A novel energy recovery logic style ERCCL (energy recovery capacitance coupling logic) , which has good energy performance compared to the conventional CMOS logic and other advanced energy recovery logic, is propose...A novel energy recovery logic style ERCCL (energy recovery capacitance coupling logic) , which has good energy performance compared to the conventional CMOS logic and other advanced energy recovery logic, is proposed. ERCCL uses capacitance coupling to perform a logic function, so it can energy-efficiently implement a high fan-in complex logic in a single gate. ERCCL is also a type of threshold logic. The gate count of a system based on ERCCL can be significantly reduced,which,in turn,will decrease the energy loss. A threshold logic synthesis methodology for ERCCL is also presented. MCNC benchmarks are run through the proposed synthesis methodology. The results indicate that about an 80% reduction in gate count can be obtained when compared with the synthesis results of SIS.展开更多
The sensitivity engineering model of the coupling capacitance detector is built to provide the theoretic foundation for designing its circuits and electrodes scientifically. The sensitivity concept model of the capaci...The sensitivity engineering model of the coupling capacitance detector is built to provide the theoretic foundation for designing its circuits and electrodes scientifically. The sensitivity concept model of the capacitance proximity detector is discussed, and the detecting sensitivity of the coupling capacitance detector is analyzed theoretically. Then the sensitivity engineering model, which can reflect the main parameters relationship of the detecting circuit is set up based on the foregoing analyses. It is concluded that: ① the sensitivity is mainly correlative with some parameters including the voltage transmission factor of the demodulator, the oscillating voltage amplitude and the amplitude variation constant of the oscillator; ② the sensitivity is also influenced by the areas of electrodes and the distance between electrodes of the detector.展开更多
We report capacitive coupling induced Kondo–Fano(K–F) interference in a double quantum dot(DQD) by systematically investigating its low-temperature properties on the basis of hierarchical equations of motion evaluat...We report capacitive coupling induced Kondo–Fano(K–F) interference in a double quantum dot(DQD) by systematically investigating its low-temperature properties on the basis of hierarchical equations of motion evaluations. We show that the interdot capacitive coupling U12 splits the singly-occupied(S-O) state in quantum dot 1(QD1) into three quasi-particle substates: the unshifted S-O0 substate, and elevated S-O1 and S-O2. As U12 increases, S-O2 and S-O1 successively cross through the Kondo resonance state at the Fermi level(ω = 0), resulting in the so-called Kondo-I(KI), K–F, and Kondo-II(KII) regimes. While both the KI and KII regimes have the conventional Kondo resonance properties, remarkable Kondo–Fano interference features are shown in the K–F regime. In the view of scattering, we propose that the phase shift η(ω)is suitable for analysis of the Kondo–Fano interference. We present a general approach for calculating η(ω) and applying it to the DQD in the K–F regime where the two maxima of η(ω = 0) characterize the interferences between the Kondo resonance state and S-O2 and S-O1 substates, respectively.展开更多
This paper presents an analysis of planar magnetic element configurations in order to reduce capacitive couplings between the windings. The capacitive couplings between layers of planar magnetic elements introduce a s...This paper presents an analysis of planar magnetic element configurations in order to reduce capacitive couplings between the windings. The capacitive couplings between layers of planar magnetic elements introduce a stray capacitor which can conduct high frequency currents when high dv/dt voltage is applied. High frequency current may cause electromagnetic interference (EMI) and harmonic problems. The investigation and simulation results, both 2D and 3D Finite Element (FE) show the effect of shifting the planar layers in reduction of the capacitive couplings. The simulation results are compared with test results to validate the proposition.展开更多
An approach for analyzing coupling RC interconnect delay based on "effective capacitance" is presented. We compare this new method to the traditional method,which uses Miller capacitance. The results show that the n...An approach for analyzing coupling RC interconnect delay based on "effective capacitance" is presented. We compare this new method to the traditional method,which uses Miller capacitance. The results show that the new method not only improves the accuracy but also reflects the delay dependence on rise time. The method has the same complexity as the Elmore delay model and can be used in performance-driven routing optimization.展开更多
A one-dimensional fluid model is proposed to simulate the dual-frequency capacitively coupled plasma for Ar discharges. The influences of the low frequency on the plasma density, electron temperature, sheath voltage d...A one-dimensional fluid model is proposed to simulate the dual-frequency capacitively coupled plasma for Ar discharges. The influences of the low frequency on the plasma density, electron temperature, sheath voltage drop, and ion energy distribution at the powered electrode are investigated. The decoupling effect of the two radio-frequency sources on the plasma parameters, especially in the sheath region, is discussed in detail.展开更多
Local measurement of plasma radial uniformity was performed in a dual frequency capacitively coupled argon plasma (DF-CCP) reactor using an optical probe. The optical probe collects the light emission from a small s...Local measurement of plasma radial uniformity was performed in a dual frequency capacitively coupled argon plasma (DF-CCP) reactor using an optical probe. The optical probe collects the light emission from a small separate volume in plasma, thus enabling to diagnose the plasma uniformity for different experimental parameters. Both the gas pressure and the low- frequency (LF) power have apparent effects on the radial uniformity of argon plasma. With the increase in either pressure or LF power, the emission profiles changed from a bell-shaped to a double-peak distribution. The influence of a fused-silica ring around the electrodes on the plasma uniformity was also studied using the optical probe. Possible reasons that result in nonuniform plasmas in our experiments are discussed.展开更多
Due to it being environmentally friendly, much attention has been paid to the dry plasma texturing technique serving as an alternative candidate for multicrystalline silicon (mc-Si) surface texturing. In this paper,...Due to it being environmentally friendly, much attention has been paid to the dry plasma texturing technique serving as an alternative candidate for multicrystalline silicon (mc-Si) surface texturing. In this paper, capacitively coupled plasma (CCP) driven by a dual frequency (DF) of 40.68 MHz and 13.56 MHz is first used for plasma texturing of mc-Si with SF6/O2 gas mixture. Using a hairpin resonant probe and optical emission techniques, DF-CCP characteristics and their influence on mc-silicon surface plasma texturing are investigated at different flow rate ratios, pressures, and radio-frequency (RF) input powers. Experimental results show that suitable plasma texturing of mc-silicon occurs only in a narrow range of plasma parameters, where electron density ne must be larger than 6.3 x 109 cm-3 and the spectral intensity ratio of the F atom to that of the O atom ([F]/[O]) in the plasma must be between 0.8 and 0.3. Out of this range, no cone-like structure is formed on the mc-silicon surface. In our experiments, the lowest reflectance of about 7.3% for mc-silicon surface texturing is obtained at an [F]/[O] of 0.5 and ne of 6.9 × 109 cm-3.展开更多
An air parametric array can generate a highly directional beam of audible sound in air,which has a wide range of applications in targeted audio delivery.Capacitive micromachined ultrasonic transducer(CMUTs)have great ...An air parametric array can generate a highly directional beam of audible sound in air,which has a wide range of applications in targeted audio delivery.Capacitive micromachined ultrasonic transducer(CMUTs)have great potential for air-coupled applications,mainly because of their low acoustic impedance.In this study,an air-coupled CMUT array is designed as an air parametric array.A hexagonal array is proposed to improve the directivity of the sound generated.A finite element model of the CMUT is established in COMSOL software to facilitate the choice of appropriate structural parameters of the CMUT cell.The CMUT array is then fabricated by a wafer bonding process with high consistency.The performances of the CMUT are tested to verify the accuracy of the finite element analysis.By optimizing the component parameters of the bias-T circuit used for driving the CMUT,DC and AC voltages can be effectively applied to the top and bottom electrodes of the CMUT to provide efficient ultrasound transmission.Finally,the prepared hexagonal array is successfully used to conduct preliminary experiments on its application as an air parametric array.展开更多
A one-dimensional fluid model is employed to investigate the discharge sustaining mechanisms in the capacitively coupled argon plasmas, by modulating the driving frequency in the range of 40 kHz-613 MHz. The model inc...A one-dimensional fluid model is employed to investigate the discharge sustaining mechanisms in the capacitively coupled argon plasmas, by modulating the driving frequency in the range of 40 kHz-613 MHz. The model incorporates the density and flux balance of electron and ion, electron energy balance, as well as Poisson's equation. In our simulation, the discharge experiences mode transition as the driving frequency increases, from the γ regime in which the discharge is maintained by the secondary electrons emitted from the electrodes under ion bombardment, to the a regime in which sheath oscillation is responsible for most of the electron heating in the discharge sustaining. The electron density and electron temperature at the centre of the discharge, as well as the ion flux on the electrode are figured out as a function of the driving frequency, to confirm the two regimes and transition between them. The effects of gas pressure, secondary electron emission coefficient and applied voltage on the discharge are also discussed.展开更多
Diamond-like carbon (DLC) films were prepared with CH4-Ar using a capacitively coupled plasma enhanced chemical vapor deposition (CCP-CVD) method driven by dual-frequency of 41 MHz and 13.56 MHz in combination. Du...Diamond-like carbon (DLC) films were prepared with CH4-Ar using a capacitively coupled plasma enhanced chemical vapor deposition (CCP-CVD) method driven by dual-frequency of 41 MHz and 13.56 MHz in combination. Due to a coupling via bulk plasma, the self-bias voltage depended not only on the radiofrequency (RF) power of the corresponding electrode but also on another RF power of the counter electrode. The influence of the discharge parameters on the deposition rate, optical and Raman properties of the deposited films was investigated. The optical band decreased basically with the increase in the input power of both the low frequency and high frequency. Raman measurements show that the deposited films have a maximal sp3 content with an applied negative self-bias voltage of -150 V, while high frequency power causes a continuous increase in the sp3 content. The measurement of atomic force microscope (AFM) shows that the surface of the deposited films under ion-bombardment becomes smoother than those with non-intended self-bias voltage.展开更多
Low pressure argon dual-frequency (DF) capacitively coupled plasma (CCP) is generated by using different frequency configurations, such as 13.56/2, 27/2, 41/2, and 60/2 MHz. Characteristics of the plasma are inves...Low pressure argon dual-frequency (DF) capacitively coupled plasma (CCP) is generated by using different frequency configurations, such as 13.56/2, 27/2, 41/2, and 60/2 MHz. Characteristics of the plasma are investigated by using a floating double electrical probe and optical emission spectroscopy (OES). It is shown that in the DF-CCPs, the electron temperature Te decreases with the increase in exciting frequency, while the onset of 2 MHz induces a sudden increase in Te and the electron density increases basically with the increase in low frequency (LF) power. The intensity of 750.4 nm emission line increases with the LF power in the case of 13.56/2 MHz, while different tendencies of line intensity with the LF power appear for other configurations. The reason for this is also discussed.展开更多
Dry etching of 6H silicon carbide (6H-SiC) wafers in a C4Fs/Ar dual-frequency capacitively coupled plasma (DF-CCP) was investigated. Atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS) wer...Dry etching of 6H silicon carbide (6H-SiC) wafers in a C4Fs/Ar dual-frequency capacitively coupled plasma (DF-CCP) was investigated. Atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS) were used to measure the SiC surface structure and compositions, respectively. Optical emission spectroscopy (OES) was used to measure the relative concentration of F radicals in the plasma. It was found that the roughness of the etched SiC surface and the etching rate are directly related to the power of low-frequency (LF) source. At lower LF power, a smaller surface roughness and a lower etching rate are obtained due to weak bombardment of low energy ions on the SiC wafers. At higher LF power the etching rate can be efficiently increased, but the surface roughness increases too. Compared with other plasma dry etching methods, the DF-CCP can effectively inhibit CχFγ films' deposition, and reduce surface residues.展开更多
A one-dimensional self-consistent calculation model of capacitively coupled plasma(CCP)discharge and electromagnetic wave propagation is developed to solve the plasma characteristics and electromagnetic wave transmiss...A one-dimensional self-consistent calculation model of capacitively coupled plasma(CCP)discharge and electromagnetic wave propagation is developed to solve the plasma characteristics and electromagnetic wave transmission attenuation.Numerical simulation results show that the peak electron number density of argon is about 12 times higher than that of helium,and that the electron number density increases with the augment of pressure,radio frequency(RF)power,and RF frequency.However,the electron number density first increases and then decreases as the discharge gap increases.The transmission attenuation of electromagnetic wave in argon discharge plasma is 8.5-dB higher than that of helium.At the same time,the transmission attenuation increases with the augment of the RF power and RF frequency,but it does not increase or decrease monotonically with the increase of gas pressure and discharge gap.The electromagnetic wave absorption frequency band of the argon discharge plasma under the optimal parameters in this paper can reach the Ku band.It is concluded that the argon CCP discharge under the optimal discharge parameters has great potential applications in plasma stealth.展开更多
The flashover performance of insulating materials plays an important role in the development of high-voltage insulation systems.In this paper,silicone rubber(SIR)is modified by CF4 radio frequency capacitively coupled...The flashover performance of insulating materials plays an important role in the development of high-voltage insulation systems.In this paper,silicone rubber(SIR)is modified by CF4 radio frequency capacitively coupled plasma(CCP)for the improvement of surface insulation performance.The discharge mode and active particles of CCP are diagnosed by the digital single-lens reflex and the spectrometer.Scanning electron microscopy and x-ray photoelectron spectroscopy are used for the surface physicochemical properties of samples,while the surface charge dissipation,charge accumulation measurement,and flashover test are applied for the surface electrical characteristics.Experimental results show that the fluorocarbon groups can be grafted and the surface roughness increases after plasma treatment.Besides,the surface charge dissipation is decelerated and the positive charge accumulation is inhibited obviously for the treated samples.Furthermore,the surface flashover voltage can be increased by 26.67%after 10 min of treatment.It is considered that strong electron affinity of C–F and increased surface roughness can contribute to deepening surface traps,which not only inhibits the development of secondary electron emission avalanche but also alleviates the surface charge accumulation and finally improves the surface flashover voltage of SIR.展开更多
In general,as the radio frequency(RF)power increases in a capacitively coupled plasma(CCP),the power transfer efficiency decreases because the resistance of the CCP decreases.In this work,a parallel resonance circuit ...In general,as the radio frequency(RF)power increases in a capacitively coupled plasma(CCP),the power transfer efficiency decreases because the resistance of the CCP decreases.In this work,a parallel resonance circuit is applied to improve the power transfer efficiency at high RF power,and the effect of the parallel resonance on the electron energy distribution function(EEDF)is investigated in a 60 MHz CCP.The CCP consists of a power feed line,the electrodes,and plasma.The reactance of the CCP is positive at 60 MHz and acts like an inductive load.A vacuum variable capacitor(VVC)is connected in parallel with the inductive load,and then the parallel resonance between the VVC and the inductive load can be achieved.As the capacitance of the VVC approaches the parallel resonance condition,the equivalent resistance of the parallel circuit is considerably larger than that without the VVC,and the current flowing through the matching network is greatly reduced.Therefore,the power transfer efficiency of the discharge is improved from 76%,70%,and 68%to 81%,77%,and 76%at RF powers of 100 W,150 W,and 200 W,respectively.At parallel resonance conditions,the electron heating in bulk plasma is enhanced,which cannot be achieved without the VVC even at the higher RF powers.This enhancement of electron heating results in the evolution of the shape of the EEDF from a biMaxwellian distribution to a distribution with the smaller temperature difference between high-energy electrons and low-energy electrons.Due to the parallel resonance effect,the electron density increases by approximately 4%,18%,and 21%at RF powers of 100 W,150 W,and 200 W,respectively.展开更多
The discharge characteristics of capacitively coupled argon plasmas driven by very high frequency discharge are studied.The mean electron temperature and electron density are calculated by using the Ar spectral lines ...The discharge characteristics of capacitively coupled argon plasmas driven by very high frequency discharge are studied.The mean electron temperature and electron density are calculated by using the Ar spectral lines at different values of power(20 W-70 W)and four different frequencies(13.56 MHz,40.68 MHz,94.92 MHz,and 100 MHz).The mean electron temperature decreases with the increase of power at a fixed frequency.The mean electron temperature varies non-linearly with frequency increasing at constant power.At 40.68 MHz,the mean electron temperature is the largest.The electron density increases with the increase of power at a fixed frequency.In the cases of driving frequencies of 94.92 MHz and 100 MHz,the obtained electron temperatures are almost the same,so are the electron densities.Particle-in-cell/Monte-Carlo collision(PIC/MCC)method developed within the Vsim 8.0 simulation package is used to simulate the electron density,the potential distribution,and the electron energy probability function(EEPF)under the experimental condition.The sheath width increases with the power increasing.The EEPF of 13.56 MHz and 40.68 MHz are both bi-Maxwellian with a large population of low-energy electrons.The EEPF of 94.92 MHz and 100 MHz are almost the same and both are nearly Maxwellian.展开更多
The fluid model,also called the macroscopic model,is commonly used to simulate low temperature and low pressure radiofrequency plasma discharges.By varying the parameters of the model,numerical simulation allows us to...The fluid model,also called the macroscopic model,is commonly used to simulate low temperature and low pressure radiofrequency plasma discharges.By varying the parameters of the model,numerical simulation allows us to study several cases,providing us the physico-chemical information that is often difficult to obtain experimentally.In this work,using the fluid model,we employ numerical simulation to show the effect of pressure and space between the reactor electrodes on the fundamental properties of silicon plasma diluted with ammonia and hydrogen.The results show the evolution of the fundamental characteristics of the plasma discharge as a function of the variation of the pressure and the distance between the electrodes.By examining the pressure-distance product in a range between 0.3 Torr 2.7 cm and 0.7 Torr 4 cm,we have determined the optimal pressure-distance product that allows better deposition of hydrogenated silicon nitride(SiN_(x)H_(y))films which is 0.7 Torr 2.7 cm.展开更多
A one-dimensional(1D) fluid model on capacitively coupled radio frequency(RF) argon glow discharge between parallel-plates electrodes at low pressure is established to test the effect of the driving frequency on e...A one-dimensional(1D) fluid model on capacitively coupled radio frequency(RF) argon glow discharge between parallel-plates electrodes at low pressure is established to test the effect of the driving frequency on electron heating. The model is solved numerically by a finite difference method. The numerical results show that the discharge process may be divided into three stages: the growing rapidly stage, the growing slowly stage, and the steady stage. In the steady stage,the maximal electron density increases as the driving frequency increases. The results show that the discharge region has three parts: the powered electrode sheath region, the bulk plasma region and the grounded electrode sheath region. In the growing rapidly stage(at 18 μs), the results of the cycle-averaged electric field, electron temperature, electron density, and electric potentials for the driving frequencies of 3.39, 6.78, 13.56, and 27.12 MHz are compared, respectively. Furthermore,the results of cycle-averaged electron pressure cooling, electron ohmic heating, electron heating, and electron energy loss for the driving frequencies of 3.39, 6.78, 13.56, and 27.12 MHz are discussed, respectively. It is also found that the effect of the cycle-averaged electron pressure cooling on the electrons is to "cool" the electrons; the effect of the electron ohmic heating on the electrons is always to "heat" the electrons; the effect of the cycle-averaged electron ohmic heating on the electrons is stronger than the effect of the cycle-averaged electron pressure cooling on the electrons in the discharge region except in the regions near the electrodes. Therefore, the effect of the cycle-averaged electron heating on the electrons is to "heat" the electrons in the discharge region except in the regions near the electrodes. However, in the regions near the electrodes, the effect of the cycle-averaged electron heating on the electron is to "cool" the electrons. Finally, the space distributions of the electron pressure cooling the electron ohmic heating and the electron heating at 1/4 T, 2/4 T, 3/4 T, and 4/4 T in one RF-cycle are presented and compared.展开更多
An improved method of extracting the coupling capacitances of quantum dot structure is reported. This method is based on measuring the charge transfer current in the silicon nanowire metal-oxide-semiconductor field-ef...An improved method of extracting the coupling capacitances of quantum dot structure is reported. This method is based on measuring the charge transfer current in the silicon nanowire metal-oxide-semiconductor field-effect transistor (MOSFET), in which the channel closing and opening are controlled by applying alternating-current biases with a half period phase shift to the dual lower gates. The capacitances around the dot, including fringing capacitances and barrier capacitances, are obtained by analyzing the relation between the transfer current and the applied voltage. This technique could be used to extract the capacitance parameters not only from the bulk silicon devices, but also from the silicon-on-insulator (SOI) MOSFETs.展开更多
文摘A novel energy recovery logic style ERCCL (energy recovery capacitance coupling logic) , which has good energy performance compared to the conventional CMOS logic and other advanced energy recovery logic, is proposed. ERCCL uses capacitance coupling to perform a logic function, so it can energy-efficiently implement a high fan-in complex logic in a single gate. ERCCL is also a type of threshold logic. The gate count of a system based on ERCCL can be significantly reduced,which,in turn,will decrease the energy loss. A threshold logic synthesis methodology for ERCCL is also presented. MCNC benchmarks are run through the proposed synthesis methodology. The results indicate that about an 80% reduction in gate count can be obtained when compared with the synthesis results of SIS.
文摘The sensitivity engineering model of the coupling capacitance detector is built to provide the theoretic foundation for designing its circuits and electrodes scientifically. The sensitivity concept model of the capacitance proximity detector is discussed, and the detecting sensitivity of the coupling capacitance detector is analyzed theoretically. Then the sensitivity engineering model, which can reflect the main parameters relationship of the detecting circuit is set up based on the foregoing analyses. It is concluded that: ① the sensitivity is mainly correlative with some parameters including the voltage transmission factor of the demodulator, the oscillating voltage amplitude and the amplitude variation constant of the oscillator; ② the sensitivity is also influenced by the areas of electrodes and the distance between electrodes of the detector.
基金National Natural Science Foundation of China(Grant Nos.11774418,11374363,and 21373191).
文摘We report capacitive coupling induced Kondo–Fano(K–F) interference in a double quantum dot(DQD) by systematically investigating its low-temperature properties on the basis of hierarchical equations of motion evaluations. We show that the interdot capacitive coupling U12 splits the singly-occupied(S-O) state in quantum dot 1(QD1) into three quasi-particle substates: the unshifted S-O0 substate, and elevated S-O1 and S-O2. As U12 increases, S-O2 and S-O1 successively cross through the Kondo resonance state at the Fermi level(ω = 0), resulting in the so-called Kondo-I(KI), K–F, and Kondo-II(KII) regimes. While both the KI and KII regimes have the conventional Kondo resonance properties, remarkable Kondo–Fano interference features are shown in the K–F regime. In the view of scattering, we propose that the phase shift η(ω)is suitable for analysis of the Kondo–Fano interference. We present a general approach for calculating η(ω) and applying it to the DQD in the K–F regime where the two maxima of η(ω = 0) characterize the interferences between the Kondo resonance state and S-O2 and S-O1 substates, respectively.
文摘This paper presents an analysis of planar magnetic element configurations in order to reduce capacitive couplings between the windings. The capacitive couplings between layers of planar magnetic elements introduce a stray capacitor which can conduct high frequency currents when high dv/dt voltage is applied. High frequency current may cause electromagnetic interference (EMI) and harmonic problems. The investigation and simulation results, both 2D and 3D Finite Element (FE) show the effect of shifting the planar layers in reduction of the capacitive couplings. The simulation results are compared with test results to validate the proposition.
文摘An approach for analyzing coupling RC interconnect delay based on "effective capacitance" is presented. We compare this new method to the traditional method,which uses Miller capacitance. The results show that the new method not only improves the accuracy but also reflects the delay dependence on rise time. The method has the same complexity as the Elmore delay model and can be used in performance-driven routing optimization.
基金National Natural Science Foundation of China(No.10635010)
文摘A one-dimensional fluid model is proposed to simulate the dual-frequency capacitively coupled plasma for Ar discharges. The influences of the low frequency on the plasma density, electron temperature, sheath voltage drop, and ion energy distribution at the powered electrode are investigated. The decoupling effect of the two radio-frequency sources on the plasma parameters, especially in the sheath region, is discussed in detail.
基金supported by National Natural Science Foundation of China (Nos. 10635010, 10975029)Beijing Key Laboratory of Printing & Packaging Materials and Technology of Beijing Institute of Graphic Communication of China (No. KF201004)
文摘Local measurement of plasma radial uniformity was performed in a dual frequency capacitively coupled argon plasma (DF-CCP) reactor using an optical probe. The optical probe collects the light emission from a small separate volume in plasma, thus enabling to diagnose the plasma uniformity for different experimental parameters. Both the gas pressure and the low- frequency (LF) power have apparent effects on the radial uniformity of argon plasma. With the increase in either pressure or LF power, the emission profiles changed from a bell-shaped to a double-peak distribution. The influence of a fused-silica ring around the electrodes on the plasma uniformity was also studied using the optical probe. Possible reasons that result in nonuniform plasmas in our experiments are discussed.
基金supported by the Prospective Project of Industry–University–Research Institution of Jiangsu Province,China(Grant No.BY2010125)the National Natural Science Foundation of China(Grant No.11175127)
文摘Due to it being environmentally friendly, much attention has been paid to the dry plasma texturing technique serving as an alternative candidate for multicrystalline silicon (mc-Si) surface texturing. In this paper, capacitively coupled plasma (CCP) driven by a dual frequency (DF) of 40.68 MHz and 13.56 MHz is first used for plasma texturing of mc-Si with SF6/O2 gas mixture. Using a hairpin resonant probe and optical emission techniques, DF-CCP characteristics and their influence on mc-silicon surface plasma texturing are investigated at different flow rate ratios, pressures, and radio-frequency (RF) input powers. Experimental results show that suitable plasma texturing of mc-silicon occurs only in a narrow range of plasma parameters, where electron density ne must be larger than 6.3 x 109 cm-3 and the spectral intensity ratio of the F atom to that of the O atom ([F]/[O]) in the plasma must be between 0.8 and 0.3. Out of this range, no cone-like structure is formed on the mc-silicon surface. In our experiments, the lowest reflectance of about 7.3% for mc-silicon surface texturing is obtained at an [F]/[O] of 0.5 and ne of 6.9 × 109 cm-3.
基金the National Key R&D Program of China(Nos.2017YFA0205103 and 2018YFE020505)the National Natural Science Foundation of China(Nos.81571766 and 61771337)+1 种基金the Natural Science Foundation of Tianjin,China(No.17JCYBJC24400)the“111”Project of China(No.B07014).
文摘An air parametric array can generate a highly directional beam of audible sound in air,which has a wide range of applications in targeted audio delivery.Capacitive micromachined ultrasonic transducer(CMUTs)have great potential for air-coupled applications,mainly because of their low acoustic impedance.In this study,an air-coupled CMUT array is designed as an air parametric array.A hexagonal array is proposed to improve the directivity of the sound generated.A finite element model of the CMUT is established in COMSOL software to facilitate the choice of appropriate structural parameters of the CMUT cell.The CMUT array is then fabricated by a wafer bonding process with high consistency.The performances of the CMUT are tested to verify the accuracy of the finite element analysis.By optimizing the component parameters of the bias-T circuit used for driving the CMUT,DC and AC voltages can be effectively applied to the top and bottom electrodes of the CMUT to provide efficient ultrasound transmission.Finally,the prepared hexagonal array is successfully used to conduct preliminary experiments on its application as an air parametric array.
基金Project supported by the National Natural Science Foundation of China (Grant No. 10775025)the Scientific Research Fund of Liaoning Provincial Education Department for Colleges and Universities (Grant No. 2008T229)the Program for New Century Excellent Talents in University (Grant No. NCET-08-0073)
文摘A one-dimensional fluid model is employed to investigate the discharge sustaining mechanisms in the capacitively coupled argon plasmas, by modulating the driving frequency in the range of 40 kHz-613 MHz. The model incorporates the density and flux balance of electron and ion, electron energy balance, as well as Poisson's equation. In our simulation, the discharge experiences mode transition as the driving frequency increases, from the γ regime in which the discharge is maintained by the secondary electrons emitted from the electrodes under ion bombardment, to the a regime in which sheath oscillation is responsible for most of the electron heating in the discharge sustaining. The electron density and electron temperature at the centre of the discharge, as well as the ion flux on the electrode are figured out as a function of the driving frequency, to confirm the two regimes and transition between them. The effects of gas pressure, secondary electron emission coefficient and applied voltage on the discharge are also discussed.
基金supported by National Natural Science Foundation of China (No. 10775103)
文摘Diamond-like carbon (DLC) films were prepared with CH4-Ar using a capacitively coupled plasma enhanced chemical vapor deposition (CCP-CVD) method driven by dual-frequency of 41 MHz and 13.56 MHz in combination. Due to a coupling via bulk plasma, the self-bias voltage depended not only on the radiofrequency (RF) power of the corresponding electrode but also on another RF power of the counter electrode. The influence of the discharge parameters on the deposition rate, optical and Raman properties of the deposited films was investigated. The optical band decreased basically with the increase in the input power of both the low frequency and high frequency. Raman measurements show that the deposited films have a maximal sp3 content with an applied negative self-bias voltage of -150 V, while high frequency power causes a continuous increase in the sp3 content. The measurement of atomic force microscope (AFM) shows that the surface of the deposited films under ion-bombardment becomes smoother than those with non-intended self-bias voltage.
基金supported by National Natural Science Foundation of China (Nos. 10635010, 10775103)
文摘Low pressure argon dual-frequency (DF) capacitively coupled plasma (CCP) is generated by using different frequency configurations, such as 13.56/2, 27/2, 41/2, and 60/2 MHz. Characteristics of the plasma are investigated by using a floating double electrical probe and optical emission spectroscopy (OES). It is shown that in the DF-CCPs, the electron temperature Te decreases with the increase in exciting frequency, while the onset of 2 MHz induces a sudden increase in Te and the electron density increases basically with the increase in low frequency (LF) power. The intensity of 750.4 nm emission line increases with the LF power in the case of 13.56/2 MHz, while different tendencies of line intensity with the LF power appear for other configurations. The reason for this is also discussed.
基金supported by National Natural Science Foundation of China (Nos. 10975105, 11275136, 10975106, 11175126, 11204266 and 11075114) the National Magnetic Confinement Fusion Science Program of China (Nos. 2010GB106000, 2010GB106009), the Open Project of State Key Laboratory of Functional Materials for Information and Qing Lan Project, a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions and the Program for graduates Research & Innovation in University of Jiangsu Province, China (No. CX10B-031Z)
文摘Dry etching of 6H silicon carbide (6H-SiC) wafers in a C4Fs/Ar dual-frequency capacitively coupled plasma (DF-CCP) was investigated. Atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS) were used to measure the SiC surface structure and compositions, respectively. Optical emission spectroscopy (OES) was used to measure the relative concentration of F radicals in the plasma. It was found that the roughness of the etched SiC surface and the etching rate are directly related to the power of low-frequency (LF) source. At lower LF power, a smaller surface roughness and a lower etching rate are obtained due to weak bombardment of low energy ions on the SiC wafers. At higher LF power the etching rate can be efficiently increased, but the surface roughness increases too. Compared with other plasma dry etching methods, the DF-CCP can effectively inhibit CχFγ films' deposition, and reduce surface residues.
基金Project supported by the Key Research and Development Plan of Anhui Province,China(Grant No.201904a07020013).
文摘A one-dimensional self-consistent calculation model of capacitively coupled plasma(CCP)discharge and electromagnetic wave propagation is developed to solve the plasma characteristics and electromagnetic wave transmission attenuation.Numerical simulation results show that the peak electron number density of argon is about 12 times higher than that of helium,and that the electron number density increases with the augment of pressure,radio frequency(RF)power,and RF frequency.However,the electron number density first increases and then decreases as the discharge gap increases.The transmission attenuation of electromagnetic wave in argon discharge plasma is 8.5-dB higher than that of helium.At the same time,the transmission attenuation increases with the augment of the RF power and RF frequency,but it does not increase or decrease monotonically with the increase of gas pressure and discharge gap.The electromagnetic wave absorption frequency band of the argon discharge plasma under the optimal parameters in this paper can reach the Ku band.It is concluded that the argon CCP discharge under the optimal discharge parameters has great potential applications in plasma stealth.
基金supported by National Natural Science Foundation of China(Nos.11775175,U1766218,51827809)Natural Science Research Fund of Higher Education of Anhui Province(No.KJ2020A0246)。
文摘The flashover performance of insulating materials plays an important role in the development of high-voltage insulation systems.In this paper,silicone rubber(SIR)is modified by CF4 radio frequency capacitively coupled plasma(CCP)for the improvement of surface insulation performance.The discharge mode and active particles of CCP are diagnosed by the digital single-lens reflex and the spectrometer.Scanning electron microscopy and x-ray photoelectron spectroscopy are used for the surface physicochemical properties of samples,while the surface charge dissipation,charge accumulation measurement,and flashover test are applied for the surface electrical characteristics.Experimental results show that the fluorocarbon groups can be grafted and the surface roughness increases after plasma treatment.Besides,the surface charge dissipation is decelerated and the positive charge accumulation is inhibited obviously for the treated samples.Furthermore,the surface flashover voltage can be increased by 26.67%after 10 min of treatment.It is considered that strong electron affinity of C–F and increased surface roughness can contribute to deepening surface traps,which not only inhibits the development of secondary electron emission avalanche but also alleviates the surface charge accumulation and finally improves the surface flashover voltage of SIR.
基金supported by the National Research Foundation of Korea(Nos.NRF-2019M1A7A1A03087579 and NRF-2021R1I1A1A01050312)the Ministry of Trade,Industry&Energy(Nos.20011226 and 20009415)。
文摘In general,as the radio frequency(RF)power increases in a capacitively coupled plasma(CCP),the power transfer efficiency decreases because the resistance of the CCP decreases.In this work,a parallel resonance circuit is applied to improve the power transfer efficiency at high RF power,and the effect of the parallel resonance on the electron energy distribution function(EEDF)is investigated in a 60 MHz CCP.The CCP consists of a power feed line,the electrodes,and plasma.The reactance of the CCP is positive at 60 MHz and acts like an inductive load.A vacuum variable capacitor(VVC)is connected in parallel with the inductive load,and then the parallel resonance between the VVC and the inductive load can be achieved.As the capacitance of the VVC approaches the parallel resonance condition,the equivalent resistance of the parallel circuit is considerably larger than that without the VVC,and the current flowing through the matching network is greatly reduced.Therefore,the power transfer efficiency of the discharge is improved from 76%,70%,and 68%to 81%,77%,and 76%at RF powers of 100 W,150 W,and 200 W,respectively.At parallel resonance conditions,the electron heating in bulk plasma is enhanced,which cannot be achieved without the VVC even at the higher RF powers.This enhancement of electron heating results in the evolution of the shape of the EEDF from a biMaxwellian distribution to a distribution with the smaller temperature difference between high-energy electrons and low-energy electrons.Due to the parallel resonance effect,the electron density increases by approximately 4%,18%,and 21%at RF powers of 100 W,150 W,and 200 W,respectively.
基金Project supported by the National Natural Science Foundation of China(Grant No.11665021)the Natural Science Foundation of Gansu Province,China(Grant No.20JR10RA078).
文摘The discharge characteristics of capacitively coupled argon plasmas driven by very high frequency discharge are studied.The mean electron temperature and electron density are calculated by using the Ar spectral lines at different values of power(20 W-70 W)and four different frequencies(13.56 MHz,40.68 MHz,94.92 MHz,and 100 MHz).The mean electron temperature decreases with the increase of power at a fixed frequency.The mean electron temperature varies non-linearly with frequency increasing at constant power.At 40.68 MHz,the mean electron temperature is the largest.The electron density increases with the increase of power at a fixed frequency.In the cases of driving frequencies of 94.92 MHz and 100 MHz,the obtained electron temperatures are almost the same,so are the electron densities.Particle-in-cell/Monte-Carlo collision(PIC/MCC)method developed within the Vsim 8.0 simulation package is used to simulate the electron density,the potential distribution,and the electron energy probability function(EEPF)under the experimental condition.The sheath width increases with the power increasing.The EEPF of 13.56 MHz and 40.68 MHz are both bi-Maxwellian with a large population of low-energy electrons.The EEPF of 94.92 MHz and 100 MHz are almost the same and both are nearly Maxwellian.
文摘The fluid model,also called the macroscopic model,is commonly used to simulate low temperature and low pressure radiofrequency plasma discharges.By varying the parameters of the model,numerical simulation allows us to study several cases,providing us the physico-chemical information that is often difficult to obtain experimentally.In this work,using the fluid model,we employ numerical simulation to show the effect of pressure and space between the reactor electrodes on the fundamental properties of silicon plasma diluted with ammonia and hydrogen.The results show the evolution of the fundamental characteristics of the plasma discharge as a function of the variation of the pressure and the distance between the electrodes.By examining the pressure-distance product in a range between 0.3 Torr 2.7 cm and 0.7 Torr 4 cm,we have determined the optimal pressure-distance product that allows better deposition of hydrogenated silicon nitride(SiN_(x)H_(y))films which is 0.7 Torr 2.7 cm.
基金Project supported by the National Natural Science Foundation of China(Grant No.51172101)
文摘A one-dimensional(1D) fluid model on capacitively coupled radio frequency(RF) argon glow discharge between parallel-plates electrodes at low pressure is established to test the effect of the driving frequency on electron heating. The model is solved numerically by a finite difference method. The numerical results show that the discharge process may be divided into three stages: the growing rapidly stage, the growing slowly stage, and the steady stage. In the steady stage,the maximal electron density increases as the driving frequency increases. The results show that the discharge region has three parts: the powered electrode sheath region, the bulk plasma region and the grounded electrode sheath region. In the growing rapidly stage(at 18 μs), the results of the cycle-averaged electric field, electron temperature, electron density, and electric potentials for the driving frequencies of 3.39, 6.78, 13.56, and 27.12 MHz are compared, respectively. Furthermore,the results of cycle-averaged electron pressure cooling, electron ohmic heating, electron heating, and electron energy loss for the driving frequencies of 3.39, 6.78, 13.56, and 27.12 MHz are discussed, respectively. It is also found that the effect of the cycle-averaged electron pressure cooling on the electrons is to "cool" the electrons; the effect of the electron ohmic heating on the electrons is always to "heat" the electrons; the effect of the cycle-averaged electron ohmic heating on the electrons is stronger than the effect of the cycle-averaged electron pressure cooling on the electrons in the discharge region except in the regions near the electrodes. Therefore, the effect of the cycle-averaged electron heating on the electrons is to "heat" the electrons in the discharge region except in the regions near the electrodes. However, in the regions near the electrodes, the effect of the cycle-averaged electron heating on the electron is to "cool" the electrons. Finally, the space distributions of the electron pressure cooling the electron ohmic heating and the electron heating at 1/4 T, 2/4 T, 3/4 T, and 4/4 T in one RF-cycle are presented and compared.
基金Project supported by the National Natural Science Foundation of China(Grant No.61474041)
文摘An improved method of extracting the coupling capacitances of quantum dot structure is reported. This method is based on measuring the charge transfer current in the silicon nanowire metal-oxide-semiconductor field-effect transistor (MOSFET), in which the channel closing and opening are controlled by applying alternating-current biases with a half period phase shift to the dual lower gates. The capacitances around the dot, including fringing capacitances and barrier capacitances, are obtained by analyzing the relation between the transfer current and the applied voltage. This technique could be used to extract the capacitance parameters not only from the bulk silicon devices, but also from the silicon-on-insulator (SOI) MOSFETs.