Near-IR femtosecond lasers have been proposed to produce high-field terahertz radiation in the air via the laser-plasma interaction, but the physical mechanism still needs to be further explored. In this work, we theo...Near-IR femtosecond lasers have been proposed to produce high-field terahertz radiation in the air via the laser-plasma interaction, but the physical mechanism still needs to be further explored. In this work, we theoretically investigate the effect of the two-color laser wavelength on the terahertz generation in the air based on a transient photocurrent model.We show that the long wavelength laser excitation can greatly enhance the terahertz amplitude for a given total laser intensity. Furthermore, we utilize a local current model to illustrate the enhancement mechanism. Our analysis shows that the terahertz amplitude is determined by the superposition of contributions from individual ionization events, and for the long wavelength laser excitation, the electron production concentrates in a few ionization events and acquires the larger drift velocities, which results in the stronger terahertz radiation generation. These results will be very helpful for understanding the terahertz generation process and optimizing the terahertz output.展开更多
The simple surface current model is extended to study the generation of high-order harmonics for a relativistic circularly polarized laser pulse interacting with a plasma grating surface. Both exact relativistic elect...The simple surface current model is extended to study the generation of high-order harmonics for a relativistic circularly polarized laser pulse interacting with a plasma grating surface. Both exact relativistic electron dynamics and optical interference of surface periodic structure are considered. It is found that high order harmonics in the specular direction are obviously suppressed whereas the harmonics of the grating periodicity are strongly enhanced and folded into small solid angles with respect to the surface direction. The conversion efficiency of certain harmonics is five orders of magnitude higher than that of the planar target cases. It provides an effective approach to generate a coherent radiation within the so-called 'water window' while maintaining high conversion efficiency and narrow angle spread.展开更多
We present numerical simulations of simplified models for swimming organisms or robots, using chordwise flexible elastic plates. We focus on the tip vortices originating from three-dimensional effects due to the finit...We present numerical simulations of simplified models for swimming organisms or robots, using chordwise flexible elastic plates. We focus on the tip vortices originating from three-dimensional effects due to the finite span of the plate. These effects play an important role when predicting the swimmer's cruising velocity, since they contribute significantly to the drag force. First we simulate swimmers with rectangular plates of different aspect ratios and compare the results with a recent experimental study. Then we consider plates with expanding and contracting shapes. We find the cruising velocity of the contracting swimmer to be higher than the rectangular one, which in turn is higher than the expanding one. We provide some evidence that this result is due to the tip vortices interacting differently with the swimmer.展开更多
A theory of ultrasonic generation via direct interaction of transverse optic (TO) phonons with photons in anharmonic lattice of ionic crystals is presented. There are two methods of supplying light energy for the exci...A theory of ultrasonic generation via direct interaction of transverse optic (TO) phonons with photons in anharmonic lattice of ionic crystals is presented. There are two methods of supplying light energy for the excitation of TO lattice wave as a high frequency ultrasound: (A) incident light comes from the source outside the cavity? fulfilled with ionic crystal medium, (B) photon mode of the cavity possesses the gain of amplification by stimulated radiation of active atoms doping in the medium. More attention is drawn to the case (B). The working system of case (B), as a mixture of lasing action and ultrasonic generation, has the threshold phenomena like usual laser. And the linear stability analysis shows that the nonlineax phonon-photon coupling and the interaction among phonons themselves, both of which reflect the anharmonicity of lattice vibration, are necessary to the stable ultrasonic output. So this laser-ultrasonic generation mixture would be also a measure to investigate the lattice-dynamic nonlinearity and correlated electromagnetic properties of ionic crystals.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.51132004,11604205,and 11474096)Science and Technology Commission of Shanghai Municipality,China(Grant No.14JC1401500)+1 种基金Shanghai Municipal Education Commission,China(Grant No.ZZGCD15066)Foundation of Fujian Educational Committee,China(Grant No.JAT160412)
文摘Near-IR femtosecond lasers have been proposed to produce high-field terahertz radiation in the air via the laser-plasma interaction, but the physical mechanism still needs to be further explored. In this work, we theoretically investigate the effect of the two-color laser wavelength on the terahertz generation in the air based on a transient photocurrent model.We show that the long wavelength laser excitation can greatly enhance the terahertz amplitude for a given total laser intensity. Furthermore, we utilize a local current model to illustrate the enhancement mechanism. Our analysis shows that the terahertz amplitude is determined by the superposition of contributions from individual ionization events, and for the long wavelength laser excitation, the electron production concentrates in a few ionization events and acquires the larger drift velocities, which results in the stronger terahertz radiation generation. These results will be very helpful for understanding the terahertz generation process and optimizing the terahertz output.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11375265,11475259 and 11675264the National Basic Research Program of China under Grant No 2013CBA01504the Science Challenge Project under Grant No JCKY2016212A505
文摘The simple surface current model is extended to study the generation of high-order harmonics for a relativistic circularly polarized laser pulse interacting with a plasma grating surface. Both exact relativistic electron dynamics and optical interference of surface periodic structure are considered. It is found that high order harmonics in the specular direction are obviously suppressed whereas the harmonics of the grating periodicity are strongly enhanced and folded into small solid angles with respect to the surface direction. The conversion efficiency of certain harmonics is five orders of magnitude higher than that of the planar target cases. It provides an effective approach to generate a coherent radiation within the so-called 'water window' while maintaining high conversion efficiency and narrow angle spread.
文摘We present numerical simulations of simplified models for swimming organisms or robots, using chordwise flexible elastic plates. We focus on the tip vortices originating from three-dimensional effects due to the finite span of the plate. These effects play an important role when predicting the swimmer's cruising velocity, since they contribute significantly to the drag force. First we simulate swimmers with rectangular plates of different aspect ratios and compare the results with a recent experimental study. Then we consider plates with expanding and contracting shapes. We find the cruising velocity of the contracting swimmer to be higher than the rectangular one, which in turn is higher than the expanding one. We provide some evidence that this result is due to the tip vortices interacting differently with the swimmer.
基金This work is supported by the National Nature Science Foundation of China!(No. 69678003)
文摘A theory of ultrasonic generation via direct interaction of transverse optic (TO) phonons with photons in anharmonic lattice of ionic crystals is presented. There are two methods of supplying light energy for the excitation of TO lattice wave as a high frequency ultrasound: (A) incident light comes from the source outside the cavity? fulfilled with ionic crystal medium, (B) photon mode of the cavity possesses the gain of amplification by stimulated radiation of active atoms doping in the medium. More attention is drawn to the case (B). The working system of case (B), as a mixture of lasing action and ultrasonic generation, has the threshold phenomena like usual laser. And the linear stability analysis shows that the nonlineax phonon-photon coupling and the interaction among phonons themselves, both of which reflect the anharmonicity of lattice vibration, are necessary to the stable ultrasonic output. So this laser-ultrasonic generation mixture would be also a measure to investigate the lattice-dynamic nonlinearity and correlated electromagnetic properties of ionic crystals.