In low earth orbit(LEO) and medium earth orbit(MEO) satellite networks, the network topology changes rapidly because of the high relative speed movement of satellites. When some inter-satellite links (ISLs) fail...In low earth orbit(LEO) and medium earth orbit(MEO) satellite networks, the network topology changes rapidly because of the high relative speed movement of satellites. When some inter-satellite links (ISLs) fail, they can not be repaired in a short time. In order to increase the robustness for LEO/MEO satel- lite networks, an effective dynamic routing algorithm is proposed. All the routes to a certain node are found by constructing a destination oriented acyclic directed graph(DOADG) with the node as the destination. In this algorithm, multiple routes are provided, loop-free is guaranteed, and as long as the DOADG maintains, it is not necessary to reroute even if some ISLs fail. Simulation results show that comparing to the conventional routing algorithms, it is more efficient and reliable, costs less transmission overhead and converges faster.展开更多
基金the National Natural Science Foundation of Tianjin(07JCYBTC14800)
文摘In low earth orbit(LEO) and medium earth orbit(MEO) satellite networks, the network topology changes rapidly because of the high relative speed movement of satellites. When some inter-satellite links (ISLs) fail, they can not be repaired in a short time. In order to increase the robustness for LEO/MEO satel- lite networks, an effective dynamic routing algorithm is proposed. All the routes to a certain node are found by constructing a destination oriented acyclic directed graph(DOADG) with the node as the destination. In this algorithm, multiple routes are provided, loop-free is guaranteed, and as long as the DOADG maintains, it is not necessary to reroute even if some ISLs fail. Simulation results show that comparing to the conventional routing algorithms, it is more efficient and reliable, costs less transmission overhead and converges faster.