Porosity is an important attribute for evaluating the petrophysical properties of reservoirs, and has guiding significance for the exploration and development of oil and gas. The seismic inversion is a key method for ...Porosity is an important attribute for evaluating the petrophysical properties of reservoirs, and has guiding significance for the exploration and development of oil and gas. The seismic inversion is a key method for comprehensively obtaining the porosity. Deep learning methods provide an intelligent approach to suppress the ambiguity of the conventional inversion method. However, under the trace-bytrace inversion strategy, there is a lack of constraints from geological structural information, resulting in poor lateral continuity of prediction results. In addition, the heterogeneity and the sedimentary variability of subsurface media also lead to uncertainty in intelligent prediction. To achieve fine prediction of porosity, we consider the lateral continuity and variability and propose an improved structural modeling deep learning porosity prediction method. First, we combine well data, waveform attributes, and structural information as constraints to model geophysical parameters, constructing a high-quality training dataset with sedimentary facies-controlled significance. Subsequently, we introduce a gated axial attention mechanism to enhance the features of dataset and design a bidirectional closed-loop network system constrained by inversion and forward processes. The constraint coefficient is adaptively adjusted by the petrophysical information contained between the porosity and impedance in the study area. We demonstrate the effectiveness of the adaptive coefficient through numerical experiments.Finally, we compare the performance differences between the proposed method and conventional deep learning methods using data from two study areas. The proposed method achieves better consistency with the logging porosity, demonstrating the superiority of the proposed method.展开更多
Taking the second member of the Xujiahe Formation of the Upper Triassic in the Xinchang structural belt as an example,based on data such as logging,production,seismic interpretation and test,a systematic analysis was ...Taking the second member of the Xujiahe Formation of the Upper Triassic in the Xinchang structural belt as an example,based on data such as logging,production,seismic interpretation and test,a systematic analysis was conducted on the structural characteristics and evolution,reservoir diagenesis and densification processes,and types and stages of faults/fractures,and revealing the multi-stage and multi-factor dynamic coupled enrichment mechanisms of tight gas reservoirs.(1)In the early Yanshan period,the paleo-structural traps were formed with low-medium maturity hydrocarbons accumulating in structural highs driven by buoyancy since reservoirs were not fully densified in this stage,demonstrating paleo-structure control on traps and early hydrocarbon accumulation.(2)In the middle-late Yanshan period,the source rocks became mature to generate and expel a large quantity of hydrocarbons.Grain size and type of sandstone controlled the time of reservoir densification,which restricted the scale of hydrocarbon charging,allowing for only a small-scale migration through sand bodies near the fault/fracture or less-densified matrix reservoirs.(3)During the Himalayan period,the source rocks reached overmaturity,and the residual oil cracking gas was efficiently transported along the late-stage faults/fractures.Wells with high production capacity were mainly located in Type I and II fault/fracture zones comprising the late-stage north-south trending fourth-order faults and the late-stage fractures.The productivity of the wells was controlled by the transformation of the late-stage faults/fractures.(4)The Xinchang structural belt underwent three stages of tectonic evolution,two stages of reservoir formation,and three stages of fault/fractures development.Hydrocarbons mainly accumulated in the paleo-structure highs.After reservoir densification and late fault/fracture adjustment,a complex gas-water distribution pattern was formed.Thus,it is summarized as the model of“near-source and low-abundance hydrocarbon charging in the early stage,and differential enrichment of natural gas under the joint control of fault-fold-fracture complex,high-quality reservoirs and structural highs in the late stage”.Faults/fractures with well-coupled fault-fold-fracture-pore are favorable exploration targets with high exploration effectiveness.展开更多
To ensure the operational safety of railways in the landslide-prone areas of mountainous regions,a large-scale model test and numerical simulation were conducted to study the bending moment distribution,internal force...To ensure the operational safety of railways in the landslide-prone areas of mountainous regions,a large-scale model test and numerical simulation were conducted to study the bending moment distribution,internal force distribution,deformation development,and crack propagation characteristics of a framed anti-sliding structure(FAS)under landslide thrust up to the point of failure.Results show that the maximum bending moment and its increase rate in the fore pile are greater than those in the rear pile,with the maximum bending moment of the fore pile approximately 1.1 times that of the rear pile.When the FAS fails,the displacement at the top of the fore pile is significantly greater,about 1.27 times that of the rear pile in the experiment.Major cracks develop at locations corresponding to the peak bending moments.Small transverse cracks initially appear on the upper surface at the intersection between the primary beam and rear pile and then spread to the side of the structure.At the failure stage,major cracks are observed at the pil-beam intersections and near the anchor points.Strengthening flexural stiffness at intersections where major cracks occur can improve the overall thrust-deformation coordination of the FAS,thereby maximizing its performance.展开更多
A unified structural model for high-aspect-ratio composite wing with arbitrary cross-section is developed. Two types of lay-ups of the composite wing, namely, circumferentially uniform stiffness (CUS) configuration ...A unified structural model for high-aspect-ratio composite wing with arbitrary cross-section is developed. Two types of lay-ups of the composite wing, namely, circumferentially uniform stiffness (CUS) configuration and circumferentially asymmetric stiffness (CAS) configuration, are investigated. The present structural modeling method is validated through ANSYS FEM software for the case of a composite box beam. Then, the case of a single-cell composite wing with NACA0012 airfoil shape is considered. To investigate the aeroelastic problem of high-aspect-ratio composite wings, the linear ONERA aerodynamic model is used to model the unsteady aerodynamic loads under the case of small angle of attack. Finally, flutter speeds of the high-aspect-ratio wing with various composite ply angles are determined by using U-g method.展开更多
The acetylpolyamine oxidase(APAO),spermine oxidase(SMO),and spermidine/spermine N1-acetyltransferase(SSAT)are pivotal enzymes in polyamine metabolism,exerting direct influence on polyamine homeostasis regulation.Dysfu...The acetylpolyamine oxidase(APAO),spermine oxidase(SMO),and spermidine/spermine N1-acetyltransferase(SSAT)are pivotal enzymes in polyamine metabolism,exerting direct influence on polyamine homeostasis regulation.Dysfunctions in these enzymes are intricately linked to inflammatory diseases and cancers.Establishing their three-dimensional structures is essential for exploring enzymatic catalytic mechanisms and designing inhibitors at the atomic level.This article primarily assesses the precision of AlphaFold2 and molecular dynamics simulations in determining the three-dimensional structures of these enzymes,utilizing protein conformation rationality assessment,residue correlation matrix,and other techniques.This provides robust models for subsequent polyamine catabolic metabolism calculations and offers valuable insights for modeling proteins that have yet to acquire crystal structures.展开更多
Controversy is ongoing regarding the relationship between ore formation and the structural evolution of the Hadamengou gold deposit.To address this issue,we conducted a comprehensive investigation of mineralization-re...Controversy is ongoing regarding the relationship between ore formation and the structural evolution of the Hadamengou gold deposit.To address this issue,we conducted a comprehensive investigation of mineralization-related structures,geochronology and Fe isotopes.From the perspective of spatial evolution,hydrothermal fluids originating from the Shadegai and Xishadegai plutons have extracted accumulated ore-forming elements from the Wulashan Group(Ar2WL)and then evolved,initiating at Exploration Line 11 and migrating eastwards and westwards along the EW-trending thrust fault system to form orebodies.From the temporal evolution standpoint,the Wulashan Group(Ar_(2)WL)experienced diagenesis(2591.00 Ma to 2204.00 Ma)and metamorphism(2074.00 Ma to 1625.00 Ma)from late Neoarchean to early Paleoproterozoic,when ore-forming materials were initially accumulated;in the early Paleozoic(440.71 Ma to 425.00 Ma),the collision led to the formation of early-stage EW-trending imbricated thrust faults,which established a fundamental structural framework for the orefield and further accumulated ore-forming materials;from the late Paleozoic to the Mesozoic,multiple subsequent episodes of regional tectonic-magmatic-hydrothermal events have superimposed,modified and reactivated the thrust fault system.Notably,the Triassic period,particularly between 245.00 Ma and 217.90 Ma,is considered to be a primary ore-forming stage.In summary,the intricate relationship between ore-formation and structural evolution has been fundamentally elucidated.展开更多
Structure-type rockbursts frequently occur in deep tunnels,with structural planes and stress conditions being critical factors in their formation.In this study,we utilized specially developed analogous materials that ...Structure-type rockbursts frequently occur in deep tunnels,with structural planes and stress conditions being critical factors in their formation.In this study,we utilized specially developed analogous materials that exhibit the high brittleness and strength characteristics of deep hard rock to construct physical models representing different types of structural planes,including composite,exposed,non-exposed,and throughgoing structural planes.Physical simulation experiments were conducted on structuretype rockbursts in deep horseshoe-shaped tunnels,focusing on strain differentiation characteristics,critical triggering conditions,critical crack opening displacement,the incubation process,the reduction effects of structural planes on failure intensity,and formation mechanisms.These experiments were complemented by acoustic and optical monitoring,as well as discrete element numerical simulations,to provide a comprehensive analysis.The results revealed that the most significant strain heterogeneity in the surrounding rock occurs at the tip of the structural plane along the tunnel's minimum principal stress direction,driven by the combined effects of tensile and shear forces.We quantitatively determined the critical stress and strain conditions for structure-type rockbursts and evaluated the intensity of rockbursts induced by different structural planes using critical crack opening displacement(COD)values,the uniformity coefficient,and the curvature coefficient.Analysis of acoustic emission events,including frequency,amplitude,and b-value,indicated that the macro-fracture process is governed by both the principal stress differential and the characteristics of the structural plane.Furthermore,using the bearing capacity reduction coefficient,we found that exposed structural planes have the most significant weakening effect on rock mass strength,followed by non-exposed and throughgoing structural planes.The analysis of average frequency(AF)and rise angle(RA)parameters revealed a close correlation between the failure modes of structure-type rockbursts,the rock mass structure,and the stress levels.These findings provide critical theoretical support for the prediction and prevention of structure-type rockburst disasters.展开更多
Work injuries in mines are complex and generally characterized by several factors starting from personal to technical and technical to social characteristics.In this paper,investigation was made through the applicatio...Work injuries in mines are complex and generally characterized by several factors starting from personal to technical and technical to social characteristics.In this paper,investigation was made through the application of structural equation modeling to study the nature of relationships between the influencing/associating personal factors and work injury and their sequential relationships leading towards work injury occurrences in underground coal mines.Six variables namely,rebelliousness,negative affectivity,job boredom,job dissatisfaction and work injury were considered in this study.Instruments were developed to quantify them through a questionnaire survey.Underground mine workers were randomly selected for the survey.Responses from 300 participants were used for the analysis.The structural model of LISREL was used to estimate the interrelationships amongst the variables.The case study results show that negative affectivity and job boredom induce more job dissatisfaction to the workers whereas risk taking attitude of the individual is positively influenced by job dissatisfaction as well as by rebelliousness characteristics of the individual.Finally,risk taking and job dissatisfaction are having positive significant direct relationship with work injury.The findings of this study clearly reveal that rebelliousness,negative affectivity and job boredom are the three key personal factors influencing work related injuries in mines that need to be addressed properly through effective safety programs.展开更多
The geometry of an inductively coupled plasma (ICP) etcher is usually considered to be an important factor for determining both plasma and process uniformity over a large wafer. During the past few decades, these pa...The geometry of an inductively coupled plasma (ICP) etcher is usually considered to be an important factor for determining both plasma and process uniformity over a large wafer. During the past few decades, these parameters were determined by the "trial and error" method, resulting in wastes of time and funds. In this paper, a new approach of regression orthogonal design with plasma simulation experiments is proposed to investigate the sensitivity of the structural parameters on the uniformity of plasma characteristics. The tool for simulating plasma is CFD-ACE+, which is commercial multi-physical modeling software that has been proven to be accurate for plasma simulation. The simulated experimental results are analyzed to get a regression equation on three structural parameters. Through this equation, engineers can compute the uniformity of the electron number density rapidly without modeling by CFD-ACE+. An optimization performed at the end produces good results.展开更多
One branch of structural health monitoring (SHM) utilizes dynamic response measurements to assess the structural integrity of civil infrastructures. In particular,modal frequency is a widely adopted indicator for stru...One branch of structural health monitoring (SHM) utilizes dynamic response measurements to assess the structural integrity of civil infrastructures. In particular,modal frequency is a widely adopted indicator for structural damage since its square is proportional to structural stiffness. However,it has been demonstrated in various SHM projects that this indicator is substantially affected by fluctuating environmental conditions. In order to provide reliable and consistent information on the health status of the monitored structures,it is necessary to develop a method to filter this interference. This study attempts to model and quantify the environmental influence on the modal frequencies of reinforced concrete buildings. Daily structural response measurements of a twenty-two story reinforced concrete building were collected and analyzed over a one-year period. The Bayesian spectral density approach was utilized to identify the modal frequencies of this building and it was clearly seen that the temperature and humidity fluctuation induced notable variations. A mathematical model was developed to quantify the environmental effects and model complexity was taken into consideration. Based on a Timoshenko beam model,the full model class was constructed and other reduced-order model class candidates were obtained. Then,the Bayesian modal class selection approach was employed to select the one with the most suitable complexity. The proposed model successfully characterizes the environmental influence on the modal frequencies. Furthermore,the estimated uncertainty of the model parameters allows for assessment of the reliability of the prediction. This study not only improves the understanding about the monitored structure,but also establishes a systematic approach for reliable health assessment of reinforced concrete buildings.展开更多
Dentistry is a profession with a high prevalence of work-related musculoskeletal disorders(WMSDs),with symptoms often appearing very early in one’s career[1].WMSDs are conditions affecting the muscles,bones,and nervo...Dentistry is a profession with a high prevalence of work-related musculoskeletal disorders(WMSDs),with symptoms often appearing very early in one’s career[1].WMSDs are conditions affecting the muscles,bones,and nervous system due to occupational factors.In 2002,the International Labor Organization included musculoskeletal diseases in the International List of Occupational Diseases.China’s recently updated Classification and Catalog of Occupational Diseases has introduced two new categories of occupational illnesses,including occupational musculoskeletal disorders.WMSDs significantly impact the health and work of dentists,reducing their quality of life and causing economic losses.These disorders are multifactorial in nature,influenced by personal,psychosocial,biomechanical,and environmental factors.Dentists frequently maintain static or awkward postures during procedures,which leads to musculoskeletal strain and discomfort;additionally,long working hours contribute to psychological stress,further increasing the risk of WMSDs[2].展开更多
The present study focuses on building a workflow for structural interpretation and velocity modeling and implementing to Jurassic-Cretaceous succession (Chiltan Limestone and Massive sand of the Lower Goru Formation...The present study focuses on building a workflow for structural interpretation and velocity modeling and implementing to Jurassic-Cretaceous succession (Chiltan Limestone and Massive sand of the Lower Goru Formation). 2D-Migrated seismic sections of the area are used as data set and in order to confirm the presence of hydrocarbons in the study area, P and S-wave seismic velocities are estimated from single-component seismic data. Some specific issues in the use of seismic data for modeling and hydrocarbon evaluation need to deal with including distinguishing the reservoir and cap rocks, and the effects of faults, folds and presence of hydrocarbons on these rocks. This study has carried out the structural interpretation and modeling of the seismic data for the identification of traps. The results demonstrate existence of appropriate structural traps in the form of horst and grabens in the area. 2D and 3D velocity modeling of the horizons indicates the presence of high velocity zones in the eastern half of the study while relatively low velocity zones are encountered in the western half of the area. Two wells were drilled in the study area (i.e. Fateh-01 and Ichhri-01) and both are dry. Immature hydrocarbons migration is considered as a failure reason for Fateh-01 and Ichhri-01 well.展开更多
A three-dimensional nonlinear modeling strategy for simulating the seismic response of slender reinforced concrete structural walls with different cross-sectional shapes is presented in this paper.A combination of non...A three-dimensional nonlinear modeling strategy for simulating the seismic response of slender reinforced concrete structural walls with different cross-sectional shapes is presented in this paper.A combination of nonlinear multi-layer shell elements and displacement-based beam-column elements are used to model the unconfined and confined parts of the walls,respectively.A uniaxial material model for reinforcing steel bars that includes buckling and low-cyclic fatigue effects is used to model the longitudinal steel bars within the structural walls.The material model parameters related to the buckling length are defined based on an analytical expression for reinforcing steel bars embedded in reinforced concrete elements,which are developed based on beam-on-springs model,and validated with experimental tests of boundary elements of structural walls available in the literature.Six experimental case studies of reinforced concrete walls with rectangularshape,T-shape,and U-shape cross-section are used to validate the structural wall numerical modeling strategy.展开更多
The dynamic characteristics of a single liquid-filled pipe have been broadly studied in the previous literature.The parallel liquid-filled pipe(PLFP)system is also widely used in engineering,and its structure is more ...The dynamic characteristics of a single liquid-filled pipe have been broadly studied in the previous literature.The parallel liquid-filled pipe(PLFP)system is also widely used in engineering,and its structure is more complex than that of a single pipe.However,there are few reports about the dynamic characteristics of the PLFPs.Therefore,this paper proposes improved frequency modeling and solution for the PLFPs,involving the logical alignment principle and coupled matrix processing.The established model incorporates both the fluid-structure interaction(FSI)and the structural coupling of the PLFPs.The validity of the established model is verified by modal experiments.The effects of some unique parameters on the dynamic characteristics of the PLFPs are discussed.This work provides a feasible method for solving the FSI of multiple pipes in parallel and potential theoretical guidance for the dynamic analysis of the PLFPs in engineering.展开更多
In this paper,three different modeling ranges were selected in the structural analysis for a hydropower house.The analysis was carried out using ABAQUS 6.6.The modeling range has a remarkable effect on finite element ...In this paper,three different modeling ranges were selected in the structural analysis for a hydropower house.The analysis was carried out using ABAQUS 6.6.The modeling range has a remarkable effect on finite element method(FEM) calculation result at the middle position of typical cross-sections where the concrete is relatively thin,and at the region close to turbine floor.If the ventilation barrel,floor slabs and columns above turbine floor are excluded from FEM model,the maximum rise difference of pedestal structure increases by about 24% compared with that of the whole model.It is indicated that different modeling ranges indeed affect FEM calculation result,and the structure above turbine floor in the FEM model should be included.展开更多
The Kuqa fold-and-thrust belt exhibits apparent structural variation in the western and eastern zone.Two salt layer act as effective decollements and influence the varied deformation.In this study,detailed seismic int...The Kuqa fold-and-thrust belt exhibits apparent structural variation in the western and eastern zone.Two salt layer act as effective decollements and influence the varied deformation.In this study,detailed seismic interpretations and analog modeling are presented to construct the suprasalt and subsalt structures in the transfer zone of the middle Kuqa and investigate the influence of the two salt layers.The results reveal that the relationship of the two salt layers changes from separated to connected,and then overlapped toward the foreland in the transfer zone.Different structural models are formed in the suprasalt and subsalt units due to the interaction of the two salt layers.The imbricate thrust faults form two broom-like fault systems in the subsalt units.The suprasalt units develop detached folds terminating toward the east in the region near the orogenic belt.Whereas,two offset anticlines with different trends develop at the frontal edge of the lower salt layer and the trailing edge of the upper salt layer,respectively.According to exploration results in this region,the relationship between suprasalt and subsalt structures has an influence on hydrocarbon accumulation.We believe that the connected deformation contains high-risk plays while the decoupled deformation contains well-preserved plays.展开更多
Alarm flood is one of the main problems in the alarm systems of industrial process. Alarm root-cause analysis and alarm prioritization are good for alarm flood reduction. This paper proposes a systematic rationalizati...Alarm flood is one of the main problems in the alarm systems of industrial process. Alarm root-cause analysis and alarm prioritization are good for alarm flood reduction. This paper proposes a systematic rationalization method for multivariate correlated alarms to realize the root cause analysis and alarm prioritization. An information fusion based interpretive structural model is constructed according to the data-driven partial correlation coefficient calculation and process knowledge modification. This hierarchical multi-layer model is helpful in abnormality propagation path identification and root-cause analysis. Revised Likert scale method is adopted to determine the alarm priority and reduce the blindness of alarm handling. As a case study, the Tennessee Eastman process is utilized to show the effectiveness and validity of proposed approach. Alarm system performance comparison shows that our rationalization methodology can reduce the alarm flood to some extent and improve the performance.展开更多
Purpose:This paper aims to examine how the adoption decision of the internet banking in North Cyprus would be affected based on the following dimensions;the technology features,the personal characteristics,the social ...Purpose:This paper aims to examine how the adoption decision of the internet banking in North Cyprus would be affected based on the following dimensions;the technology features,the personal characteristics,the social environment and the expected risk.Design/methodology/approach:A self-administered survey was conducted with 291 participants responded to it.The partial least square approach of the structural equation modeling(PLS-SEM)is employed to investigate the direct effects of the proposed factors on the adoption decision.Additionally,the mediation test is used to examine indirect effects.Findings:Results showed that even though the participants appreciated the benefits of the online banking as the perceived usefulness factor exerts the greatest direct effect,they would rather use clear and easy-to-use websites,adding to that their assessments of the usefulness of these services are significantly influenced by the surrounding people’s views and prior experience.This is demonstrated by the total effects of the perceived ease of use and the subjective norm factors,which are greater than the direct effect of the perceived usefulness factor since both of these factors have significant direct and indirect effects mediated by the perceived usefulness factor.The negative impact of the perceived risk factor is weak compared to the previous factors.While the personal innovativeness factor showed the weakest effect among the proposed factors.展开更多
This paper describes a structural equation modeling (SEM) analysis of factors influencing architects' trust in project design teams. We undertook a survey of architects, during which we distributed 193 questionnair...This paper describes a structural equation modeling (SEM) analysis of factors influencing architects' trust in project design teams. We undertook a survey of architects, during which we distributed 193 questionnaires in 29 A-level architectural design institutes selected radomly from the altogether 59 ones in Shenzhen, P. R. China, and received 130 valid questionnaires. We used Amos 6.0 for SEM to identify significant personal construct based factors affecting interpersonal trust. The results show that only social interaction between architects significantly affects their interpersonal trust. The explained variance of trus~ is not very high in the model. Therefore, future research should add more factors into the current model. The practical implication is that team managers should promote the social interactions between team members such that the interpersonal trust level between team members can be improved.展开更多
To improve the computational efficiency and accuracy of multi-objective reliability estimation for aerospace engineering structural systems,the Intelligent Vectorial Surrogate Modeling(IVSM)concept is presented by fus...To improve the computational efficiency and accuracy of multi-objective reliability estimation for aerospace engineering structural systems,the Intelligent Vectorial Surrogate Modeling(IVSM)concept is presented by fusing the compact support region,surrogate modeling methods,matrix theory,and Bayesian optimization strategy.In this concept,the compact support region is employed to select effective modeling samples;the surrogate modeling methods are employed to establish a functional relationship between input variables and output responses;the matrix theory is adopted to establish the vector and cell arrays of modeling parameters and synchronously determine multi-objective limit state functions;the Bayesian optimization strategy is utilized to search for the optimal hyperparameters for modeling.Under this concept,the Intelligent Vectorial Neural Network(IVNN)method is proposed based on deep neural network to realize the reliability analysis of multi-objective aerospace engineering structural systems synchronously.The multioutput response function approximation problem and two engineering application cases(i.e.,landing gear brake system temperature and aeroengine turbine blisk multi-failures)are used to verify the applicability of IVNN method.The results indicate that the proposed approach holds advantages in modeling properties and simulation performances.The efforts of this paper can offer a valuable reference for the improvement of multi-objective reliability assessment theory.展开更多
基金the support of Research Program of Fine Exploration and Surrounding Rock Classification Technology for Deep Buried Long Tunnels Driven by Horizontal Directional Drilling and Magnetotelluric Methods Based on Deep Learning under Grant E202408010the Sichuan Science and Technology Program under Grant 2024NSFSC1984 and Grant 2024NSFSC1990。
文摘Porosity is an important attribute for evaluating the petrophysical properties of reservoirs, and has guiding significance for the exploration and development of oil and gas. The seismic inversion is a key method for comprehensively obtaining the porosity. Deep learning methods provide an intelligent approach to suppress the ambiguity of the conventional inversion method. However, under the trace-bytrace inversion strategy, there is a lack of constraints from geological structural information, resulting in poor lateral continuity of prediction results. In addition, the heterogeneity and the sedimentary variability of subsurface media also lead to uncertainty in intelligent prediction. To achieve fine prediction of porosity, we consider the lateral continuity and variability and propose an improved structural modeling deep learning porosity prediction method. First, we combine well data, waveform attributes, and structural information as constraints to model geophysical parameters, constructing a high-quality training dataset with sedimentary facies-controlled significance. Subsequently, we introduce a gated axial attention mechanism to enhance the features of dataset and design a bidirectional closed-loop network system constrained by inversion and forward processes. The constraint coefficient is adaptively adjusted by the petrophysical information contained between the porosity and impedance in the study area. We demonstrate the effectiveness of the adaptive coefficient through numerical experiments.Finally, we compare the performance differences between the proposed method and conventional deep learning methods using data from two study areas. The proposed method achieves better consistency with the logging porosity, demonstrating the superiority of the proposed method.
基金Supported by the National Natural Science Foundation of China(42302141).
文摘Taking the second member of the Xujiahe Formation of the Upper Triassic in the Xinchang structural belt as an example,based on data such as logging,production,seismic interpretation and test,a systematic analysis was conducted on the structural characteristics and evolution,reservoir diagenesis and densification processes,and types and stages of faults/fractures,and revealing the multi-stage and multi-factor dynamic coupled enrichment mechanisms of tight gas reservoirs.(1)In the early Yanshan period,the paleo-structural traps were formed with low-medium maturity hydrocarbons accumulating in structural highs driven by buoyancy since reservoirs were not fully densified in this stage,demonstrating paleo-structure control on traps and early hydrocarbon accumulation.(2)In the middle-late Yanshan period,the source rocks became mature to generate and expel a large quantity of hydrocarbons.Grain size and type of sandstone controlled the time of reservoir densification,which restricted the scale of hydrocarbon charging,allowing for only a small-scale migration through sand bodies near the fault/fracture or less-densified matrix reservoirs.(3)During the Himalayan period,the source rocks reached overmaturity,and the residual oil cracking gas was efficiently transported along the late-stage faults/fractures.Wells with high production capacity were mainly located in Type I and II fault/fracture zones comprising the late-stage north-south trending fourth-order faults and the late-stage fractures.The productivity of the wells was controlled by the transformation of the late-stage faults/fractures.(4)The Xinchang structural belt underwent three stages of tectonic evolution,two stages of reservoir formation,and three stages of fault/fractures development.Hydrocarbons mainly accumulated in the paleo-structure highs.After reservoir densification and late fault/fracture adjustment,a complex gas-water distribution pattern was formed.Thus,it is summarized as the model of“near-source and low-abundance hydrocarbon charging in the early stage,and differential enrichment of natural gas under the joint control of fault-fold-fracture complex,high-quality reservoirs and structural highs in the late stage”.Faults/fractures with well-coupled fault-fold-fracture-pore are favorable exploration targets with high exploration effectiveness.
基金The National Natural Science Foundation of China(No.52078427).
文摘To ensure the operational safety of railways in the landslide-prone areas of mountainous regions,a large-scale model test and numerical simulation were conducted to study the bending moment distribution,internal force distribution,deformation development,and crack propagation characteristics of a framed anti-sliding structure(FAS)under landslide thrust up to the point of failure.Results show that the maximum bending moment and its increase rate in the fore pile are greater than those in the rear pile,with the maximum bending moment of the fore pile approximately 1.1 times that of the rear pile.When the FAS fails,the displacement at the top of the fore pile is significantly greater,about 1.27 times that of the rear pile in the experiment.Major cracks develop at locations corresponding to the peak bending moments.Small transverse cracks initially appear on the upper surface at the intersection between the primary beam and rear pile and then spread to the side of the structure.At the failure stage,major cracks are observed at the pil-beam intersections and near the anchor points.Strengthening flexural stiffness at intersections where major cracks occur can improve the overall thrust-deformation coordination of the FAS,thereby maximizing its performance.
文摘A unified structural model for high-aspect-ratio composite wing with arbitrary cross-section is developed. Two types of lay-ups of the composite wing, namely, circumferentially uniform stiffness (CUS) configuration and circumferentially asymmetric stiffness (CAS) configuration, are investigated. The present structural modeling method is validated through ANSYS FEM software for the case of a composite box beam. Then, the case of a single-cell composite wing with NACA0012 airfoil shape is considered. To investigate the aeroelastic problem of high-aspect-ratio composite wings, the linear ONERA aerodynamic model is used to model the unsteady aerodynamic loads under the case of small angle of attack. Finally, flutter speeds of the high-aspect-ratio wing with various composite ply angles are determined by using U-g method.
基金National Natural Science Foundation of China(22073023)Natural Science Foundation of Henan Province(242300421134)+1 种基金the Young Backbone Teacher in Colleges and Universities of Henan Province(2021GGJS020)Foundation of State Key Laboratory of Antiviral Drugs。
文摘The acetylpolyamine oxidase(APAO),spermine oxidase(SMO),and spermidine/spermine N1-acetyltransferase(SSAT)are pivotal enzymes in polyamine metabolism,exerting direct influence on polyamine homeostasis regulation.Dysfunctions in these enzymes are intricately linked to inflammatory diseases and cancers.Establishing their three-dimensional structures is essential for exploring enzymatic catalytic mechanisms and designing inhibitors at the atomic level.This article primarily assesses the precision of AlphaFold2 and molecular dynamics simulations in determining the three-dimensional structures of these enzymes,utilizing protein conformation rationality assessment,residue correlation matrix,and other techniques.This provides robust models for subsequent polyamine catabolic metabolism calculations and offers valuable insights for modeling proteins that have yet to acquire crystal structures.
基金the financial support by the Major Research Plan of National Natural Science Foundation of China(92062219)the Young Elite Scientists Sponsorship Program by BAST(No.BYESS2023411)+2 种基金the Open Research Project from the State Key Laboratory of Geological Processes and Mineral Resources,China University of Geosciences(GPMR202407)the Geological Survey Project of the China Geological Survey„General survey of Hadamengou Rock Gold Deposit in Inner Mongolia'(DD20191017)the Geological Survey Project(H90063).
文摘Controversy is ongoing regarding the relationship between ore formation and the structural evolution of the Hadamengou gold deposit.To address this issue,we conducted a comprehensive investigation of mineralization-related structures,geochronology and Fe isotopes.From the perspective of spatial evolution,hydrothermal fluids originating from the Shadegai and Xishadegai plutons have extracted accumulated ore-forming elements from the Wulashan Group(Ar2WL)and then evolved,initiating at Exploration Line 11 and migrating eastwards and westwards along the EW-trending thrust fault system to form orebodies.From the temporal evolution standpoint,the Wulashan Group(Ar_(2)WL)experienced diagenesis(2591.00 Ma to 2204.00 Ma)and metamorphism(2074.00 Ma to 1625.00 Ma)from late Neoarchean to early Paleoproterozoic,when ore-forming materials were initially accumulated;in the early Paleozoic(440.71 Ma to 425.00 Ma),the collision led to the formation of early-stage EW-trending imbricated thrust faults,which established a fundamental structural framework for the orefield and further accumulated ore-forming materials;from the late Paleozoic to the Mesozoic,multiple subsequent episodes of regional tectonic-magmatic-hydrothermal events have superimposed,modified and reactivated the thrust fault system.Notably,the Triassic period,particularly between 245.00 Ma and 217.90 Ma,is considered to be a primary ore-forming stage.In summary,the intricate relationship between ore-formation and structural evolution has been fundamentally elucidated.
基金supported by the National Natural Science Foundation of China(Grant Nos.42307241 and 42107211)the State Key Laboratory of Geohazard Prevention and Geoenvironment Protection Independent Research Project(Grant No.SKLGP2022Z008).
文摘Structure-type rockbursts frequently occur in deep tunnels,with structural planes and stress conditions being critical factors in their formation.In this study,we utilized specially developed analogous materials that exhibit the high brittleness and strength characteristics of deep hard rock to construct physical models representing different types of structural planes,including composite,exposed,non-exposed,and throughgoing structural planes.Physical simulation experiments were conducted on structuretype rockbursts in deep horseshoe-shaped tunnels,focusing on strain differentiation characteristics,critical triggering conditions,critical crack opening displacement,the incubation process,the reduction effects of structural planes on failure intensity,and formation mechanisms.These experiments were complemented by acoustic and optical monitoring,as well as discrete element numerical simulations,to provide a comprehensive analysis.The results revealed that the most significant strain heterogeneity in the surrounding rock occurs at the tip of the structural plane along the tunnel's minimum principal stress direction,driven by the combined effects of tensile and shear forces.We quantitatively determined the critical stress and strain conditions for structure-type rockbursts and evaluated the intensity of rockbursts induced by different structural planes using critical crack opening displacement(COD)values,the uniformity coefficient,and the curvature coefficient.Analysis of acoustic emission events,including frequency,amplitude,and b-value,indicated that the macro-fracture process is governed by both the principal stress differential and the characteristics of the structural plane.Furthermore,using the bearing capacity reduction coefficient,we found that exposed structural planes have the most significant weakening effect on rock mass strength,followed by non-exposed and throughgoing structural planes.The analysis of average frequency(AF)and rise angle(RA)parameters revealed a close correlation between the failure modes of structure-type rockbursts,the rock mass structure,and the stress levels.These findings provide critical theoretical support for the prediction and prevention of structure-type rockburst disasters.
文摘Work injuries in mines are complex and generally characterized by several factors starting from personal to technical and technical to social characteristics.In this paper,investigation was made through the application of structural equation modeling to study the nature of relationships between the influencing/associating personal factors and work injury and their sequential relationships leading towards work injury occurrences in underground coal mines.Six variables namely,rebelliousness,negative affectivity,job boredom,job dissatisfaction and work injury were considered in this study.Instruments were developed to quantify them through a questionnaire survey.Underground mine workers were randomly selected for the survey.Responses from 300 participants were used for the analysis.The structural model of LISREL was used to estimate the interrelationships amongst the variables.The case study results show that negative affectivity and job boredom induce more job dissatisfaction to the workers whereas risk taking attitude of the individual is positively influenced by job dissatisfaction as well as by rebelliousness characteristics of the individual.Finally,risk taking and job dissatisfaction are having positive significant direct relationship with work injury.The findings of this study clearly reveal that rebelliousness,negative affectivity and job boredom are the three key personal factors influencing work related injuries in mines that need to be addressed properly through effective safety programs.
基金supported by Important National Science & Technology Specific Projects of China (No.2) (Nos.2009ZX02001,2011ZX02403)
文摘The geometry of an inductively coupled plasma (ICP) etcher is usually considered to be an important factor for determining both plasma and process uniformity over a large wafer. During the past few decades, these parameters were determined by the "trial and error" method, resulting in wastes of time and funds. In this paper, a new approach of regression orthogonal design with plasma simulation experiments is proposed to investigate the sensitivity of the structural parameters on the uniformity of plasma characteristics. The tool for simulating plasma is CFD-ACE+, which is commercial multi-physical modeling software that has been proven to be accurate for plasma simulation. The simulated experimental results are analyzed to get a regression equation on three structural parameters. Through this equation, engineers can compute the uniformity of the electron number density rapidly without modeling by CFD-ACE+. An optimization performed at the end produces good results.
基金Research Committee,University of Macao,China Under Grant No.RG077/07-08S/09R/YKV/FST
文摘One branch of structural health monitoring (SHM) utilizes dynamic response measurements to assess the structural integrity of civil infrastructures. In particular,modal frequency is a widely adopted indicator for structural damage since its square is proportional to structural stiffness. However,it has been demonstrated in various SHM projects that this indicator is substantially affected by fluctuating environmental conditions. In order to provide reliable and consistent information on the health status of the monitored structures,it is necessary to develop a method to filter this interference. This study attempts to model and quantify the environmental influence on the modal frequencies of reinforced concrete buildings. Daily structural response measurements of a twenty-two story reinforced concrete building were collected and analyzed over a one-year period. The Bayesian spectral density approach was utilized to identify the modal frequencies of this building and it was clearly seen that the temperature and humidity fluctuation induced notable variations. A mathematical model was developed to quantify the environmental effects and model complexity was taken into consideration. Based on a Timoshenko beam model,the full model class was constructed and other reduced-order model class candidates were obtained. Then,the Bayesian modal class selection approach was employed to select the one with the most suitable complexity. The proposed model successfully characterizes the environmental influence on the modal frequencies. Furthermore,the estimated uncertainty of the model parameters allows for assessment of the reliability of the prediction. This study not only improves the understanding about the monitored structure,but also establishes a systematic approach for reliable health assessment of reinforced concrete buildings.
基金supported by the 2021 Shandong Province Higher Education Institutions“Youth Innovation Talent Introduction and Cultivation Plan”(Public Health Safety Risk Assessment and Response Innovation Team)National Traditional Chinese Medicine Comprehensive Reform Demonstration Zone Science and Technology Co construction Project(No.GZYKJSSD-2024-106)Research Project of Shandong Educational Supervision Society(No.SDJYDDXH2023-2159).
文摘Dentistry is a profession with a high prevalence of work-related musculoskeletal disorders(WMSDs),with symptoms often appearing very early in one’s career[1].WMSDs are conditions affecting the muscles,bones,and nervous system due to occupational factors.In 2002,the International Labor Organization included musculoskeletal diseases in the International List of Occupational Diseases.China’s recently updated Classification and Catalog of Occupational Diseases has introduced two new categories of occupational illnesses,including occupational musculoskeletal disorders.WMSDs significantly impact the health and work of dentists,reducing their quality of life and causing economic losses.These disorders are multifactorial in nature,influenced by personal,psychosocial,biomechanical,and environmental factors.Dentists frequently maintain static or awkward postures during procedures,which leads to musculoskeletal strain and discomfort;additionally,long working hours contribute to psychological stress,further increasing the risk of WMSDs[2].
文摘The present study focuses on building a workflow for structural interpretation and velocity modeling and implementing to Jurassic-Cretaceous succession (Chiltan Limestone and Massive sand of the Lower Goru Formation). 2D-Migrated seismic sections of the area are used as data set and in order to confirm the presence of hydrocarbons in the study area, P and S-wave seismic velocities are estimated from single-component seismic data. Some specific issues in the use of seismic data for modeling and hydrocarbon evaluation need to deal with including distinguishing the reservoir and cap rocks, and the effects of faults, folds and presence of hydrocarbons on these rocks. This study has carried out the structural interpretation and modeling of the seismic data for the identification of traps. The results demonstrate existence of appropriate structural traps in the form of horst and grabens in the area. 2D and 3D velocity modeling of the horizons indicates the presence of high velocity zones in the eastern half of the study while relatively low velocity zones are encountered in the western half of the area. Two wells were drilled in the study area (i.e. Fateh-01 and Ichhri-01) and both are dry. Immature hydrocarbons migration is considered as a failure reason for Fateh-01 and Ichhri-01 well.
文摘A three-dimensional nonlinear modeling strategy for simulating the seismic response of slender reinforced concrete structural walls with different cross-sectional shapes is presented in this paper.A combination of nonlinear multi-layer shell elements and displacement-based beam-column elements are used to model the unconfined and confined parts of the walls,respectively.A uniaxial material model for reinforcing steel bars that includes buckling and low-cyclic fatigue effects is used to model the longitudinal steel bars within the structural walls.The material model parameters related to the buckling length are defined based on an analytical expression for reinforcing steel bars embedded in reinforced concrete elements,which are developed based on beam-on-springs model,and validated with experimental tests of boundary elements of structural walls available in the literature.Six experimental case studies of reinforced concrete walls with rectangularshape,T-shape,and U-shape cross-section are used to validate the structural wall numerical modeling strategy.
基金Project supported by the National Natural Science Foundation of China(No.11972112)the Fundamental Research Funds for the Central Universities of China(Nos.N2103024 and N2103002)the Major Projects of Aero-Engines and Gasturbines(No.J2019-I-0008-0008)。
文摘The dynamic characteristics of a single liquid-filled pipe have been broadly studied in the previous literature.The parallel liquid-filled pipe(PLFP)system is also widely used in engineering,and its structure is more complex than that of a single pipe.However,there are few reports about the dynamic characteristics of the PLFPs.Therefore,this paper proposes improved frequency modeling and solution for the PLFPs,involving the logical alignment principle and coupled matrix processing.The established model incorporates both the fluid-structure interaction(FSI)and the structural coupling of the PLFPs.The validity of the established model is verified by modal experiments.The effects of some unique parameters on the dynamic characteristics of the PLFPs are discussed.This work provides a feasible method for solving the FSI of multiple pipes in parallel and potential theoretical guidance for the dynamic analysis of the PLFPs in engineering.
基金Supported by National Natural Science Foundation of China(No.50539010)
文摘In this paper,three different modeling ranges were selected in the structural analysis for a hydropower house.The analysis was carried out using ABAQUS 6.6.The modeling range has a remarkable effect on finite element method(FEM) calculation result at the middle position of typical cross-sections where the concrete is relatively thin,and at the region close to turbine floor.If the ventilation barrel,floor slabs and columns above turbine floor are excluded from FEM model,the maximum rise difference of pedestal structure increases by about 24% compared with that of the whole model.It is indicated that different modeling ranges indeed affect FEM calculation result,and the structure above turbine floor in the FEM model should be included.
基金supported by the National Natural Science Foundation of China(Grant Nos.41572187,41972219,41927802 and 42072320)the China Postdoctoral Science Foundation(Grant No.2020M671432)。
文摘The Kuqa fold-and-thrust belt exhibits apparent structural variation in the western and eastern zone.Two salt layer act as effective decollements and influence the varied deformation.In this study,detailed seismic interpretations and analog modeling are presented to construct the suprasalt and subsalt structures in the transfer zone of the middle Kuqa and investigate the influence of the two salt layers.The results reveal that the relationship of the two salt layers changes from separated to connected,and then overlapped toward the foreland in the transfer zone.Different structural models are formed in the suprasalt and subsalt units due to the interaction of the two salt layers.The imbricate thrust faults form two broom-like fault systems in the subsalt units.The suprasalt units develop detached folds terminating toward the east in the region near the orogenic belt.Whereas,two offset anticlines with different trends develop at the frontal edge of the lower salt layer and the trailing edge of the upper salt layer,respectively.According to exploration results in this region,the relationship between suprasalt and subsalt structures has an influence on hydrocarbon accumulation.We believe that the connected deformation contains high-risk plays while the decoupled deformation contains well-preserved plays.
基金Supported by the National Natural Science Foundation of China(61473026,61104131)the Fundamental Research Funds for the Central Universities(JD1413)
文摘Alarm flood is one of the main problems in the alarm systems of industrial process. Alarm root-cause analysis and alarm prioritization are good for alarm flood reduction. This paper proposes a systematic rationalization method for multivariate correlated alarms to realize the root cause analysis and alarm prioritization. An information fusion based interpretive structural model is constructed according to the data-driven partial correlation coefficient calculation and process knowledge modification. This hierarchical multi-layer model is helpful in abnormality propagation path identification and root-cause analysis. Revised Likert scale method is adopted to determine the alarm priority and reduce the blindness of alarm handling. As a case study, the Tennessee Eastman process is utilized to show the effectiveness and validity of proposed approach. Alarm system performance comparison shows that our rationalization methodology can reduce the alarm flood to some extent and improve the performance.
文摘Purpose:This paper aims to examine how the adoption decision of the internet banking in North Cyprus would be affected based on the following dimensions;the technology features,the personal characteristics,the social environment and the expected risk.Design/methodology/approach:A self-administered survey was conducted with 291 participants responded to it.The partial least square approach of the structural equation modeling(PLS-SEM)is employed to investigate the direct effects of the proposed factors on the adoption decision.Additionally,the mediation test is used to examine indirect effects.Findings:Results showed that even though the participants appreciated the benefits of the online banking as the perceived usefulness factor exerts the greatest direct effect,they would rather use clear and easy-to-use websites,adding to that their assessments of the usefulness of these services are significantly influenced by the surrounding people’s views and prior experience.This is demonstrated by the total effects of the perceived ease of use and the subjective norm factors,which are greater than the direct effect of the perceived usefulness factor since both of these factors have significant direct and indirect effects mediated by the perceived usefulness factor.The negative impact of the perceived risk factor is weak compared to the previous factors.While the personal innovativeness factor showed the weakest effect among the proposed factors.
基金Funded by the R & D Project of the Ministry of Construction of China.
文摘This paper describes a structural equation modeling (SEM) analysis of factors influencing architects' trust in project design teams. We undertook a survey of architects, during which we distributed 193 questionnaires in 29 A-level architectural design institutes selected radomly from the altogether 59 ones in Shenzhen, P. R. China, and received 130 valid questionnaires. We used Amos 6.0 for SEM to identify significant personal construct based factors affecting interpersonal trust. The results show that only social interaction between architects significantly affects their interpersonal trust. The explained variance of trus~ is not very high in the model. Therefore, future research should add more factors into the current model. The practical implication is that team managers should promote the social interactions between team members such that the interpersonal trust level between team members can be improved.
基金supported by the National Natural Science Foundation of China(No.51875465)the Shaanxi Province Postdoctoral Research Project Funding,Innovation Foundation for Doctor Dissertation of Northwestern Polytechnical University(No.CX2023002)+1 种基金the Civil Aircraft Scientific Research Projectthe Fund of Shanghai Engineering Research Center of Civil Aircraft Health Monitoring(No.GCZX-2022-01).
文摘To improve the computational efficiency and accuracy of multi-objective reliability estimation for aerospace engineering structural systems,the Intelligent Vectorial Surrogate Modeling(IVSM)concept is presented by fusing the compact support region,surrogate modeling methods,matrix theory,and Bayesian optimization strategy.In this concept,the compact support region is employed to select effective modeling samples;the surrogate modeling methods are employed to establish a functional relationship between input variables and output responses;the matrix theory is adopted to establish the vector and cell arrays of modeling parameters and synchronously determine multi-objective limit state functions;the Bayesian optimization strategy is utilized to search for the optimal hyperparameters for modeling.Under this concept,the Intelligent Vectorial Neural Network(IVNN)method is proposed based on deep neural network to realize the reliability analysis of multi-objective aerospace engineering structural systems synchronously.The multioutput response function approximation problem and two engineering application cases(i.e.,landing gear brake system temperature and aeroengine turbine blisk multi-failures)are used to verify the applicability of IVNN method.The results indicate that the proposed approach holds advantages in modeling properties and simulation performances.The efforts of this paper can offer a valuable reference for the improvement of multi-objective reliability assessment theory.