期刊文献+
共找到38,481篇文章
< 1 2 250 >
每页显示 20 50 100
Porosity prediction based on improved structural modeling deep learning method guided by petrophysical information
1
作者 Bo-Cheng Tao Huai-Lai Zhou +3 位作者 Wen-Yue Wu Gan Zhang Bing Liu Xing-Ye Liu 《Petroleum Science》 2025年第6期2325-2338,共14页
Porosity is an important attribute for evaluating the petrophysical properties of reservoirs, and has guiding significance for the exploration and development of oil and gas. The seismic inversion is a key method for ... Porosity is an important attribute for evaluating the petrophysical properties of reservoirs, and has guiding significance for the exploration and development of oil and gas. The seismic inversion is a key method for comprehensively obtaining the porosity. Deep learning methods provide an intelligent approach to suppress the ambiguity of the conventional inversion method. However, under the trace-bytrace inversion strategy, there is a lack of constraints from geological structural information, resulting in poor lateral continuity of prediction results. In addition, the heterogeneity and the sedimentary variability of subsurface media also lead to uncertainty in intelligent prediction. To achieve fine prediction of porosity, we consider the lateral continuity and variability and propose an improved structural modeling deep learning porosity prediction method. First, we combine well data, waveform attributes, and structural information as constraints to model geophysical parameters, constructing a high-quality training dataset with sedimentary facies-controlled significance. Subsequently, we introduce a gated axial attention mechanism to enhance the features of dataset and design a bidirectional closed-loop network system constrained by inversion and forward processes. The constraint coefficient is adaptively adjusted by the petrophysical information contained between the porosity and impedance in the study area. We demonstrate the effectiveness of the adaptive coefficient through numerical experiments.Finally, we compare the performance differences between the proposed method and conventional deep learning methods using data from two study areas. The proposed method achieves better consistency with the logging porosity, demonstrating the superiority of the proposed method. 展开更多
关键词 Porosity prediction Deep learning Improved structural modeling Petrophysical information
原文传递
Physical and numerical modeling of a framed anti-sliding structure for a mountainous railway line
2
作者 QIU Ruizhe LIU Kaiwen +3 位作者 YANG Zhixiang MA Chiyuan XIAO Jian SU Qian 《Journal of Southeast University(English Edition)》 2025年第1期12-19,共8页
To ensure the operational safety of railways in the landslide-prone areas of mountainous regions,a large-scale model test and numerical simulation were conducted to study the bending moment distribution,internal force... To ensure the operational safety of railways in the landslide-prone areas of mountainous regions,a large-scale model test and numerical simulation were conducted to study the bending moment distribution,internal force distribution,deformation development,and crack propagation characteristics of a framed anti-sliding structure(FAS)under landslide thrust up to the point of failure.Results show that the maximum bending moment and its increase rate in the fore pile are greater than those in the rear pile,with the maximum bending moment of the fore pile approximately 1.1 times that of the rear pile.When the FAS fails,the displacement at the top of the fore pile is significantly greater,about 1.27 times that of the rear pile in the experiment.Major cracks develop at locations corresponding to the peak bending moments.Small transverse cracks initially appear on the upper surface at the intersection between the primary beam and rear pile and then spread to the side of the structure.At the failure stage,major cracks are observed at the pil-beam intersections and near the anchor points.Strengthening flexural stiffness at intersections where major cracks occur can improve the overall thrust-deformation coordination of the FAS,thereby maximizing its performance. 展开更多
关键词 mountainous railway SLOPE framed anti-sliding structure model test finite element modeling mechanical responses
在线阅读 下载PDF
Evaluation of three-dimensional structure modeling of key enzymes in endogenous catabolism of polyamines
3
作者 GUO Baolin XUE Qian +1 位作者 WANG Bing ZHAO Yuan 《化学研究》 2025年第3期268-277,共10页
The acetylpolyamine oxidase(APAO),spermine oxidase(SMO),and spermidine/spermine N1-acetyltransferase(SSAT)are pivotal enzymes in polyamine metabolism,exerting direct influence on polyamine homeostasis regulation.Dysfu... The acetylpolyamine oxidase(APAO),spermine oxidase(SMO),and spermidine/spermine N1-acetyltransferase(SSAT)are pivotal enzymes in polyamine metabolism,exerting direct influence on polyamine homeostasis regulation.Dysfunctions in these enzymes are intricately linked to inflammatory diseases and cancers.Establishing their three-dimensional structures is essential for exploring enzymatic catalytic mechanisms and designing inhibitors at the atomic level.This article primarily assesses the precision of AlphaFold2 and molecular dynamics simulations in determining the three-dimensional structures of these enzymes,utilizing protein conformation rationality assessment,residue correlation matrix,and other techniques.This provides robust models for subsequent polyamine catabolic metabolism calculations and offers valuable insights for modeling proteins that have yet to acquire crystal structures. 展开更多
关键词 AlphaFold2 molecular dynamics simulation polyamine metabolism ENZYME structure modeling
在线阅读 下载PDF
Structural Ore-controlling Model for the Super-large Hadamengou Gold Deposit in Inner Mongolia,China
4
作者 WANG Da YANG Biao +8 位作者 XU Daxing LI Xiaoshuang FAN Songhao SU Panyun MA Huchao WANG Guilong WANG Gaotian MA Lei LIU Wencan 《Acta Geologica Sinica(English Edition)》 2025年第2期499-521,共23页
Controversy is ongoing regarding the relationship between ore formation and the structural evolution of the Hadamengou gold deposit.To address this issue,we conducted a comprehensive investigation of mineralization-re... Controversy is ongoing regarding the relationship between ore formation and the structural evolution of the Hadamengou gold deposit.To address this issue,we conducted a comprehensive investigation of mineralization-related structures,geochronology and Fe isotopes.From the perspective of spatial evolution,hydrothermal fluids originating from the Shadegai and Xishadegai plutons have extracted accumulated ore-forming elements from the Wulashan Group(Ar2WL)and then evolved,initiating at Exploration Line 11 and migrating eastwards and westwards along the EW-trending thrust fault system to form orebodies.From the temporal evolution standpoint,the Wulashan Group(Ar_(2)WL)experienced diagenesis(2591.00 Ma to 2204.00 Ma)and metamorphism(2074.00 Ma to 1625.00 Ma)from late Neoarchean to early Paleoproterozoic,when ore-forming materials were initially accumulated;in the early Paleozoic(440.71 Ma to 425.00 Ma),the collision led to the formation of early-stage EW-trending imbricated thrust faults,which established a fundamental structural framework for the orefield and further accumulated ore-forming materials;from the late Paleozoic to the Mesozoic,multiple subsequent episodes of regional tectonic-magmatic-hydrothermal events have superimposed,modified and reactivated the thrust fault system.Notably,the Triassic period,particularly between 245.00 Ma and 217.90 Ma,is considered to be a primary ore-forming stage.In summary,the intricate relationship between ore-formation and structural evolution has been fundamentally elucidated. 展开更多
关键词 Fe isotope GEOCHRONOLOGY thrust fault system structural ore-controlling model Hadamnegou Au deposit
在线阅读 下载PDF
Structure-type rockburst in deep tunnels: Physical modeling and numerical simulation
5
作者 Guo-Qiang Zhu Yan Zhang +3 位作者 Shaojun Li Yang-Yi Zhou Jialiang Zhou Minglang Zou 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第6期3502-3523,共22页
Structure-type rockbursts frequently occur in deep tunnels,with structural planes and stress conditions being critical factors in their formation.In this study,we utilized specially developed analogous materials that ... Structure-type rockbursts frequently occur in deep tunnels,with structural planes and stress conditions being critical factors in their formation.In this study,we utilized specially developed analogous materials that exhibit the high brittleness and strength characteristics of deep hard rock to construct physical models representing different types of structural planes,including composite,exposed,non-exposed,and throughgoing structural planes.Physical simulation experiments were conducted on structuretype rockbursts in deep horseshoe-shaped tunnels,focusing on strain differentiation characteristics,critical triggering conditions,critical crack opening displacement,the incubation process,the reduction effects of structural planes on failure intensity,and formation mechanisms.These experiments were complemented by acoustic and optical monitoring,as well as discrete element numerical simulations,to provide a comprehensive analysis.The results revealed that the most significant strain heterogeneity in the surrounding rock occurs at the tip of the structural plane along the tunnel's minimum principal stress direction,driven by the combined effects of tensile and shear forces.We quantitatively determined the critical stress and strain conditions for structure-type rockbursts and evaluated the intensity of rockbursts induced by different structural planes using critical crack opening displacement(COD)values,the uniformity coefficient,and the curvature coefficient.Analysis of acoustic emission events,including frequency,amplitude,and b-value,indicated that the macro-fracture process is governed by both the principal stress differential and the characteristics of the structural plane.Furthermore,using the bearing capacity reduction coefficient,we found that exposed structural planes have the most significant weakening effect on rock mass strength,followed by non-exposed and throughgoing structural planes.The analysis of average frequency(AF)and rise angle(RA)parameters revealed a close correlation between the failure modes of structure-type rockbursts,the rock mass structure,and the stress levels.These findings provide critical theoretical support for the prediction and prevention of structure-type rockburst disasters. 展开更多
关键词 Deep tunnel ROCKBURST structural plane Strain heterogeneity Physical model test Particle flow code(PFC)
在线阅读 下载PDF
Factors in Work-Related Musculoskeletal Disorders in Dentists:A Structural Equation Model
6
作者 Shunhang Li Jian Li +6 位作者 Xin Xu Yushan Huang Yilin Zhang Xiaoshuang Xu Weizhen Guan Xiaoping Liu Jing Li 《Biomedical and Environmental Sciences》 2025年第5期639-643,共5页
Dentistry is a profession with a high prevalence of work-related musculoskeletal disorders(WMSDs),with symptoms often appearing very early in one’s career[1].WMSDs are conditions affecting the muscles,bones,and nervo... Dentistry is a profession with a high prevalence of work-related musculoskeletal disorders(WMSDs),with symptoms often appearing very early in one’s career[1].WMSDs are conditions affecting the muscles,bones,and nervous system due to occupational factors.In 2002,the International Labor Organization included musculoskeletal diseases in the International List of Occupational Diseases.China’s recently updated Classification and Catalog of Occupational Diseases has introduced two new categories of occupational illnesses,including occupational musculoskeletal disorders.WMSDs significantly impact the health and work of dentists,reducing their quality of life and causing economic losses.These disorders are multifactorial in nature,influenced by personal,psychosocial,biomechanical,and environmental factors.Dentists frequently maintain static or awkward postures during procedures,which leads to musculoskeletal strain and discomfort;additionally,long working hours contribute to psychological stress,further increasing the risk of WMSDs[2]. 展开更多
关键词 DENTISTS occupational factors classification catalog occupational diseases musculoskeletal disorders wmsds awkward postures work related musculoskeletal disorders structural equation model static postures
暂未订购
Accumulation mechanism and enrichment model of deep tight sandstone gas in second member of Upper Triassic Xujiahe Formation,Xinchang structural belt,Sichuan Basin,SW China
7
作者 XIONG Liang CHEN Dongxia +3 位作者 YANG Yingtao ZHANG Ling LI Sha WANG Qiaochu 《Petroleum Exploration and Development》 2025年第4期907-920,共14页
Taking the second member of the Xujiahe Formation of the Upper Triassic in the Xinchang structural belt as an example,based on data such as logging,production,seismic interpretation and test,a systematic analysis was ... Taking the second member of the Xujiahe Formation of the Upper Triassic in the Xinchang structural belt as an example,based on data such as logging,production,seismic interpretation and test,a systematic analysis was conducted on the structural characteristics and evolution,reservoir diagenesis and densification processes,and types and stages of faults/fractures,and revealing the multi-stage and multi-factor dynamic coupled enrichment mechanisms of tight gas reservoirs.(1)In the early Yanshan period,the paleo-structural traps were formed with low-medium maturity hydrocarbons accumulating in structural highs driven by buoyancy since reservoirs were not fully densified in this stage,demonstrating paleo-structure control on traps and early hydrocarbon accumulation.(2)In the middle-late Yanshan period,the source rocks became mature to generate and expel a large quantity of hydrocarbons.Grain size and type of sandstone controlled the time of reservoir densification,which restricted the scale of hydrocarbon charging,allowing for only a small-scale migration through sand bodies near the fault/fracture or less-densified matrix reservoirs.(3)During the Himalayan period,the source rocks reached overmaturity,and the residual oil cracking gas was efficiently transported along the late-stage faults/fractures.Wells with high production capacity were mainly located in Type I and II fault/fracture zones comprising the late-stage north-south trending fourth-order faults and the late-stage fractures.The productivity of the wells was controlled by the transformation of the late-stage faults/fractures.(4)The Xinchang structural belt underwent three stages of tectonic evolution,two stages of reservoir formation,and three stages of fault/fractures development.Hydrocarbons mainly accumulated in the paleo-structure highs.After reservoir densification and late fault/fracture adjustment,a complex gas-water distribution pattern was formed.Thus,it is summarized as the model of“near-source and low-abundance hydrocarbon charging in the early stage,and differential enrichment of natural gas under the joint control of fault-fold-fracture complex,high-quality reservoirs and structural highs in the late stage”.Faults/fractures with well-coupled fault-fold-fracture-pore are favorable exploration targets with high exploration effectiveness. 展开更多
关键词 Upper Triassic second member of the Xujiahe Formation tight sandstone gas reservoir enrichment mechanism hydrocarbon accumulation model Xinchang structural belt Sichuan Basin
在线阅读 下载PDF
Intelligent vectorial surrogate modeling framework for multi-objective reliability estimation of aerospace engineering structural systems
8
作者 Da TENG Yunwen FENG +1 位作者 Junyu CHEN Cheng LU 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2024年第12期156-173,共18页
To improve the computational efficiency and accuracy of multi-objective reliability estimation for aerospace engineering structural systems,the Intelligent Vectorial Surrogate Modeling(IVSM)concept is presented by fus... To improve the computational efficiency and accuracy of multi-objective reliability estimation for aerospace engineering structural systems,the Intelligent Vectorial Surrogate Modeling(IVSM)concept is presented by fusing the compact support region,surrogate modeling methods,matrix theory,and Bayesian optimization strategy.In this concept,the compact support region is employed to select effective modeling samples;the surrogate modeling methods are employed to establish a functional relationship between input variables and output responses;the matrix theory is adopted to establish the vector and cell arrays of modeling parameters and synchronously determine multi-objective limit state functions;the Bayesian optimization strategy is utilized to search for the optimal hyperparameters for modeling.Under this concept,the Intelligent Vectorial Neural Network(IVNN)method is proposed based on deep neural network to realize the reliability analysis of multi-objective aerospace engineering structural systems synchronously.The multioutput response function approximation problem and two engineering application cases(i.e.,landing gear brake system temperature and aeroengine turbine blisk multi-failures)are used to verify the applicability of IVNN method.The results indicate that the proposed approach holds advantages in modeling properties and simulation performances.The efforts of this paper can offer a valuable reference for the improvement of multi-objective reliability assessment theory. 展开更多
关键词 Intelligent vectorial surrogate modeling Intelligent vectorial neural network Aerospace engineering structural systems Multi-objective reliability estimation Matrix theory
原文传递
A structural VAR and VECM modeling method for open-high-low-close data contained in candlestick chart
9
作者 Wenyang Huang Huiwen Wang Shanshan Wang 《Financial Innovation》 2024年第1期2017-2045,共29页
The structural modeling of open-high-low-close(OHLC)data contained within the candlestick chart is crucial to financial practice.However,the inherent constraints in OHLC data pose immense challenges to its structural ... The structural modeling of open-high-low-close(OHLC)data contained within the candlestick chart is crucial to financial practice.However,the inherent constraints in OHLC data pose immense challenges to its structural modeling.Models that fail to process these constraints may yield results deviating from those of the original OHLC data structure.To address this issue,a novel unconstrained transformation method,along with its explicit inverse transformation,is proposed to properly handle the inherent constraints of OHLC data.A flexible and effective framework for structurally modeling OHLC data is designed,and the detailed procedure for modeling OHLC data through the vector autoregression and vector error correction model are provided as an example of multivariate time-series analysis.Extensive simulations and three authentic financial datasets from the Kweichow Moutai,CSI 100 index,and 50 ETF of the Chinese stock market demonstrate the effectiveness and stability of the proposed modeling approach.The modeling results of support vector regression provide further evidence that the proposed unconstrained transformation not only ensures structural forecasting of OHLC data but also is an effective feature-extraction method that can effectively improve the forecasting accuracy of machine-learning models for close prices. 展开更多
关键词 OHLC data structural modeling Unconstrained transformation Candlestick chart VAR VECM
在线阅读 下载PDF
A Survey Study on TPACK Framework for Normal Students of English Major in Ethnic Colleges and Universities:Empirical Analysis Based on Structural Equation Modeling
10
作者 Qinxian Chen Xuanxuan Zhong Xinyi Liu 《Journal of Contemporary Educational Research》 2024年第9期112-119,共8页
With the continuous advancement of education informatization,Technological Pedagogical Content Knowledge(TPACK),as a new theoretical framework,provides a novel method for measuring teachers’informatization teaching a... With the continuous advancement of education informatization,Technological Pedagogical Content Knowledge(TPACK),as a new theoretical framework,provides a novel method for measuring teachers’informatization teaching ability.This study takes normal students of English majors from three ethnic universities as the research object,collects relevant data through questionnaires,and uses structural equation modeling to conduct data analysis and empirical research to investigate the differences in the TPACK levels of these students at different grades and the structural relationships among the elements in the TPACK structure.The technological pedagogical knowledge element of the TPACK structure was not obtained by exploratory factors analysis but through path analysis and structural equation modeling,the results show that the one-dimensional core knowledge of technological knowledge(TK),content knowledge(CK),and pedagogical knowledge(PK)have a positive effect on the two-dimensional interaction knowledge of technological content knowledge(TCK)and pedagogical content knowledge(PCK);furthermore,TCK and PCK have a positive effect on TPACK;and TK,CK,and PK indirectly affect TPACK through TCK and PCK.On this basis,suggestions are provided to ethnic colleges and universities to develop the TPACK knowledge competence of normal students of English majors. 展开更多
关键词 TPACK Ethnic colleges and universities Normal students of English major structural equation modeling
在线阅读 下载PDF
Application of STEEP and Interpretive Structural Modeling in the Design Imagery of Taiwan Public Ceramic Relief Murals
11
作者 Chuan-Chin Chen Jiann-Sheng Jiang Shaolei Zhou 《Journal of Contemporary Educational Research》 2024年第5期117-127,共11页
Ceramic relief mural is a contemporary landscape art that is carefully designed based on human nature,culture,and architectural wall space,combined with social customs,visual sensibility,and art.It may also become the... Ceramic relief mural is a contemporary landscape art that is carefully designed based on human nature,culture,and architectural wall space,combined with social customs,visual sensibility,and art.It may also become the main axis of ceramic art in the future.Taiwan public ceramic relief murals(PCRM)are most distinctive with the PCRM pioneered by Pan-Hsiung Chu of Meinong Kiln in 1987.In addition to breaking through the limitations of traditional public ceramic murals,Chu leveraged local culture and sensibility.The theme of art gives PCRM its unique style and innovative value throughout the Taiwan region.This study mainly analyzes and understands the design image of public ceramic murals,taking Taiwan PCRM’s design and creation as the scope,and applies STEEP analysis,that is,the social,technological,economic,ecological,and political-legal environments are analyzed as core factors;eight main important factors in the artistic design image of ceramic murals are evaluated.Then,interpretive structural modeling(ISM)is used to establish five levels,analyze the four main problems in the main core factor area and the four main target results in the affected factor area;and analyze the problem points and target points as well as their causal relationships.It is expected to sort out the relationship between these factors,obtain the hierarchical relationship of each factor,and provide a reference basis and research methods. 展开更多
关键词 Interpretive structural modeling(ISM) STEEP analysis Public ceramic relief murals(PCRM)
在线阅读 下载PDF
Role of iron ore in enhancing gasification of iron coke:Structural evolution,influence mechanism and kinetic analysis 被引量:1
12
作者 Jie Wang Wei Wang +4 位作者 Xuheng Chen Junfang Bao Qiuyue Hao Heng Zheng Runsheng Xu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS 2025年第1期58-69,共12页
The utilization of iron coke provides a green pathway for low-carbon ironmaking.To uncover the influence mechanism of iron ore on the behavior and kinetics of iron coke gasification,the effect of iron ore on the micro... The utilization of iron coke provides a green pathway for low-carbon ironmaking.To uncover the influence mechanism of iron ore on the behavior and kinetics of iron coke gasification,the effect of iron ore on the microstructure of iron coke was investigated.Furthermore,a comparative study of the gasification reactions between iron coke and coke was conducted through non-isothermal thermogravimetric method.The findings indicate that compared to coke,iron coke exhibits an augmentation in micropores and specific surface area,and the micropores further extend and interconnect.This provides more adsorption sites for CO_(2) molecules during the gasification process,resulting in a reduction in the initial gasification temperature of iron coke.Accelerating the heating rate in non-isothermal gasification can enhance the reactivity of iron coke.The metallic iron reduced from iron ore is embedded in the carbon matrix,reducing the orderliness of the carbon structure,which is primarily responsible for the heightened reactivity of the carbon atoms.The kinetic study indicates that the random pore model can effectively represent the gasification process of iron coke due to its rich pore structure.Moreover,as the proportion of iron ore increases,the activation energy for the carbon gasification gradually decreases,from 246.2 kJ/mol for coke to 192.5 kJ/mol for iron coke 15wt%. 展开更多
关键词 low-carbon ironmaking iron coke GASIFICATION structural evolution kinetic model
在线阅读 下载PDF
Structural similarity of lithospheric velocity models of Chinese mainland 被引量:2
13
作者 Feng Huang Xueyang Bao +1 位作者 Qili Andy Dai Xinfu Li 《Earthquake Science》 2024年第6期514-528,共15页
Existing lithospheric velocity models exhibit similar structures typically associated with the first-order tectonic features,with dissimilarities due to different data and methods used in model generation.The quantifi... Existing lithospheric velocity models exhibit similar structures typically associated with the first-order tectonic features,with dissimilarities due to different data and methods used in model generation.The quantification of model structural similarity can help in interpreting the geophysical properties of Earth's interior and establishing unified models crucial in natural hazard assessment and resource exploration.Here we employ the complex wavelet structural similarity index measure(CW-SSIM)active in computer image processing to analyze the structural similarity of four lithospheric velocity models of Chinese mainland published in the past decade.We take advantage of this method in its multiscale definition and insensitivity to slight geometrical distortion like translation and scaling,which is particularly crucial in the structural similarity analysis of velocity models accounting for uncertainty and resolution.Our results show that the CW-SSIM values vary in different model pairs,horizontal locations,and depths.While variations in the inter-model CW-SSIM are partly owing to different databases in the model generation,the difference of tomography methods may significantly impact the similar structural features of models,such as the low similarities between the full-wave based FWEA18 and other three models in northeastern China.We finally suggest potential solutions for the next generation of tomographic modeling in different areas according to corresponding structural similarities of existing models. 展开更多
关键词 structural similarity LITHOSPHERE TOMOGRAPHY velocity model Chinese mainland
在线阅读 下载PDF
Comparative Analysis of ARIMA and LSTM Model-Based Anomaly Detection for Unannotated Structural Health Monitoring Data in an Immersed Tunnel 被引量:2
14
作者 Qing Ai Hao Tian +4 位作者 Hui Wang Qing Lang Xingchun Huang Xinghong Jiang Qiang Jing 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第5期1797-1827,共31页
Structural Health Monitoring(SHM)systems have become a crucial tool for the operational management of long tunnels.For immersed tunnels exposed to both traffic loads and the effects of the marine environment,efficient... Structural Health Monitoring(SHM)systems have become a crucial tool for the operational management of long tunnels.For immersed tunnels exposed to both traffic loads and the effects of the marine environment,efficiently identifying abnormal conditions from the extensive unannotated SHM data presents a significant challenge.This study proposed amodel-based approach for anomaly detection and conducted validation and comparative analysis of two distinct temporal predictive models using SHM data from a real immersed tunnel.Firstly,a dynamic predictive model-based anomaly detectionmethod is proposed,which utilizes a rolling time window for modeling to achieve dynamic prediction.Leveraging the assumption of temporal data similarity,an interval prediction value deviation was employed to determine the abnormality of the data.Subsequently,dynamic predictive models were constructed based on the Autoregressive Integrated Moving Average(ARIMA)and Long Short-Term Memory(LSTM)models.The hyperparameters of these models were optimized and selected using monitoring data from the immersed tunnel,yielding viable static and dynamic predictive models.Finally,the models were applied within the same segment of SHM data,to validate the effectiveness of the anomaly detection approach based on dynamic predictive modeling.A detailed comparative analysis discusses the discrepancies in temporal anomaly detection between the ARIMA-and LSTM-based models.The results demonstrated that the dynamic predictive modelbased anomaly detection approach was effective for dealing with unannotated SHM data.In a comparison between ARIMA and LSTM,it was found that ARIMA demonstrated higher modeling efficiency,rendering it suitable for short-term predictions.In contrast,the LSTM model exhibited greater capacity to capture long-term performance trends and enhanced early warning capabilities,thereby resulting in superior overall performance. 展开更多
关键词 Anomaly detection dynamic predictive model structural health monitoring immersed tunnel LSTM ARIMA
在线阅读 下载PDF
Nonlinear constitutive models of rock structural plane and their applications 被引量:1
15
作者 Wenlin Feng Shuangjian Niu +1 位作者 Chunsheng Qiao Dujian Zou 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第3期790-806,共17页
Structural planes play an important role in controlling the stability of rock engineering,and the influence of structural planes should be considered in the design and construction process of rock engineering.In this ... Structural planes play an important role in controlling the stability of rock engineering,and the influence of structural planes should be considered in the design and construction process of rock engineering.In this paper,mechanical properties,constitutive theory,and numerical application of structural plane are studied by a combination method of laboratory tests,theoretical derivation,and program development.The test results reveal the change laws of various mechanical parameters under different roughness and normal stress.At the pre-peak stage,a non-stationary model of shear stiffness is established,and threedimensional empirical prediction models for initial shear stiffness and residual stage roughness are proposed.The nonlinear constitutive models are established based on elasto-plastic mechanics,and the algorithms of the models are developed based on the return mapping algorithm.According to a large number of statistical analysis results,empirical prediction models are proposed for model parameters expressed by structural plane characteristic parameters.Finally,the discrete element method(DEM)is chosen to embed the constitutive models for practical application.The running programs of the constitutive models have been compiled into the discrete element model library.The comparison results between the proposed model and the Mohr-Coulomb slip model show that the proposed model can better describe nonlinear changes at different stages,and the predicted shear strength,peak strain and shear stiffness are closer to the test results.The research results of the paper are conducive to the accurate evaluation of structural plane in rock engineering. 展开更多
关键词 structural plane Engineering stability ROUGHNESS Normal stress Elasto-plastic constitutive model Discrete element method
在线阅读 下载PDF
Structural parameters and molecular model of Shendong subbituminous coal 被引量:1
16
作者 Xiaoping Su Ning Li +7 位作者 Longjian Li Reyila Tuerhong Yongchong Yu Ping Zhang Qiong Su Tao Shen Ming Sun Xiaoxun Ma 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第12期124-134,共11页
Coal has a highly complex chemical structure,similar to polymers,coal is a macromolecular structure composed of a large number of“similar compounds”,which is called the basic structural unit.Understanding coal struc... Coal has a highly complex chemical structure,similar to polymers,coal is a macromolecular structure composed of a large number of“similar compounds”,which is called the basic structural unit.Understanding coal structure is the basis of its transformation and utilization.Shendong(SD)coal was analyzed by FTIR,XRD,XPS,and NMR.The results show that SD coal normalized structure formula is C_(100)H_(68.5)O_(35.7)N_(1.2)S_(0.2)and the average number of aromatic rings is 1.98.-CH_(2)-content accounts for about 82%in aliphatic CeH region,and the ratio of ether bond CeO,aromatic ether C-O and C=O is about 2:1:11 in oxygen-containing functional group region.The d_(002),L_(C),L_(a)and N_(C)of S_(D)coal microcrystalline structure parameters are 0.1832 nm,1.4688 nm,2.0852 nm and 9.017,respectively.Aromatic carbon and aliphatic carbon ratios of SD coal are 55.67%and 29.97%,aromatic cluster size and average methylene chain length are 0.224 and 1.817.Based on these structural parameters,molecular model of SD coal was constructed with^(13)C SSNMR experimental spectra as a reference.The model was constructed with an atom composition of C_(214)H_(214)O_(49)N_(2)S. 展开更多
关键词 Subbituminous coal structural parameters ^(13)C CP/MAS SSNMR Molecular model
在线阅读 下载PDF
Big Model Strategy for Bridge Structural Health Monitoring Based on Data-Driven, Adaptive Method and Convolutional Neural Network (CNN) Group 被引量:1
17
作者 Yadong Xu Weixing Hong +3 位作者 Mohammad Noori Wael A.Altabey Ahmed Silik Nabeel S.D.Farhan 《Structural Durability & Health Monitoring》 EI 2024年第6期763-783,共21页
This study introduces an innovative“Big Model”strategy to enhance Bridge Structural Health Monitoring(SHM)using a Convolutional Neural Network(CNN),time-frequency analysis,and fine element analysis.Leveraging ensemb... This study introduces an innovative“Big Model”strategy to enhance Bridge Structural Health Monitoring(SHM)using a Convolutional Neural Network(CNN),time-frequency analysis,and fine element analysis.Leveraging ensemble methods,collaborative learning,and distributed computing,the approach effectively manages the complexity and scale of large-scale bridge data.The CNN employs transfer learning,fine-tuning,and continuous monitoring to optimize models for adaptive and accurate structural health assessments,focusing on extracting meaningful features through time-frequency analysis.By integrating Finite Element Analysis,time-frequency analysis,and CNNs,the strategy provides a comprehensive understanding of bridge health.Utilizing diverse sensor data,sophisticated feature extraction,and advanced CNN architecture,the model is optimized through rigorous preprocessing and hyperparameter tuning.This approach significantly enhances the ability to make accurate predictions,monitor structural health,and support proactive maintenance practices,thereby ensuring the safety and longevity of critical infrastructure. 展开更多
关键词 structural Health Monitoring(SHM) BRIDGES big model Convolutional Neural Network(CNN) Finite Element Method(FEM)
在线阅读 下载PDF
Structural network communication differences in drug-naive depressed adolescents with non-suicidal self-injury and suicide attempts
18
作者 Shuai Wang Jiao-Long Qin +9 位作者 Lian-Lian Yang Ying-Ying Ji Hai-Xia Huang Xiao-Shan Gao Zi-Mo Zhou Zhen-Ru Guo Ye Wu Lin Tian Huang-Jing Ni Zhen-He Zhou 《World Journal of Psychiatry》 2025年第5期66-78,共13页
BACKGROUND Depression,non-suicidal self-injury(NSSI),and suicide attempts(SA)often co-occur during adolescence and are associated with long-term adverse health outcomes.Unfortunately,neural mechanisms underlying self-... BACKGROUND Depression,non-suicidal self-injury(NSSI),and suicide attempts(SA)often co-occur during adolescence and are associated with long-term adverse health outcomes.Unfortunately,neural mechanisms underlying self-injury and SA are poorly understood in depressed adolescents but likely relate to the structural abnormalities in brain regions.AIM To investigate structural network communication within large-scale brain networks in adolescents with depression.METHODS We constructed five distinct network communication models to evaluate structural network efficiency at the whole-brain level in adolescents with depression.Diffusion magnetic resonance imaging data were acquired from 32 healthy controls and 85 depressed adolescents,including 17 depressed adolescents without SA or NSSI(major depressive disorder group),27 depressed adolescents with NSSI but no SA(NSSI group),and 41 depressed adolescents with SA and NSSI(NSSI+SA group).RESULTS Significant differences in structural network communication were observed across the four groups,involving spatially widespread brain regions,particularly encompassing cortico-cortical connections(e.g.,dorsal posterior cingulate gyrus and the right ventral posterior cingulate gyrus;connections based on precentral gyrus)and cortico-subcortical circuits(e.g.,the nucleus accumbens-frontal circuit).In addition,we examined whether compromised communication efficiency was linked to clinical symptoms in the depressed adolescents.We observed significant correlations between network communication efficiencies and clinical scale scores derived from depressed adolescents with NSSI and SA.CONCLUSION This study provides evidence of structural network communication differences in depressed adolescents with NSSI and SA,highlighting impaired neuroanatomical communication efficiency as a potential contributor to their symptoms.These findings offer new insights into the pathophysiological mechanisms underlying the comorbidity of NSSI and SA in adolescent depression. 展开更多
关键词 DEPRESSION Non-suicidal self-injury Suicide attempts Adolescents Communication models structural network efficiency
暂未订购
Design and Effectiveness of Coastal Protection Structures:Case Studies and Modelling Approaches
19
作者 Leo C.van Rijn 《Journal of Environmental & Earth Sciences》 2025年第5期72-95,共24页
Beach groynes are structures for erosion protection along sandy coasts near inlets and can reduce the coastal erosion substantially,but open groynes cannot stop erosion completely because sand can be removed from the ... Beach groynes are structures for erosion protection along sandy coasts near inlets and can reduce the coastal erosion substantially,but open groynes cannot stop erosion completely because sand can be removed from the groyne compartments by cross-shore processes.Beach groynes should be designed with sufficient bypassing of sand to minimise erosion.Regular beach maintenance is required to keep a sufficient beach width for recreational purposes.The effectiveness of groyne compartments can be significantly improved by using T-head groynes or by using a submerged sill or breakwater in between the groynes.An economic evaluation shows that the beach maintenance costs over 50 years may be substantially higher than the construction costs of a submerged breakwater.An important parameter to be studied is the longshore transport,which requires detailed information of the wave climate,preferably based on measured data(offshore buoys)in combination with deep water wave modelling.Various models have been used to determine the net longshore sand transport and coastline changes.The design of groynes to reduce coastal erosion is illustrated by three field cases(Atlantic coast near Soulac,France;Lagos coast,Nigeria and Black Sea coast,Romania).These example cases show that beach groynes are effective structures,but sufficient bypassing of longshore sand transport is essential to minimise erosion.Regular beach fills in the groyne compartments may be required at high-energy(exposed)coasts.A submerged or emerged breakwater can be built between the groynes to protect the beach in the groyne compartments against erosion by cross-shore processes. 展开更多
关键词 Coastal Protection structures Coastal Recession Coastal Erosion modelling
在线阅读 下载PDF
Structural Reliability Analysis Method Based on Kriging and Spherical Cap Area Integral
20
作者 ZHANG Jixiang CHEN Zhenzhong +3 位作者 CHEN Ge LI Xiaoke ZHAO Pengcheng PAN Qianghua 《Journal of Donghua University(English Edition)》 2025年第4期409-416,共8页
In the structural reliability analysis,the first-order reliability method(FORM)often yields significant errors when addressing nonlinear problems.Although the second-order reliability method(SORM)can provide higher ac... In the structural reliability analysis,the first-order reliability method(FORM)often yields significant errors when addressing nonlinear problems.Although the second-order reliability method(SORM)can provide higher accuracy,the additional computation of the Hessian matrix leads to lower computational efficiency.Additionally,when the dimensionality of the random variables is high,the approximation formula of SORM can result in larger errors.To address these issues,a structural reliability analysis method based on Kriging and spherical cap area integral is proposed.Firstly,this method integrates FORM with the quasi-Newton algorithm Broyden-Fletcher-Goldfarb-Shanno(BFGS),trains the Kriging model by using sample points from the algorithm’s iteration process,and combines the Kriging model with gradient information to approximate the Hessian matrix.Then,the failure surface is approximated as a rotating paraboloid,utilizing the spherical cap to replace the complex surface.For the n-dimensional case,the hyperspherical cap area expression is combined with the integral method to calculate the failure probability.Finally,the method is validated through three examples,demonstrating improved computational accuracy and efficiency compared to traditional methods. 展开更多
关键词 structural reliability analysis quasi-Newton algorithm Kriging model spherical cap area integral
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部