The subduction of the Bangonghu-Nujiang Meso-Tethys and the collision between the Lhasa and Qiangtang blocks were important events in the growth of the Tibetan crust. However, the timing of collision initiation and cl...The subduction of the Bangonghu-Nujiang Meso-Tethys and the collision between the Lhasa and Qiangtang blocks were important events in the growth of the Tibetan crust. However, the timing of collision initiation and closure timing, as well as nature and structure of the Bangonghu ocean basin, are still poorly constrained. The Lagkor Tso ophiolite, located in the south of Gerze County, Tibet, is one of the most completed ophiolites preserved in the southern side of the Bangonghu- Nujiang suture zone. This study discussed the tectonic evolution of the Bangonghu-Nujiang suture zone as revealed by the Lagkor Tso ophiolite investigated by field investigations, petrology, geochemistry, geochronology and tectonic analysis methods. We present new LA-ICP-MS zircon U-Pb and 39Ar/4~Ar ages for the Lagkor Tso ophiolite, in addition to geochemical and platinum-group element (PGE) data presented for the Lagkor Tso ophiolite in Tibet. It is suggested that the ancient Lagkor Tso oceanic basin split in Middle Jurassic (161.2 ± 2.7 Ma - 165.4 ± 3.5 Ma), and experienced a second tectonic emplacement during the Early Cretaceous (137.90 ± 6.39 Ma). The Lagkor Tso ophiolite likely developed in an independent suture zone. The Bangonghu-Nujiang ocean subducted southwards, and the dehydration of the subducting oceanic crust materials caused partial melting of the continental mantle wedge, which formed the second-order expanding center of the obduction dish. This led to inter-arc expansion, followed by the formation of inter-arc and back-arc basins with island arc features, which are represented by ophiolites around the Shiquanhe-Lagkor Tso -Yongzhu region. The tectonic environment presently can be considered to be similar to that of the current Western Pacific, in which a large number of island arc-ocean basin systems are developed.展开更多
The Hongyanjing inter-arc basin, is located at the central part of Beishan Orogenic College (BOC), Gansu Province, northwest China. Thick sequences of Permian sediments were strongly folded, forming extremely specta...The Hongyanjing inter-arc basin, is located at the central part of Beishan Orogenic College (BOC), Gansu Province, northwest China. Thick sequences of Permian sediments were strongly folded, forming extremely spectacular superposed folds. To better understand the thermal history of Hongyanjing interarc basin and to potentially constrain the timing of deformation, apatite fission track thermochronology method was applied on two superposed folds in the Hongyanjing Basin. Samples from the basin, yield central AFT ages ranging from - 206 to 118 Ma. AFT peak ages were largely consistent between samples and can divided into three groups: 245, 204-170 and 112-131 Ma. Subsequent thermal history modeling of the samples from the Hongyanjing Basin can be summarized as follows: (1) thermal reheating by sedimentary burial at - 260 to -220 Ma; (2) major cooling from -220 to -180 Ma; (3) an episode of very slow subsequent cooling from -180 to 65 Ma (-80 ℃) to present-day outcrop temperatures. Sediments in the Hongyanjing Basin were folded forming F1 fold during the early to late Triassic (-240--220 Ma), by regional stress, and at the time that the adjacent Xingxingxia shear zone started to become active. It is further suggested that the F2 folding occurred at -225-219 Ma. The deformation age of F2 should he extended to 180 Ma based on our thermal history modeling for the Hongyanjing Basin, which show a rapid exhumation and cooling at the late Triassic to early Jurassic (-220-- 180 Ma). In our interpretations, the F1 folding is therefore thought to he related to the final closure of the Paleo-Asian Ocean, while the F2 folding occurred at - 225-180 Ma associated with a major pulse of orogenesis in the BOC.展开更多
运用大型有限元分析软件Abaqus,对船用钢板EH36平板CO2气体保护焊的温度场进行三维动态分析。以8 mm EH36平板为研究对象,考虑材料的热物理性能和对流、辐射散热的影响,建立Y型坡口对接两层两道焊模型,利用过渡网格技术划分网格,采用双...运用大型有限元分析软件Abaqus,对船用钢板EH36平板CO2气体保护焊的温度场进行三维动态分析。以8 mm EH36平板为研究对象,考虑材料的热物理性能和对流、辐射散热的影响,建立Y型坡口对接两层两道焊模型,利用过渡网格技术划分网格,采用双椭球热源模型和"单元生死"技术实现焊缝填充的动态过程。得到EH36温度场的分布规律,并研究层间冷却时间对焊接温度场的影响。展开更多
基金supported by the National Nature Science Foundation of China (grant No.41372208)China Geological Survey (grant No.1212011221105 and 1212011121259)
文摘The subduction of the Bangonghu-Nujiang Meso-Tethys and the collision between the Lhasa and Qiangtang blocks were important events in the growth of the Tibetan crust. However, the timing of collision initiation and closure timing, as well as nature and structure of the Bangonghu ocean basin, are still poorly constrained. The Lagkor Tso ophiolite, located in the south of Gerze County, Tibet, is one of the most completed ophiolites preserved in the southern side of the Bangonghu- Nujiang suture zone. This study discussed the tectonic evolution of the Bangonghu-Nujiang suture zone as revealed by the Lagkor Tso ophiolite investigated by field investigations, petrology, geochemistry, geochronology and tectonic analysis methods. We present new LA-ICP-MS zircon U-Pb and 39Ar/4~Ar ages for the Lagkor Tso ophiolite, in addition to geochemical and platinum-group element (PGE) data presented for the Lagkor Tso ophiolite in Tibet. It is suggested that the ancient Lagkor Tso oceanic basin split in Middle Jurassic (161.2 ± 2.7 Ma - 165.4 ± 3.5 Ma), and experienced a second tectonic emplacement during the Early Cretaceous (137.90 ± 6.39 Ma). The Lagkor Tso ophiolite likely developed in an independent suture zone. The Bangonghu-Nujiang ocean subducted southwards, and the dehydration of the subducting oceanic crust materials caused partial melting of the continental mantle wedge, which formed the second-order expanding center of the obduction dish. This led to inter-arc expansion, followed by the formation of inter-arc and back-arc basins with island arc features, which are represented by ophiolites around the Shiquanhe-Lagkor Tso -Yongzhu region. The tectonic environment presently can be considered to be similar to that of the current Western Pacific, in which a large number of island arc-ocean basin systems are developed.
基金financially supported by 973 Program(2014CB440801)NSFC (41230207 and 41302167)sponsored by State Key Laboratory of Earthquake Dynamics(LED2013B03)
文摘The Hongyanjing inter-arc basin, is located at the central part of Beishan Orogenic College (BOC), Gansu Province, northwest China. Thick sequences of Permian sediments were strongly folded, forming extremely spectacular superposed folds. To better understand the thermal history of Hongyanjing interarc basin and to potentially constrain the timing of deformation, apatite fission track thermochronology method was applied on two superposed folds in the Hongyanjing Basin. Samples from the basin, yield central AFT ages ranging from - 206 to 118 Ma. AFT peak ages were largely consistent between samples and can divided into three groups: 245, 204-170 and 112-131 Ma. Subsequent thermal history modeling of the samples from the Hongyanjing Basin can be summarized as follows: (1) thermal reheating by sedimentary burial at - 260 to -220 Ma; (2) major cooling from -220 to -180 Ma; (3) an episode of very slow subsequent cooling from -180 to 65 Ma (-80 ℃) to present-day outcrop temperatures. Sediments in the Hongyanjing Basin were folded forming F1 fold during the early to late Triassic (-240--220 Ma), by regional stress, and at the time that the adjacent Xingxingxia shear zone started to become active. It is further suggested that the F2 folding occurred at -225-219 Ma. The deformation age of F2 should he extended to 180 Ma based on our thermal history modeling for the Hongyanjing Basin, which show a rapid exhumation and cooling at the late Triassic to early Jurassic (-220-- 180 Ma). In our interpretations, the F1 folding is therefore thought to he related to the final closure of the Paleo-Asian Ocean, while the F2 folding occurred at - 225-180 Ma associated with a major pulse of orogenesis in the BOC.
文摘运用大型有限元分析软件Abaqus,对船用钢板EH36平板CO2气体保护焊的温度场进行三维动态分析。以8 mm EH36平板为研究对象,考虑材料的热物理性能和对流、辐射散热的影响,建立Y型坡口对接两层两道焊模型,利用过渡网格技术划分网格,采用双椭球热源模型和"单元生死"技术实现焊缝填充的动态过程。得到EH36温度场的分布规律,并研究层间冷却时间对焊接温度场的影响。