Nowadays,both n-i-p and p-i-n perovskite solar cells(PSCs) device structures are reported to give high performance with photo conversion efficiencies(PCEs) above 20%.The efficiency of the PSCs is fundementally det...Nowadays,both n-i-p and p-i-n perovskite solar cells(PSCs) device structures are reported to give high performance with photo conversion efficiencies(PCEs) above 20%.The efficiency of the PSCs is fundementally determined by the charge selective contact materials.Hence,by introducing proper contact materials with good charge selectivity,one could potentially reduce interfacial charge recombination as well as increase device performance.In the past few years,copious charge selective contact materials have been proposed.Significant improvements in the corresponding devices were observed and the reported PCEs were close to that of classic Spiro-OMeTAD.This mini-review summarizes the state-of-the-art progress of typical electron/hole selective contact materials for efficient perovskite solar cells and an outlook to their development is made.展开更多
In recent years, there has been a pronounced interest in solid-contact ion-selective electrodes (SC-ISEs), with emphasis on the use of conducting polymers as ion-to-electron transducer. In this work, a ladder conjug...In recent years, there has been a pronounced interest in solid-contact ion-selective electrodes (SC-ISEs), with emphasis on the use of conducting polymers as ion-to-electron transducer. In this work, a ladder conjugated polymer, thieno[3,2-b]thiophene (LCPT), was investigated in fabricating Cu2+-selective electrodes for the first time. The resulting electrodes were characterized by electrochemical impedance spectroscopy (EIS), chronopotentiometry, and the water layer test. Results proved that the active LCPT facilitates the ion-to-electron transduction, and avoids the detrimental aqueous layer formed at the interface of SC-ISEs.展开更多
A new solid-contact Ag~+-selective electrode was prepared with 9,10,12,13,24,25-hexahydro-5H,15H,23H-dibenzo [b,q][1,7,10,13,19,4,16]-entathiadiazacyclodocosine-6,16(7H,17H)-dione as ionophore,and cc,a-dihexylsexit...A new solid-contact Ag~+-selective electrode was prepared with 9,10,12,13,24,25-hexahydro-5H,15H,23H-dibenzo [b,q][1,7,10,13,19,4,16]-entathiadiazacyclodocosine-6,16(7H,17H)-dione as ionophore,and cc,a-dihexylsexithiophene(DH- 6T) ion-to-electron transducer.The sensor exhibited a working concentration range of 10~8 to 10^(-3) mol/L,with a near-Nernstian slope of 55.1±0.2 mV/dec and detection limit of 1.7×10^(-9) mol/L.The fabricated electrodes demonstrated excellent selectivity over the most common monovalent and divalent cations.展开更多
We developed an apparatus for producing high-density hydrogen plasma. We confirmed that the temperatures of transition-metal films increased to above 800?C within 5 s when they were exposed to hydrogen plasma formed u...We developed an apparatus for producing high-density hydrogen plasma. We confirmed that the temperatures of transition-metal films increased to above 800?C within 5 s when they were exposed to hydrogen plasma formed using the apparatus. We applied this phenomenon to the selective heat treatment of W/Ni films deposited on n+4H-SiC wafers and formed nickel silicide electrodes. To utilize this method, we can perform the nickel silicidation process without heating the other areas such as channel regions and improve the reliability.展开更多
In multi-layer satellite-terrestrial network, Contact Graph Routing(CGR) uses the contact information among satellites to compute routes. However, due to the resource constraints in satellites, it is extravagant to co...In multi-layer satellite-terrestrial network, Contact Graph Routing(CGR) uses the contact information among satellites to compute routes. However, due to the resource constraints in satellites, it is extravagant to configure lots of the potential contacts into contact plans. What's more, a huge contact plan makes the computing more complex, which further increases computing time. As a result, how to design an efficient contact plan becomes crucial for multi-layer satellite network, which usually has a large scaled topology. In this paper, we propose a distributed contact plan design scheme for multi-layer satellite network by dividing a large contact plan into several partial parts. Meanwhile, a duration based inter-layer contact selection algorithm is proposed to handle contacts disruption problem. The performance of the proposed design was evaluated on our Identifier/Locator split based satellite-terrestrial network testbed with 79 simulation nodes. Experiments showed that the proposed design is able to reduce the data delivery delay.展开更多
Ag/SnO2,as a promising and environment-friendly electrical contact material,is widely applied in low-voltage apparatus.But the properties of Ag/SnO2 composites is difficult to improve due to the poor distribution phas...Ag/SnO2,as a promising and environment-friendly electrical contact material,is widely applied in low-voltage apparatus.But the properties of Ag/SnO2 composites is difficult to improve due to the poor distribution phases and difficult component design.In this work,the Ag/SnO2 composites are prepared by selective laser melting.To get better performance,Ag/SnO2 composites with different energy density were studied.The microstructure was observed by field emission scanning electron microscope.In addition,reinforced SnO2 phase was characterized by X-ray diffraction and transmission electron microscope.The results indicated that the microstructure,relative density and hardness of are influenced by energy density,while Ag/SnO2 composites with homogeneous microstructure,high relative density,higher hardness and lower electrical resistivity can be obtained by proper energy density(E?68 J/mm^3).展开更多
Due to the layer-by-layer manufacturing characteristics,metallurgical process of selective laser melting(SLM)is inherently dif-ferent in the building direction because of varying conditions,thereby resulting inter-lay...Due to the layer-by-layer manufacturing characteristics,metallurgical process of selective laser melting(SLM)is inherently dif-ferent in the building direction because of varying conditions,thereby resulting inter-layer heterogeneity.To mitigate such anisotropy,it is of great significance to understand the effects of processing parameters on the property evolution and thus metallurgy of fabrication process.This research proposes one-factor-at-a-time experiment to investigate the influences of laser power and scanning speed on the surface qual-ity,microstructures and mechanical properties of selective laser melted Ti-6Al-4V parts.Surface quality is assessed by roughness around the printings while mechanical properties are evaluated through microhardness and tensile strengths.Phases in microstructure are quantified by XRD to correlate with mechanical properties.Fracture morphology is analyzed to understand the effect of defects and microstructure on mechanical performance.The optimized parameter corresponding to best surface quality and mechanical properties has been found respect-ively in laser power of 190 W and scanning speed of 800 mm/s.After optimization,surface roughness has decreased by 44.47%for upper surface.Yielding strength,tensile strength and elongation rate have improved by 13.17%,43.34%and 64.51%,respectively,with similar hardness and Young’s modulus.In addition,heterogeneity of mechanical properties has great improvement by a range of 31.63%-92.68%.展开更多
Novel solid-contact perchlorate sensors based on cobalt phthalocyanine-C-monocarboxylic acid (I), and cobalt phthalocyanine-C,C,C,C-tetracarboxylic acid (II) as free ionophores and covalently attached to polyacryla- m...Novel solid-contact perchlorate sensors based on cobalt phthalocyanine-C-monocarboxylic acid (I), and cobalt phthalocyanine-C,C,C,C-tetracarboxylic acid (II) as free ionophores and covalently attached to polyacryla- mide (PAA)—ionophores III and IV, respectively were prepared. The all solid-state sensors were constructed by the application of a thin film of a polymer cocktail containing a phthalocyanine ionophore and cetyltrimethylammonium bromide (CTMAB) as a lipophilic cationic additive onto a gold electrode precoated with the conducting polymer poly (3,4-ethylenedioxythiophene) (PEDOT) as an ion and electron transducer. The sensor with 10.3% of ionophore (III) covalently attached to plasticizer-free poly (butyl methacrylate-co-do- decyl methacrylate) (PBDA) exhibited a good selectivity for perchlorate and discriminated many ions, in- cluding F–, Cl–, Br–, I–, SCN–, , S2– and . The covalent attachment of the ionophore to the polymer resulted in a near-Nernstian anionic slope of –62.3 mV/decade whereas a super-Nernstian slope of –79.9 mV/ decade was obtained for the free ionophore. The sensor covered a linear concentration range of 5 × 10–9 - 1 × 10–2 mol?L–1 with a lower detection limit (LDL) of 1 × 10–9 mol?L–1 and gave a stable response over a pH range of 4 - 10.5. The all-solid state sensors were utilized for the selective flow injection potentiometric determination of perchlorate in natural water and human urine samples in the nanomolar concentration range.展开更多
The planetary roller screw mechanism(PRSM)is a novel precision transmission mechanism that realizes the conversion between linear and rotary motions.The contact characteristics of helical surfaces directly determine P...The planetary roller screw mechanism(PRSM)is a novel precision transmission mechanism that realizes the conversion between linear and rotary motions.The contact characteristics of helical surfaces directly determine PRSM’s performance in load-carrying capacity and transmission accuracy.Therefore,studying the contact characteristics of PRSM forms the fundamental basis for enhancing its transmission performance.In this study,a three-dimensional parametric analysis method of contact characteristics is proposed based on the PRSM meshing principle and PyVista(a high-level API to the Visualization Toolkit).The proposed method considers the influence of machining errors among various thread teeth.The effects of key machining errors on contact positions and axial clearance,as well as their sensitivities,are analyzed.With excellent solution accuracy,this method exhibits higher calculation efficiency and stronger robustness than the analytical and numerical meshing models.The influence of nominal diameter and pitch errors of the screw,roller,and nut on the axial clearance follows a linear relationship,whereas flank angle errors have negligible effects on the axial clearance.The corresponding influence coefficients for these three machining errors on the axial clearance are 0.623,0.341,and 0.036.The variations in contact positions caused by individual errors are axisymmetric.Flank angle errors and roller diameter errors result in linear displacements of the contact points,whereas pitch errors cause the contact points to move along the arc of the roller diameter.Based on the proposed threedimensional parametric contact characteristics analysis method,the Fuzzy C-Means clustering algorithm considering error sensitivity is utilized to establish a component grouping technique in the selective assembly of critical PRSM components,ensuring the rational and consistent clearances based on the given component’s machining errors.This study provides effective guidance for analyzing contact characteristics and grouping in selective assembly for PRSM components.It also presents the proposed method’s potential applicability to similar calculation problems for contact positions and clearances in other transmission systems.展开更多
Dendrite formation,contact loss,and continuous formation of the solid electrolyte interphase(SEI)preclude the practical use of the energy-dense lithium(Li)metal.Li-Ag alloys have the potential to address these issues ...Dendrite formation,contact loss,and continuous formation of the solid electrolyte interphase(SEI)preclude the practical use of the energy-dense lithium(Li)metal.Li-Ag alloys have the potential to address these issues due to their exceptional lithiophilicity,outstanding mechanical stability,and moderate chemical stability.This study evaluates all phases in the Li-Ag phase diagram based on lithiation capacity,Li insertion,mechanical property,and chemical stability.Our findings suggest that Li_(4)Ag is the most promising phase,and the Gibbs free energy of nucleation(ΔG_(nucle))for Li-Ag alloys is 3 to 5 orders of magnitude smaller compared to pure Li,resulting in uniform nucleation and deposition behavior.We proposed practical applications within the Li_(4)Ag phases or from the Li_(9)Ag_(4) to the Li_(4)Ag phases,which may provide a usable capacity of 409 to 696 mAh/g,respectively.Experiments indicate that Li_(4)Ag exhibits not only the smallest impedance but also the highest capacity retention compared to Li_(9)Ag_(4) and pure Li.The study provides valuable guidance for the selection and application of Li-containing alloys in future battery development.展开更多
Perovskite solar cells(PSCs)have achieved remarkable advancements in recent years[1].Devices achieving high power conversion efficiencies(PCEs)typically rely on molecular contacts featuring conjugated cores[2].The pla...Perovskite solar cells(PSCs)have achieved remarkable advancements in recent years[1].Devices achieving high power conversion efficiencies(PCEs)typically rely on molecular contacts featuring conjugated cores[2].The planar and conjugated cores facilitate ordered molecular stacking throughπ-πinteractions,thereby enhancing charge transport and selectivity[3,4].展开更多
基金the National Natural Science Foundation of China(No.21404045)the financial support from "Hundred Talents Program" of the Haixi Institute Chinese Academy of Sciences(No.1017001)
文摘Nowadays,both n-i-p and p-i-n perovskite solar cells(PSCs) device structures are reported to give high performance with photo conversion efficiencies(PCEs) above 20%.The efficiency of the PSCs is fundementally determined by the charge selective contact materials.Hence,by introducing proper contact materials with good charge selectivity,one could potentially reduce interfacial charge recombination as well as increase device performance.In the past few years,copious charge selective contact materials have been proposed.Significant improvements in the corresponding devices were observed and the reported PCEs were close to that of classic Spiro-OMeTAD.This mini-review summarizes the state-of-the-art progress of typical electron/hole selective contact materials for efficient perovskite solar cells and an outlook to their development is made.
基金financially supported by the National Natural Science Foundation of China(No.21107134)Chinese Academy of Sciences(No.KZCX2-YW-JS208)+1 种基金the Natural Science Foundation of Shandong Province(No.JQ200814)the Taishan Scholar Program of Shandong Province
文摘In recent years, there has been a pronounced interest in solid-contact ion-selective electrodes (SC-ISEs), with emphasis on the use of conducting polymers as ion-to-electron transducer. In this work, a ladder conjugated polymer, thieno[3,2-b]thiophene (LCPT), was investigated in fabricating Cu2+-selective electrodes for the first time. The resulting electrodes were characterized by electrochemical impedance spectroscopy (EIS), chronopotentiometry, and the water layer test. Results proved that the active LCPT facilitates the ion-to-electron transduction, and avoids the detrimental aqueous layer formed at the interface of SC-ISEs.
基金financially supported by the National Natural Science Foundation of China(No.21107134)Chinese Academy of Sciences(No.KZCX2-YW-JS208)+1 种基金the Natural Science Foundation of Shandong Province (JQ200814)the Taishan Scholar Program of Shandong Province
文摘A new solid-contact Ag~+-selective electrode was prepared with 9,10,12,13,24,25-hexahydro-5H,15H,23H-dibenzo [b,q][1,7,10,13,19,4,16]-entathiadiazacyclodocosine-6,16(7H,17H)-dione as ionophore,and cc,a-dihexylsexithiophene(DH- 6T) ion-to-electron transducer.The sensor exhibited a working concentration range of 10~8 to 10^(-3) mol/L,with a near-Nernstian slope of 55.1±0.2 mV/dec and detection limit of 1.7×10^(-9) mol/L.The fabricated electrodes demonstrated excellent selectivity over the most common monovalent and divalent cations.
文摘We developed an apparatus for producing high-density hydrogen plasma. We confirmed that the temperatures of transition-metal films increased to above 800?C within 5 s when they were exposed to hydrogen plasma formed using the apparatus. We applied this phenomenon to the selective heat treatment of W/Ni films deposited on n+4H-SiC wafers and formed nickel silicide electrodes. To utilize this method, we can perform the nickel silicidation process without heating the other areas such as channel regions and improve the reliability.
基金supported by National High Technology of China ("863 program") under Grant No. 2015AA015702NSAF under Grant No. U1530118+1 种基金NSFC under Grant No. 61602030National Basic Research Program of China ("973 program") under Grant No. 2013CB329101
文摘In multi-layer satellite-terrestrial network, Contact Graph Routing(CGR) uses the contact information among satellites to compute routes. However, due to the resource constraints in satellites, it is extravagant to configure lots of the potential contacts into contact plans. What's more, a huge contact plan makes the computing more complex, which further increases computing time. As a result, how to design an efficient contact plan becomes crucial for multi-layer satellite network, which usually has a large scaled topology. In this paper, we propose a distributed contact plan design scheme for multi-layer satellite network by dividing a large contact plan into several partial parts. Meanwhile, a duration based inter-layer contact selection algorithm is proposed to handle contacts disruption problem. The performance of the proposed design was evaluated on our Identifier/Locator split based satellite-terrestrial network testbed with 79 simulation nodes. Experiments showed that the proposed design is able to reduce the data delivery delay.
基金sponsored by the Natural Science Foundation of China (Grant nos. 51775208)the Hubei Science Fund for Distinguished Young Scholars (No. 0216110085)+2 种基金the National Key Research and Development Program “Additive Manufacturing and Laser Manufacturing”(No. 2016YFB1100101)Wuhan Morning Light Plan of Youth Science and Technology (No. 0216110066)the Academic frontier youth team at Huazhong University of Science and Technology (HUST)
文摘Ag/SnO2,as a promising and environment-friendly electrical contact material,is widely applied in low-voltage apparatus.But the properties of Ag/SnO2 composites is difficult to improve due to the poor distribution phases and difficult component design.In this work,the Ag/SnO2 composites are prepared by selective laser melting.To get better performance,Ag/SnO2 composites with different energy density were studied.The microstructure was observed by field emission scanning electron microscope.In addition,reinforced SnO2 phase was characterized by X-ray diffraction and transmission electron microscope.The results indicated that the microstructure,relative density and hardness of are influenced by energy density,while Ag/SnO2 composites with homogeneous microstructure,high relative density,higher hardness and lower electrical resistivity can be obtained by proper energy density(E?68 J/mm^3).
基金Project was supported by the Natural Science Foundation of Fujian Province(Grant No.2020J01873)Science and Technology Major Project of Fujian Province(Grant No.2020HZ03018)+1 种基金Fujian Provincial Foreign Cooperation Project of Science and Technology(Grant No.2020I1003)Fujian Provincial Special Project for Marine Economy Development(Grant No.2021-517).
文摘Due to the layer-by-layer manufacturing characteristics,metallurgical process of selective laser melting(SLM)is inherently dif-ferent in the building direction because of varying conditions,thereby resulting inter-layer heterogeneity.To mitigate such anisotropy,it is of great significance to understand the effects of processing parameters on the property evolution and thus metallurgy of fabrication process.This research proposes one-factor-at-a-time experiment to investigate the influences of laser power and scanning speed on the surface qual-ity,microstructures and mechanical properties of selective laser melted Ti-6Al-4V parts.Surface quality is assessed by roughness around the printings while mechanical properties are evaluated through microhardness and tensile strengths.Phases in microstructure are quantified by XRD to correlate with mechanical properties.Fracture morphology is analyzed to understand the effect of defects and microstructure on mechanical performance.The optimized parameter corresponding to best surface quality and mechanical properties has been found respect-ively in laser power of 190 W and scanning speed of 800 mm/s.After optimization,surface roughness has decreased by 44.47%for upper surface.Yielding strength,tensile strength and elongation rate have improved by 13.17%,43.34%and 64.51%,respectively,with similar hardness and Young’s modulus.In addition,heterogeneity of mechanical properties has great improvement by a range of 31.63%-92.68%.
文摘Novel solid-contact perchlorate sensors based on cobalt phthalocyanine-C-monocarboxylic acid (I), and cobalt phthalocyanine-C,C,C,C-tetracarboxylic acid (II) as free ionophores and covalently attached to polyacryla- mide (PAA)—ionophores III and IV, respectively were prepared. The all solid-state sensors were constructed by the application of a thin film of a polymer cocktail containing a phthalocyanine ionophore and cetyltrimethylammonium bromide (CTMAB) as a lipophilic cationic additive onto a gold electrode precoated with the conducting polymer poly (3,4-ethylenedioxythiophene) (PEDOT) as an ion and electron transducer. The sensor with 10.3% of ionophore (III) covalently attached to plasticizer-free poly (butyl methacrylate-co-do- decyl methacrylate) (PBDA) exhibited a good selectivity for perchlorate and discriminated many ions, in- cluding F–, Cl–, Br–, I–, SCN–, , S2– and . The covalent attachment of the ionophore to the polymer resulted in a near-Nernstian anionic slope of –62.3 mV/decade whereas a super-Nernstian slope of –79.9 mV/ decade was obtained for the free ionophore. The sensor covered a linear concentration range of 5 × 10–9 - 1 × 10–2 mol?L–1 with a lower detection limit (LDL) of 1 × 10–9 mol?L–1 and gave a stable response over a pH range of 4 - 10.5. The all-solid state sensors were utilized for the selective flow injection potentiometric determination of perchlorate in natural water and human urine samples in the nanomolar concentration range.
基金supported by the National Key R&D Program of China(Grant No.2023YFB3406404).
文摘The planetary roller screw mechanism(PRSM)is a novel precision transmission mechanism that realizes the conversion between linear and rotary motions.The contact characteristics of helical surfaces directly determine PRSM’s performance in load-carrying capacity and transmission accuracy.Therefore,studying the contact characteristics of PRSM forms the fundamental basis for enhancing its transmission performance.In this study,a three-dimensional parametric analysis method of contact characteristics is proposed based on the PRSM meshing principle and PyVista(a high-level API to the Visualization Toolkit).The proposed method considers the influence of machining errors among various thread teeth.The effects of key machining errors on contact positions and axial clearance,as well as their sensitivities,are analyzed.With excellent solution accuracy,this method exhibits higher calculation efficiency and stronger robustness than the analytical and numerical meshing models.The influence of nominal diameter and pitch errors of the screw,roller,and nut on the axial clearance follows a linear relationship,whereas flank angle errors have negligible effects on the axial clearance.The corresponding influence coefficients for these three machining errors on the axial clearance are 0.623,0.341,and 0.036.The variations in contact positions caused by individual errors are axisymmetric.Flank angle errors and roller diameter errors result in linear displacements of the contact points,whereas pitch errors cause the contact points to move along the arc of the roller diameter.Based on the proposed threedimensional parametric contact characteristics analysis method,the Fuzzy C-Means clustering algorithm considering error sensitivity is utilized to establish a component grouping technique in the selective assembly of critical PRSM components,ensuring the rational and consistent clearances based on the given component’s machining errors.This study provides effective guidance for analyzing contact characteristics and grouping in selective assembly for PRSM components.It also presents the proposed method’s potential applicability to similar calculation problems for contact positions and clearances in other transmission systems.
基金supported by the National Natural Science Foundation of China(nos.52072240 and 22222204)the Materials Genome Initiative Center at Shanghai Jiao Tong University。
文摘Dendrite formation,contact loss,and continuous formation of the solid electrolyte interphase(SEI)preclude the practical use of the energy-dense lithium(Li)metal.Li-Ag alloys have the potential to address these issues due to their exceptional lithiophilicity,outstanding mechanical stability,and moderate chemical stability.This study evaluates all phases in the Li-Ag phase diagram based on lithiation capacity,Li insertion,mechanical property,and chemical stability.Our findings suggest that Li_(4)Ag is the most promising phase,and the Gibbs free energy of nucleation(ΔG_(nucle))for Li-Ag alloys is 3 to 5 orders of magnitude smaller compared to pure Li,resulting in uniform nucleation and deposition behavior.We proposed practical applications within the Li_(4)Ag phases or from the Li_(9)Ag_(4) to the Li_(4)Ag phases,which may provide a usable capacity of 409 to 696 mAh/g,respectively.Experiments indicate that Li_(4)Ag exhibits not only the smallest impedance but also the highest capacity retention compared to Li_(9)Ag_(4) and pure Li.The study provides valuable guidance for the selection and application of Li-containing alloys in future battery development.
文摘Perovskite solar cells(PSCs)have achieved remarkable advancements in recent years[1].Devices achieving high power conversion efficiencies(PCEs)typically rely on molecular contacts featuring conjugated cores[2].The planar and conjugated cores facilitate ordered molecular stacking throughπ-πinteractions,thereby enhancing charge transport and selectivity[3,4].