差和精度低等不足,文中提出FAST网络模型。首先,该模型使用复值线性层构建傅里叶网络,以离散傅里叶变换值对傅里叶网络进行权重初始化,雷达原始数据经过傅里叶网络后得到距离-多普勒特征;其次,引入ECA模块并计算帧通道注意力权重,提升对手势特征的提取能力;最后,采用Swin Transformer提高计算效率与识别精度,并扩大感受野,利用损失函数进行反向传播并对模型的参数进行迭代更新。实验结果表明,提出的基于FAST的毫米波雷达端到端手势识别算法在提升计算效率的同时,达到了96.46%的准确率,与其他主流算法相比具有先进性,为毫米波雷达手势识别在智能家居、移动设备上的应用提供了更为精简且高效的解决方案。 展开更多
关键词 毫米波雷达 手势识别 人机交互 深度学习 神经网络 离散傅里叶变换
在线阅读 下载PDF
知识蒸馏Transformer的人物交互检测
9
作者 陈东吉 赖惠成 +3 位作者 高古学 马骏 李俊凯 权虎拓 《计算机工程》 北大核心 2026年第1期206-216,共11页
得到广泛应用的跨界之星Transformer,在人-物交互(HOI)检测领域同样取得了很好的效果。基于此,提出全新的基于知识蒸馏的Transformer(KDT)网络来进行端到端的HOI检测。由于Transformer网络建模的HOI整体特征粗糙,针对HOI检测的3个子任务... 得到广泛应用的跨界之星Transformer,在人-物交互(HOI)检测领域同样取得了很好的效果。基于此,提出全新的基于知识蒸馏的Transformer(KDT)网络来进行端到端的HOI检测。由于Transformer网络建模的HOI整体特征粗糙,针对HOI检测的3个子任务:预测人框,预测物框与物体类别,预测人物之间的交互动作,构建基础多分支Transformer结构,包含一个人体实例分支、一个物体实例分支和一个交互分支,并利用人、物分支的解码器为交互分支解码器提供人、物的区域线索。为了给Transformer结构提供关键的语义、空间信息,预先生成物体类别和交互动词语义特征,以及人物框的空间特征为不同的Transformer分支提供语义、空间线索,进一步提升解码器对于不同HOI任务的特征提取能力。并在此基础上构建另一个多分支Transformer结构作为教师网络,教师网络的解码器以预生成特征为解码器查询,输出更精确的HOI特征。在训练过程中让基础多分支网络模仿教师网络的输出,构建额外的类相似度损失度量两个网络输出预测之间的类内、类间向量相似度,从而达到提升基础网络解码器性能的目的。实验结果表明,在人-物交互基准数据集HICO-DET所有类别、稀有类别和非稀有类别上的均值平均精度(mAP)分别为32.13%、28.57%和33.19%,对比基线取得了最多4.65百分点的提升。 展开更多
关键词 Transformer网络 人-物交互 预生成特征 教师网络 类相似度损失
在线阅读 下载PDF
空地网联集群协同模式识别方法
10
作者 曲桂娴 周建山 +3 位作者 司杨 刘晓静 袁奇雨 马清琳 《北京航空航天大学学报》 北大核心 2026年第1期147-156,共10页
空地网联集群在智慧城市、智慧农林、智慧交通等国民经济生产领域具有巨大的应用潜力,同时在战场态势感知、空地协同打击等军事领域展现出极大的应用价值。面向空地网联集群准确感知与识别复杂环境目标的需求,建立基于模式分类概率的全... 空地网联集群在智慧城市、智慧农林、智慧交通等国民经济生产领域具有巨大的应用潜力,同时在战场态势感知、空地协同打击等军事领域展现出极大的应用价值。面向空地网联集群准确感知与识别复杂环境目标的需求,建立基于模式分类概率的全局似然函数最小化模型,提出空地网联集群的分布式学习与自适应信息融合算法,该算法包括基于梯度下降的信息扩散和基于自适应加权的信息融合2个主要步骤,形成了空地协同的模式识别方法。此外,推导出了空地网联集群协同模式识别方法的平均误差递归方程,理论证明了所提算法的误差收敛性。通过建立空地网联集群网络信息交互拓扑模型,利用雷达实测数据集进行仿真测试。仿真结果表明:集群分布式融合算法对信息估计的平均均方偏差和系统误差可有效逼近理论最优水平。当节点数由10上升至40时,集群分布式融合算法的平均均方偏差由-48.70 dB下降至-53.96 dB,系统误差由-27.42 dB下降至-30.22 dB,接近于误差的理论值。对比实验表明:所提算法较传统方法具有良好的精度,可有力支撑空地网联集群对复杂环境目标的感知与识别。 展开更多
关键词 空地网联集群 协同模式识别 信息交互拓扑模型 分布式融合算法 雷达实测数据
原文传递
基于图注意力交互的行人轨迹预测方法
11
作者 刘宏鉴 邹丹平 李萍 《计算机科学》 北大核心 2026年第1期97-103,共7页
行人轨迹预测在自动驾驶领域和智慧交通领域均取得了显著的研究进展。由于行人的行为受到自身和环境因素的双重影响,其轨迹具有不确定性和复杂性,因此准确利用轨迹数据的交互特征生成多模态轨迹仍存在较大挑战。目前,该领域中的主要挑... 行人轨迹预测在自动驾驶领域和智慧交通领域均取得了显著的研究进展。由于行人的行为受到自身和环境因素的双重影响,其轨迹具有不确定性和复杂性,因此准确利用轨迹数据的交互特征生成多模态轨迹仍存在较大挑战。目前,该领域中的主要挑战是准确建模行人之间的时空交互。面对复杂的行人时空交互,提出了一种基于图注意力的时空图神经网络,其量化表示行人之间的空间交互并重点关注关键交互,从而将行人轨迹信息表示为有向时空图,利用图注意力机制提取空间位置特征和交互特征,同时结合自注意力机制在时间维度提取时间特征并融合时空特征信息,最后生成结合历史轨迹和交互信息的多模态未来轨迹。在ETH-UCY数据集上的实验表明,与最佳基线模型相比,所提出的方法在平均位移误差(ADE)和最终位移误差(FDE)方面分别降低3.4%和2.1%,并具有较短的推理时间,确保实现实时推理响应。可视化的结果表明,所提出的方法能够生成具有可接受性的未来行人轨迹,展现了良好的工程应用前景。 展开更多
关键词 轨迹预测 时空图 图神经网络 图注意力 时空交互
在线阅读 下载PDF
慢性粒细胞白血病伊马替尼耐药核心基因的生物信息学筛选及实验验证
12
作者 周曼 龙梅婷 +6 位作者 辛国燕 黄梦君 姚正联 赵华娟 申林强 吴西军 杨小燕 《中国组织工程研究》 北大核心 2026年第13期3331-3342,共12页
背景:慢性粒细胞白血病起源于克隆性造血干细胞,以骨髓细胞异常增殖为特征,大多由BCR-ABL1融合基因引起。尽管伊马替尼显著提升了慢性粒细胞白血病患者的生存率,但其耐药性仍是治疗的主要障碍。目的:利用生物信息学分析手段,针对基因表... 背景:慢性粒细胞白血病起源于克隆性造血干细胞,以骨髓细胞异常增殖为特征,大多由BCR-ABL1融合基因引起。尽管伊马替尼显著提升了慢性粒细胞白血病患者的生存率,但其耐药性仍是治疗的主要障碍。目的:利用生物信息学分析手段,针对基因表达综合数据库内的基因表达资料进行研究,目的在于筛选出慢性粒细胞白血病对伊马替尼耐药的相关基因,并探索耐药机制。方法:使用由美国国家生物技术信息中心创建和维护的基因表达综合数据库,从该数据库下载GSE267522和GSE174800两个数据集,分别包含3个伊马替尼耐药样本和3个伊马替尼敏感样本。首先基于GEO2R工具筛选出两个数据集中共同的差异基因,借助DAVID平台对相关基因实施京都基因与基因组百科全书通路富集及基因本体功能注释,利用STRING数据库搭建蛋白相互作用网络框架,再通过Cytoscape软件从网络中筛选出连接度值排名靠前的10个枢纽基因。同时运用加权基因共表达网络分析算法获得关键模块特征基因,将这些基因与前述10个枢纽基因进行维恩分析取交集基因作为核心基因。最后,构建K562伊马替尼耐药模型,采用实时荧光定量PCR及蛋白质免疫印迹进行验证性分析。结果与结论:①两数据集中共筛选出273个差异基因,其中81个基因下调,192个基因上调。②基因本体富集分析揭示差异基因参与免疫反应和T细胞受体信号传导等生物过程;聚焦于细胞组分层面,质膜外侧、质膜及细胞外泌体等区域呈现出显著富集;分子功能分析表明,差异基因涉及跨膜受体蛋白和肌动蛋白的相互作用。③京都基因与基因组百科全书富集分析表明,差异基因显著富集于造血细胞谱系、磷脂酰肌醇3激酶/蛋白激酶B信号通路、癌症通路等。④Cytoscape软件筛选出连接度值排名前10的差异表达基因与加权基因共表达网络分析算法获得关键模块特征基因取交集,获得的交集基因包括IRS1、CD52、CD53、CORO1A、KIT、LAPTM5、PECAM1。⑤成功构建K562伊马替尼耐药株,实时荧光定量PCR结果显示,与K562组相比,K562伊马替尼耐药组CD52、CD53、CORO1A、PECAM1的mRNA表达显著增加(P<0.05),IRS1的mRNA表达显著降低(P<0.05)。此外,蛋白质免疫印迹结果显示,K562伊马替尼耐药株中CD52、CD53、CORO1A、PECAM1蛋白表达增加(P<0.05),IRS1蛋白表达下降(P<0.05),与实时荧光定量PCR结果一致。⑥K562伊马替尼耐药核心基因表达的差异可能为日后了解慢性粒细胞白血病对伊马替尼耐药的机制提供新见解。 展开更多
关键词 慢性粒细胞白血病 酪氨酸激酶抑制剂 伊马替尼 耐药基因 基因表达 生物信息学 加权基因共表达网络分析 蛋白互作网络
暂未订购
Physiological effects of climate warming on flowering plants and insect pollinators and potential consequences for their interactions 被引量:6
13
作者 Victoria L. SCAVEN Nicole E. RAFFERTY 《Current Zoology》 SCIE CAS CSCD 2013年第3期418-426,共9页
Growing concern about the influence of climate change on flowering plants, pollinators, and the mutualistic interac- tions between them has led to a recent surge in research. Much of this research has addressed the co... Growing concern about the influence of climate change on flowering plants, pollinators, and the mutualistic interac- tions between them has led to a recent surge in research. Much of this research has addressed the consequences of warming for phenological and distributional shifts. In contrast, relatively little is known about the physiological responses of plants and insect pollinators to climate warming and, in particular, how these responses might affect plant-pollinator interactions. Here, we summa- rize the direct physiological effects of temperature on flowering plants and pollinating insects to highlight ways in which plant and pollinator responses could affect floral resources for pollinators, and pollination success for plants, respectively. We also con- sider the overall effects of these responses on plant-pollinator interaction networks. Plant responses to wanning, which include altered flower, nectar, and pollen production, could modify floral resource availability and reproductive output of pollinating in- sects. Similarly, pollinator responses, such as altered foraging activity, body size, and life span, could affect patterns of pollen flow and pollination success of flowering plants. As a result, network structure could be altered as interactions are gained and lost, weakened and strengthened, even without the gain or loss of species or temporal overlap. Future research that addresses not only how plant and pollinator physiology are affected by warming but also how responses scale up to affect interactions and networks should allow us to better understand and predict the effects of climate change on this important ecosystem service . 展开更多
关键词 MUTUALISM Networks Plant-pollinator interactions POLLINATION Temperature THERMOREGULATION
原文传递
Quantitative study on interactions between interfacial misfit dislocation networks and matrix dislocations in Ni-based single crystal superalloys 被引量:1
14
作者 Jun Xiong Yaxin Zhu +1 位作者 Zhenhuan Li Minsheng Huang 《Acta Mechanica Solida Sinica》 SCIE EI CSCD 2017年第4期345-353,共9页
The interactions between the moving dislocation within matrix channel and the interfacial misfit dislocation networks on the two-phase interfaces in Ni-based single crystal superalloys are studied carefully via atomic... The interactions between the moving dislocation within matrix channel and the interfacial misfit dislocation networks on the two-phase interfaces in Ni-based single crystal superalloys are studied carefully via atomic modeling, with special focus on the factors influ- encing the critical bowing stress of moving dislocations in the matrix channel. The results show that the moving matrix dislocation type and its position with respect to the interfacial misfit dislocation segments have considerable influences on the interactions. If the moving matrix dislocation is pure screw, it reacts with the interracial misfit dislocation segments toward dislocation linear energy reduction, which decreases the critical bowing stress of screw dislocation due to dislocation linear energy release during the dislocation reactions. If the moving matrix dislocation is of 60^-mixed type, it is obstructed by the interaction between the mixed matrix dislocations and the misfit interfacial dislocation segments. As a result, the critical bowing stress increases significantly because extra interactive energy needs to be overcome. These two different effects on the critical bowing stress become in- creasingly significant when the moving matrix dislocation is very close to the interracial misfit dislocation segments. In addition, the matrix channel width also has a significant influence on the critical bowing stress, i.e. the narrower the matrix channel is, the higher the critical bowing stress is. The classical Orowan formula is modified to predict these effects on the critical bowing stress of moving matrix dislocation, which is in good agreement with the computational results. 展开更多
关键词 Dislocation interaction Misfit dislocation networks Molecular dynamics Matrix dislocation Ni-based single crystal superalloys
原文传递
Graph-based method for human-object interactions detection 被引量:1
15
作者 XIA Li-min WU Wei 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第1期205-218,共14页
Human-object interaction(HOIs)detection is a new branch of visual relationship detection,which plays an important role in the field of image understanding.Because of the complexity and diversity of image content,the d... Human-object interaction(HOIs)detection is a new branch of visual relationship detection,which plays an important role in the field of image understanding.Because of the complexity and diversity of image content,the detection of HOIs is still an onerous challenge.Unlike most of the current works for HOIs detection which only rely on the pairwise information of a human and an object,we propose a graph-based HOIs detection method that models context and global structure information.Firstly,to better utilize the relations between humans and objects,the detected humans and objects are regarded as nodes to construct a fully connected undirected graph,and the graph is pruned to obtain an HOI graph that only preserving the edges connecting human and object nodes.Then,in order to obtain more robust features of human and object nodes,two different attention-based feature extraction networks are proposed,which model global and local contexts respectively.Finally,the graph attention network is introduced to pass messages between different nodes in the HOI graph iteratively,and detect the potential HOIs.Experiments on V-COCO and HICO-DET datasets verify the effectiveness of the proposed method,and show that it is superior to many existing methods. 展开更多
关键词 human-object interactions visual relationship context information graph attention network
在线阅读 下载PDF
Protein-protein interactions: Methods, databases, and applications in virus-host study 被引量:3
16
作者 Qurat ul Ain Farooq Zeeshan Shaukat +1 位作者 Sara Aiman Chun-Hua Li 《World Journal of Virology》 2021年第6期288-300,共13页
Almost all the cellular processes in a living system are controlled by proteins:They regulate gene expression,catalyze chemical reactions,transport small molecules across membranes,and transmit signal across membranes... Almost all the cellular processes in a living system are controlled by proteins:They regulate gene expression,catalyze chemical reactions,transport small molecules across membranes,and transmit signal across membranes.Even,a viral infection is often initiated through virus-host protein interactions.Protein-protein interactions(PPIs)are the physical contacts between two or more proteins and they represent complex biological functions.Nowadays,PPIs have been used to construct PPI networks to study complex pathways for revealing the functions of unknown proteins.Scientists have used PPIs to find the molecular basis of certain diseases and also some potential drug targets.In this review,we will discuss how PPI networks are essential to understand the molecular basis of virus-host relationships and several databases which are dedicated to virus-host interaction studies.Here,we present a short but comprehensive review on PPIs,including the experimental and computational methods of finding PPIs,the databases dedicated to virus-host PPIs,and the associated various applications in protein interaction networks of some lethal viruses with their hosts. 展开更多
关键词 Protein-protein interactions Experimental and computational methods Protein-protein interaction networks Protein-protein interaction databases Disease pathways Protein-protein interaction applications
暂未订购
Opinion consensus incorporating higher-order interactions in individual-collective networks 被引量:1
17
作者 叶顺 涂俐兰 +2 位作者 王先甲 胡佳 王薏潮 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第7期105-115,共11页
In the current information society, the dissemination mechanisms and evolution laws of individual or collective opinions and their behaviors are the research hot topics in the field of opinion dynamics. First, in this... In the current information society, the dissemination mechanisms and evolution laws of individual or collective opinions and their behaviors are the research hot topics in the field of opinion dynamics. First, in this paper, a two-layer network consisting of an individual-opinion layer and a collective-opinion layer is constructed, and a dissemination model of opinions incorporating higher-order interactions(i.e. OIHOI dissemination model) is proposed. Furthermore, the dynamic equations of opinion dissemination for both individuals and groups are presented. Using Lyapunov's first method,two equilibrium points, including the negative consensus point and positive consensus point, and the dynamic equations obtained for opinion dissemination, are analyzed theoretically. In addition, for individual opinions and collective opinions,some conditions for reaching negative consensus and positive consensus as well as the theoretical expression for the dissemination threshold are put forward. Numerical simulations are carried to verify the feasibility and effectiveness of the proposed theoretical results, as well as the influence of the intra-structure, inter-connections, and higher-order interactions on the dissemination and evolution of individual opinions. The main results are as follows.(i) When the intra-structure of the collective-opinion layer meets certain characteristics, then a negative or positive consensus is easier to reach for individuals.(ii) Both negative consensus and positive consensus perform best in mixed type of inter-connections in the two-layer network.(iii) Higher-order interactions can quickly eliminate differences in individual opinions, thereby enabling individuals to reach consensus faster. 展开更多
关键词 two-layer social networks individual and collective opinions higher-order interactions CONSENSUS Lyapunov's first method
原文传递
Using the theory of coevolution to predict protein-protein interactions in non-small cell lung cancer 被引量:1
18
作者 Meng Zhang Man-Him Chan +3 位作者 Wen-Jian Tu Li-Ran He Chak-Man Lee Miao He 《Chinese Journal of Cancer》 SCIE CAS CSCD 2013年第2期91-98,共8页
Systems biology has become an effective approach for understanding the molecular mechanisms underlying the development of lung cancer.In this study,sequences of 100 non-small cell lung cancer (NSCLC)-related proteins ... Systems biology has become an effective approach for understanding the molecular mechanisms underlying the development of lung cancer.In this study,sequences of 100 non-small cell lung cancer (NSCLC)-related proteins were downloaded from the National Center for Biotechnology Information (NCBI) databases.The Theory of Coevolution was then used to build a protein-protein interaction (PPI) network of NSCLC.Adopting the reverse thinking approach,we analyzed the NSCLC proteins one at a time.Fifteen key proteins were identified and categorized into a special protein family F(K),which included Cyclin D1 (CCND1),E-cadherin (CDH1),Cyclin-dependent kinase inhibitor 2A (CDKN2A),chemokine (C-X-C motif) ligand 12 (CXCL12),epidermal growth factor (EGF),epidermal growth factor receptor (EGFR),TNF receptor superfamily,member 6(FAS),FK506 binding protein 12-rapamycin associated protein 1 (FRAP1),O-6-methylguanine-DNA methyltransferase (MGMT),parkinson protein 2,E3 ubiquitin protein ligase (PARK2),phosphatase and tensin homolog (PTEN),calcium channel voltage-dependent alpha 2/delta subunit 2 (CACNA2D2),tubulin beta class I (TUBB),SWI/SNF-related,matrix-associated,actin-dependent regulator of chromatin,subfamily a,member 2 (SMARCA2),and wingless-type MMTV integration site family,member 7A (WNT7A).Seven key nodes of the sub-network were identified,which included PARK2,WNT7A,SMARCA2,FRAP1,CDKN2A,CCND1,and EGFR.The PPI predictions of EGFR-EGF,PARK2-FAS,PTEN-FAS,and CACNA2D2-CDH1 were confirmed experimentally by retrieving the Biological General Repository for Interaction Datasets (BioGRID) and PubMed databases.We proposed that the 7 proteins could serve as potential diagnostic molecular markers for NSCLC.In accordance with the developmental mode of lung cancer established by Sekine et al.,we assumed that the occurrence and development of lung cancer were linked not only to gene loss in the 3p region (WNT7A,3p25) and genetic mutations in the 9p region but also to similar events in the regions of 1p36.2 (FRAP1),6q25.2-q27 (PARK2),and 11q13 (CCND1).Lastly,the invasion or metastasis of lung cancer happened. 展开更多
关键词 蛋白质相互作用 非小细胞肺癌 理论预测 协同进化 表皮生长因子受体 细胞周期蛋白D1 DNA甲基转移酶 系统生物学
暂未订购
上一页 1 2 218 下一页 到第
使用帮助 返回顶部