With the increasing importance of multimodal data in emotional expression on social media,mainstream methods for sentiment analysis have shifted from unimodal to multimodal approaches.However,the challenges of extract...With the increasing importance of multimodal data in emotional expression on social media,mainstream methods for sentiment analysis have shifted from unimodal to multimodal approaches.However,the challenges of extracting high-quality emotional features and achieving effective interaction between different modalities remain two major obstacles in multimodal sentiment analysis.To address these challenges,this paper proposes a Text-Gated Interaction Network with Inter-Sample Commonality Perception(TGICP).Specifically,we utilize a Inter-sample Commonality Perception(ICP)module to extract common features from similar samples within the same modality,and use these common features to enhance the original features of each modality,thereby obtaining a richer and more complete multimodal sentiment representation.Subsequently,in the cross-modal interaction stage,we design a Text-Gated Interaction(TGI)module,which is text-driven.By calculating the mutual information difference between the text modality and nonverbal modalities,the TGI module dynamically adjusts the influence of emotional information from the text modality on nonverbal modalities.This helps to reduce modality information asymmetry while enabling full cross-modal interaction.Experimental results show that the proposed model achieves outstanding performance on both the CMU-MOSI and CMU-MOSEI baseline multimodal sentiment analysis datasets,validating its effectiveness in emotion recognition tasks.展开更多
AIM: TO assess the sampling variability of computeraided, fractal-corrected measures of fibrosis in liver biopsies. METHODS: Samples were derived from six to eight different parts of livers removed from 12 patients ...AIM: TO assess the sampling variability of computeraided, fractal-corrected measures of fibrosis in liver biopsies. METHODS: Samples were derived from six to eight different parts of livers removed from 12 patients with clinically and histologically proven cirrhosis undergoing orthotopic liver transplantation. Sirius red-stained sections with a thickness of 2 μm were digitized using a computer-aided image analysis system that automatically measures the surface of fibrosis, as well as its outline perimeter, fractal surface and outline dimensions, wrinldedness, and Hurst coefficient. RESULTS: We found a high degree of inter-sample variability in the measurements of the surface [coefficient of variation (CV) = 43% ± 13%] and wrinkledness (CV = 28% ± 9%) of fibrosis, but the inter-sample variability of Hurst's exponent was low (CV = 14% ± 2%). CONCLUSION: This study suggests that Hurst's exponent might be used in clinical practice as the best histological estimate of fibrosis in the whole organ, and evidences the fact that biopsy sections, which are fundamental for the qualitative diagnosis of chronic hepatitis, play a key role in the quantitative estimate of architectural changes in liver tissue.展开更多
基金supported by the Natural Science Foundation of Henan under Grant 242300421220the Henan Provincial Science and Technology Research Project under Grants 252102211047 and 252102211062+3 种基金the Jiangsu Provincial Scheme Double Initiative Plan JSS-CBS20230474the XJTLU RDF-21-02-008the Science and Technology Innovation Project of Zhengzhou University of Light Industry under Grant 23XNKJTD0205the Higher Education Teaching Reform Research and Practice Project of Henan Province under Grant 2024SJGLX0126.
文摘With the increasing importance of multimodal data in emotional expression on social media,mainstream methods for sentiment analysis have shifted from unimodal to multimodal approaches.However,the challenges of extracting high-quality emotional features and achieving effective interaction between different modalities remain two major obstacles in multimodal sentiment analysis.To address these challenges,this paper proposes a Text-Gated Interaction Network with Inter-Sample Commonality Perception(TGICP).Specifically,we utilize a Inter-sample Commonality Perception(ICP)module to extract common features from similar samples within the same modality,and use these common features to enhance the original features of each modality,thereby obtaining a richer and more complete multimodal sentiment representation.Subsequently,in the cross-modal interaction stage,we design a Text-Gated Interaction(TGI)module,which is text-driven.By calculating the mutual information difference between the text modality and nonverbal modalities,the TGI module dynamically adjusts the influence of emotional information from the text modality on nonverbal modalities.This helps to reduce modality information asymmetry while enabling full cross-modal interaction.Experimental results show that the proposed model achieves outstanding performance on both the CMU-MOSI and CMU-MOSEI baseline multimodal sentiment analysis datasets,validating its effectiveness in emotion recognition tasks.
基金Supported by "Michele Rodriguez" Foundation, Institute forQuantitative Measures in Medicine, Milan, Italy
文摘AIM: TO assess the sampling variability of computeraided, fractal-corrected measures of fibrosis in liver biopsies. METHODS: Samples were derived from six to eight different parts of livers removed from 12 patients with clinically and histologically proven cirrhosis undergoing orthotopic liver transplantation. Sirius red-stained sections with a thickness of 2 μm were digitized using a computer-aided image analysis system that automatically measures the surface of fibrosis, as well as its outline perimeter, fractal surface and outline dimensions, wrinldedness, and Hurst coefficient. RESULTS: We found a high degree of inter-sample variability in the measurements of the surface [coefficient of variation (CV) = 43% ± 13%] and wrinkledness (CV = 28% ± 9%) of fibrosis, but the inter-sample variability of Hurst's exponent was low (CV = 14% ± 2%). CONCLUSION: This study suggests that Hurst's exponent might be used in clinical practice as the best histological estimate of fibrosis in the whole organ, and evidences the fact that biopsy sections, which are fundamental for the qualitative diagnosis of chronic hepatitis, play a key role in the quantitative estimate of architectural changes in liver tissue.