Gut microbiota of higher vertebrates is host-specific. The number and diversity of the organisms residing within the gut ecosystem are defined by physiological and environmental factors, such as host genotype, habitat...Gut microbiota of higher vertebrates is host-specific. The number and diversity of the organisms residing within the gut ecosystem are defined by physiological and environmental factors, such as host genotype, habitat, and diet. Recently, culture-independent sequencing techniques have added a new dimension to the study of gut microbiota and the challenge to analyze the large volume of sequencing data is increasingly addressed by the development of novel computational tools and methods. Interestingly, gut microbiota maintains a constant relative abundance at operational tax- onomic unit (OTU) levels and altered bacterial abundance has been associated with complex diseases such as symptomatic atherosclerosis, type 2 diabetes, obesity, and colorectal cancer. Therefore, the study of gut microbial population has emerged as an important field of research in order to ulti- mately achieve better health. In addition, there is a spontaneous, non-linear, and dynamic interac- tion among different bacterial species residing in the gut. Thus, predicting the influence of perturbed microbe-microbe interaction network on health can aid in developing novel therapeutics. Here, we summarize the population abundance of gut microbiota and its variation in different clinical states, computational tools available to analyze the pyrosequencing data, and gut microbe-microbe inter- action networks.展开更多
With the development of proteomics and epigenetics,a large number of RNA-binding proteins(RBPs)have been discovered in recent years,and the inter-action between long non-coding RNAs(lncRNAs)and RBPs has also received ...With the development of proteomics and epigenetics,a large number of RNA-binding proteins(RBPs)have been discovered in recent years,and the inter-action between long non-coding RNAs(lncRNAs)and RBPs has also received increasing attention.It is extremely important to conduct in-depth research on the lncRNA-RBP interaction network,especially in the context of its role in the occurrence and development of cancer.Increasing evidence has demonstrated that lncRNA-RBP interactions play a vital role in cancer progression;there-fore,targeting these interactions could provide new insights for cancer drug discovery.In this review,we discussed how lncRNAs can interact with RBPs to regulate their localization,modification,stability,and activity and discussed the effects of RBPs on the stability,transport,transcription,and localization of lncRNAs.Moreover,we explored the regulation and influence of these inter-actions on lncRNAs,RBPs,and downstream pathways that are related to can-cer development,such as N6-methyladenosine(m6A)modification of lncRNAs.In addition,we discussed how the lncRNA-RBP interaction network regulates cancer cell phenotypes,such as proliferation,apoptosis,metastasis,drug resis-tance,immunity,tumor environment,and metabolism.Furthermore,we sum-marized the therapeutic strategies that target the lncRNA-RBP interaction net-work.Although these treatments are still in the experimental stage and various theories and processes are still being studied,we believe that these strategiesmay provide new ideas for cancer treatment.展开更多
基金supported by Indian Council of Medical Research (Grant No.2013-1551G)Department of Biotechnology,India for providing Ramalingaswami Fellowship (BT/RLF/Re-entry/11/2011)
文摘Gut microbiota of higher vertebrates is host-specific. The number and diversity of the organisms residing within the gut ecosystem are defined by physiological and environmental factors, such as host genotype, habitat, and diet. Recently, culture-independent sequencing techniques have added a new dimension to the study of gut microbiota and the challenge to analyze the large volume of sequencing data is increasingly addressed by the development of novel computational tools and methods. Interestingly, gut microbiota maintains a constant relative abundance at operational tax- onomic unit (OTU) levels and altered bacterial abundance has been associated with complex diseases such as symptomatic atherosclerosis, type 2 diabetes, obesity, and colorectal cancer. Therefore, the study of gut microbial population has emerged as an important field of research in order to ulti- mately achieve better health. In addition, there is a spontaneous, non-linear, and dynamic interac- tion among different bacterial species residing in the gut. Thus, predicting the influence of perturbed microbe-microbe interaction network on health can aid in developing novel therapeutics. Here, we summarize the population abundance of gut microbiota and its variation in different clinical states, computational tools available to analyze the pyrosequencing data, and gut microbe-microbe inter- action networks.
基金supported by the National Key Research andDevelopment Programof China(2021YFC2501000 and 2017YFA0505100)and the National Natural Science Foun-dation of China(31961160727,81973339,and 81773085).
文摘With the development of proteomics and epigenetics,a large number of RNA-binding proteins(RBPs)have been discovered in recent years,and the inter-action between long non-coding RNAs(lncRNAs)and RBPs has also received increasing attention.It is extremely important to conduct in-depth research on the lncRNA-RBP interaction network,especially in the context of its role in the occurrence and development of cancer.Increasing evidence has demonstrated that lncRNA-RBP interactions play a vital role in cancer progression;there-fore,targeting these interactions could provide new insights for cancer drug discovery.In this review,we discussed how lncRNAs can interact with RBPs to regulate their localization,modification,stability,and activity and discussed the effects of RBPs on the stability,transport,transcription,and localization of lncRNAs.Moreover,we explored the regulation and influence of these inter-actions on lncRNAs,RBPs,and downstream pathways that are related to can-cer development,such as N6-methyladenosine(m6A)modification of lncRNAs.In addition,we discussed how the lncRNA-RBP interaction network regulates cancer cell phenotypes,such as proliferation,apoptosis,metastasis,drug resis-tance,immunity,tumor environment,and metabolism.Furthermore,we sum-marized the therapeutic strategies that target the lncRNA-RBP interaction net-work.Although these treatments are still in the experimental stage and various theories and processes are still being studied,we believe that these strategiesmay provide new ideas for cancer treatment.