Magnets exhibiting the Kitaev interaction,a bond-dependent magnetic interaction in honeycomb lattices,are generally regarded as promising candidates for hosting novel phenomena like quantum spin liquid states.However,...Magnets exhibiting the Kitaev interaction,a bond-dependent magnetic interaction in honeycomb lattices,are generally regarded as promising candidates for hosting novel phenomena like quantum spin liquid states.However,realizing such magnets remains a significant challenge.Recently,some studies have suggested honeycomb magnets A_(3)Ni_(2)XO_(6)(A=Li,Na;X=Bi,Sb)with a high spin S=1 could serve as potential candidates for realizing strong Kitaev interactions.In this work,we systematically investigate their magnetic properties,with a particular emphasis on their Kitaev interactions,using first-principles calculations and Monte Carlo simulations.Our results indicate that all A_(3)Ni_(2)XO_(6)compounds are zigzag antiferromagnets,and their magnetic moments almost tend to be out of plane.We find that their dominant magnetic interactions are the nearest-neighbor ferromagnetic and third-nearest-neighbor antiferromagnetic Heisenberg interactions,while their Kitaev interactions are extremely weak.By analyzing their electronic structures and the mechanism of generating their magnetic interactions,we reveal that either artificially tuning spin-orbit coupling or applying strain cannot produce sufficient spin-orbit entangled states to realize the intriguing Kitaev interactions.Our work advances the understanding of the magnetism in A_(3)Ni_(2)XO_(6)compounds and provides insights for further exploration of Kitaev physics in honeycomb magnets.展开更多
基金supported by the National Key R&D Program of China(Grant Nos.2024-YFA1408303 and 2022YFA1403301)the National Natural Sciences Foundation of China(Grant Nos.12474247 and 92165204)+1 种基金support from Guangdong Provincial Key Laboratory of Magnetoelectric Physics and Devices(Grant No.2022B1212010008)Research Center for Magnetoelectric Physicsof Guangdong Province(Grant No.2024B0303390001).
文摘Magnets exhibiting the Kitaev interaction,a bond-dependent magnetic interaction in honeycomb lattices,are generally regarded as promising candidates for hosting novel phenomena like quantum spin liquid states.However,realizing such magnets remains a significant challenge.Recently,some studies have suggested honeycomb magnets A_(3)Ni_(2)XO_(6)(A=Li,Na;X=Bi,Sb)with a high spin S=1 could serve as potential candidates for realizing strong Kitaev interactions.In this work,we systematically investigate their magnetic properties,with a particular emphasis on their Kitaev interactions,using first-principles calculations and Monte Carlo simulations.Our results indicate that all A_(3)Ni_(2)XO_(6)compounds are zigzag antiferromagnets,and their magnetic moments almost tend to be out of plane.We find that their dominant magnetic interactions are the nearest-neighbor ferromagnetic and third-nearest-neighbor antiferromagnetic Heisenberg interactions,while their Kitaev interactions are extremely weak.By analyzing their electronic structures and the mechanism of generating their magnetic interactions,we reveal that either artificially tuning spin-orbit coupling or applying strain cannot produce sufficient spin-orbit entangled states to realize the intriguing Kitaev interactions.Our work advances the understanding of the magnetism in A_(3)Ni_(2)XO_(6)compounds and provides insights for further exploration of Kitaev physics in honeycomb magnets.