Background:Diabetic cardiomyopathy(DCM)is a type of cardiomyopathy caused by long-term diabetes,characterized by abnormal myocardial structure and function,which can lead to heart failure.Berberine(BBR),a quaternary a...Background:Diabetic cardiomyopathy(DCM)is a type of cardiomyopathy caused by long-term diabetes,characterized by abnormal myocardial structure and function,which can lead to heart failure.Berberine(BBR),a quaternary ammonium alkaloid isolated from Coptidis Rhizoma,a traditional Chinese medicine,has superior anti-diabetic and heart-protective properties.The purpose of this study is to assess the impact of BBR on DCM.Methods:This study used a systems pharmacology approach to evaluate the related proteins and signalling pathways between BBR and DCM targets,combined with experimental validation using diabetic mouse heart sections.Microstructural and pathological changes were observed using Hematoxylin-eosin,Masson’s trichrome stain and wheat germ agglutinin staining.Immunofluorescence and western blot were used to determine protein expression.Results:The results indicate that BBR and DCM share 21 core relevant targets,with cross-targets predominantly located in mitochondrial,endoplasmic reticulum,and plasma membrane components.BBR exerts its main effects in improving DCM by maintaining mitochondrial integrity,particularly involving the PI3K-AKT-GSK3βand apoptosis signalling pathways.In addition,post-treatment changes in the key targets of BBR,including cysteine aspartate specific protease(Caspase)-3,phosphoinositide 3-kinase(PI3K)and mitochondria-related proteins,are suggestive of its efficacy.Conclusion:BBR crucially improves DCM by maintaining mitochondrial integrity,inhibiting apoptosis,and modulating PI3K-AKT-GSK3βsignaling.Further studies must address animal model limitations and validate clinical efficacy to understand BBR’s mechanisms fully and its potential clinical use.展开更多
With the development of integrated power and gas distribution systems(IPGS)incorporating renewable energy sources(RESs),coordinating the restoration processes of the power distribution system(PS)and the gas distributi...With the development of integrated power and gas distribution systems(IPGS)incorporating renewable energy sources(RESs),coordinating the restoration processes of the power distribution system(PS)and the gas distribution system(GS)by utilizing the benefits of RESs enhances service restoration.In this context,this paper proposes a coordinated service restoration framework that considers the uncertainty in RESs and the bi-directional restoration interactions between the PS and GS.Additionally,a coordinated service restoration model is developed considering the two systems’interdependency and the GS’s dynamic characteristics.The objective is to maximize the system resilience index while adhering to operational,dynamic,restoration logic,and interdependency constraints.A method for managing uncertainties in RES output is employed,and convexification techniques are applied to address the nonlinear constraints arising from the physical laws of the IPGS,thereby reducing solution complexity.As a result,the service restoration optimization problem of the IPGS can be formulated as a computationally tractable mixed-integer second-order cone programming problem.The effectiveness and superiority of the proposed framework are demonstrated through numerical simulations conducted on the interdependent IEEE 13-bus PS and 9-node GS.The comparative results show that the proposed framework improves the system resilience index by at least 65.07%compared to traditional methods.展开更多
With the intensification of the energy crisis and the worsening greenhouse effect,the development of sustainable integrated energy systems(IES)has become a crucial direction for energy transition.In this context,this ...With the intensification of the energy crisis and the worsening greenhouse effect,the development of sustainable integrated energy systems(IES)has become a crucial direction for energy transition.In this context,this paper proposes a low-carbon economic dispatch strategy under the green hydrogen certificate trading(GHCT)and the ladder-type carbon emission trading(CET)mechanism,enabling the coordinated utilization of green and blue hydrogen.Specifically,a proton exchange membrane electrolyzer(PEME)model that accounts for dynamic efficiency characteristics,and a steam methane reforming(SMR)model incorporating waste heat recovery,are developed.Based on these models,a hydrogen production–storage–utilization framework is established to enable the coordinated deployment of green and blue hydrogen.Furthermore,the gas turbine(GT)unit are retrofitted using oxygenenriched combustion carbon capture(OCC)technology,wherein the oxygen produced by PEME is employed to create an oxygen-enriched combustion environment.This approach reduces energy waste and facilitates low-carbon power generation.In addition,the GHCT mechanism is integrated into the system alongside the ladder-type CET mechanism,and their complementary effects are investigated.A comprehensive optimization model is then formulated to simultaneously achieve carbon reduction and economic efficiency across the system.Case study results show that the proposed strategy reduces wind curtailment by 7.77%,carbon emissions by 65.98%,and total cost by 12.57%.This study offers theoretical reference for the low-carbon,economic,and efficient operation of future energy systems.展开更多
The economic operation of integrated energy system(IES)faces new challenges such as multi-timescale characteristics of heterogeneous energy sources,and cooperative operation of hybrid energy storage system(HESS).To th...The economic operation of integrated energy system(IES)faces new challenges such as multi-timescale characteristics of heterogeneous energy sources,and cooperative operation of hybrid energy storage system(HESS).To this end,this paper investigates the multi-timescale rolling opti-mization problem for IES integrated with HESS.Firstly,the architecture of IES with HESS is established,a comparative analysis is conducted to evaluate the advantages of the HESS over a single energy storage system(SESS)in stabilizing power fluctuations.Secondly,the dayahead and real-time scheduling cost functions of IES are established,the day-ahead scheduling mainly depends on operation costs of the components in IES,the real-time optimal scheduling adopts the Lya-punov optimization method to schedule the battery and hydrogen energy storage in each time slot,so as to minimize the real-time average scheduling operation cost,and the problem of day-ahead and real-time scheduling error,which caused by the uncertainty of the energy storage is solved by online optimization.Finally,the proposed model is verified to reduce the scheduling operation cost and the dispatching error by performing an arithmetic example analysis of the IES in Shanghai,which provides a reference for the safe and stable operation of the IES.展开更多
Hot dry rock(HDR)is rich in reserve,widely distributed,green,low-carbon,and has broad development potential and prospects.In this paper,a distributionally robust optimization(DRO)scheduling model for a regionally inte...Hot dry rock(HDR)is rich in reserve,widely distributed,green,low-carbon,and has broad development potential and prospects.In this paper,a distributionally robust optimization(DRO)scheduling model for a regionally integrated energy system(RIES)considering HDR co-generation is proposed.First,the HDR-enhanced geothermal system(HDR-EGS)is introduced into the RIES.HDR-EGS realizes the thermoelectric decoupling of combined heat and power(CHP)through coordinated operation with the regional power grid and the regional heat grid,which enhances the system wind power(WP)feed-in space.Secondly,peak-hour loads are shifted using price demand response guidance in the context of time-of-day pricing.Finally,the optimization objective is established to minimize the total cost in the RIES scheduling cycle and construct a DRO scheduling model for RIES with HDR-EGS.By simulating a real small-scale RIES,the results show that HDR-EGS can effectively promote WP consumption and reduce the operating cost of the system.展开更多
To address the issues of unclear carbon responsibility attribution,insufficient renewable energy absorption,and simplistic carbon trading mechanisms in integrated energy systems,this paper proposes an electricheat-hyd...To address the issues of unclear carbon responsibility attribution,insufficient renewable energy absorption,and simplistic carbon trading mechanisms in integrated energy systems,this paper proposes an electricheat-hydrogen integrated energy system(EHH-IES)optimal scheduling model considering carbon emission stream(CES)and wind-solar accommodation.First,the CES theory is introduced to quantify the carbon emission intensity of each energy conversion device and transmission branch by defining carbon emission rate,branch carbon intensity,and node carbon potential,realizing accurate tracking of carbon flow in the process of multi-energy coupling.Second,a stepped carbon pricing mechanism is established to dynamically adjust carbon trading costs based on the deviation between actual carbon emissions and initial quotas,strengthening the emission reduction incentive.Finally,a lowcarbon economic dispatch model is constructed with the objectives of minimizing operation cost,carbon trading cost,wind-solar curtailment penalty cost,and energy loss.Simulation results show that compared with the traditional economic dispatch scheme 3,the proposed schemel reduces carbon emissions by 53.97%and wind-solar curtailment by 68.89%with a 16.10%increase in total cost.This verifies that the model can effectively improve clean energy utilization and reduce carbon emissions,achieving low-carbon economic operation of EHH-IES,with CES theory ensuring precise carbon flow tracking across multi-energy links.展开更多
Schizophrenia is characterized by psychotic symptoms,negative symptoms,and cognitive deficits,profoundly affecting individuals and their families.The etiology is multifactorial,involving genetic,endocrine,and immunolo...Schizophrenia is characterized by psychotic symptoms,negative symptoms,and cognitive deficits,profoundly affecting individuals and their families.The etiology is multifactorial,involving genetic,endocrine,and immunological risk factors.It is thought that schizophrenia is exclusively linked to alterations in brain structure and function,while the relationship between the brain and many organs may lack sufficient attention.Increasing evidence indicates abnormalities of the interactions between the brain and many organs in patients with schizophrenia.Inter-organ crosstalk affects the onset,course,and management of schizophrenia.Besides,the complex relationship between autonomic nervous system,endocrine system,and immune system further facilitates the development of schizophrenia.The present review summarizes the relationships between the brain and multiple organ systems in schizophrenia,providing new perspectives on the underlying pathophysiological mechanisms of schizophrenia.展开更多
A new type of symmetry,ren-symmetry,describing anyon physics and corresponding topological physics,is proposed.Ren-symmetry is a generalization of super-symmetry which is widely applied in super-symmetric physics such...A new type of symmetry,ren-symmetry,describing anyon physics and corresponding topological physics,is proposed.Ren-symmetry is a generalization of super-symmetry which is widely applied in super-symmetric physics such as super-symmetric quantum mechanics,super-symmetric gravity,super-symmetric string theory,super-symmetric integrable systems and so on.Supersymmetry and Grassmann numbers are,in some sense,dual conceptions,and it turns out that these conceptions coincide for the ren situation,that is,a similar conception of ren-number(R-number)is devised for ren-symmetry.In particular,some basic results of the R-number and ren-symmetry are exposed which allow one to derive,in principle,some new types of integrable systems including ren-integrable models and ren-symmetric integrable systems.Training examples of ren-integrable KdV-type systems and ren-symmetric KdV equations are explicitly given.展开更多
Integration of sensors with engineering thermoplastics allows to track their health and surrounding stimuli.As one of vital backbones to construct sensor systems,copper(Cu)is highly conductive and cost-effective,yet t...Integration of sensors with engineering thermoplastics allows to track their health and surrounding stimuli.As one of vital backbones to construct sensor systems,copper(Cu)is highly conductive and cost-effective,yet tends to easily oxidize during and after processing.Herein,an in-situ integrated sensor system on engineering thermoplastics via hybrid laser direct writing is proposed,which primarily consists of laser-passivated functional Cu interconnects and laser-induced carbon-based sensors.Through a one-step photothermal treatment,the resulting functional Cu interconnects after reductive sintering and passivation are capable of resisting long-term oxidation failure at high temperatures(up to 170℃)without additional encapsulations.Interfacing with signal processing units,such an all-in-one system is applied for long-term and real-time temperature monitoring.This integrated sensor system with facile laser manufacturing strategies holds potentials for health monitoring and fault diagnosis of advanced equipment such as aircrafts,automobiles,high-speed trains,and medical devices.展开更多
The Integrated Agricultural Systems workgroup is examining agricultural systems of the US to determine fundamental principles that underlie successful production systems. Our hypothesis is that principles are applicab...The Integrated Agricultural Systems workgroup is examining agricultural systems of the US to determine fundamental principles that underlie successful production systems. Our hypothesis is that principles are applicable across regions, but key drivers interact to influence producer decisions and create distinct production systems. We interviewed agricultural producers to examine the underlying rationale for producer decisions and discern primary factors influencing production and marketing practices. While drivers are common among regions, interactions between drivers and influences on decision-makers vary substantially to create unique production systems. The internal social driver that values farming lifestyle is the principal factor that leads people to farming. The type of farming is partly a lifestyle choice and is influenced by other factors. Economic drivers and marketing options are primary drivers influencing production systems and management choices, as farmers provide an economic foundation for their families. While all producers employed strategies to manage production and marketing risks, these varied with different marketing channels. Identification of key drivers and principles can be used by producers, scientists and policy makers to direct agricultural production and agricultural research. New management systems can be developed that are flexible enough to respond to changing societal demands, and are environmentally and economically sustainable.展开更多
I firmly believe that of systems engineering is the requirement-driven force for the progress ofsoftware engineering, artificial intelligence and electronic technologies. The development ofsoftware engineering, artifi...I firmly believe that of systems engineering is the requirement-driven force for the progress ofsoftware engineering, artificial intelligence and electronic technologies. The development ofsoftware engineering, artificial intelligence and electronic technologies is the technical supportfor the progress of systems engineering. INTEGRATION can be considered as "bridging" the ex-isting technologies and the People together into a coordinated SYSTEM.展开更多
The modern history of management systems is almost the same as the history ofmodem management science. Implicit management systems have been in existence for many 100s ofyears. ISO has paid attention to the issue of t...The modern history of management systems is almost the same as the history ofmodem management science. Implicit management systems have been in existence for many 100s ofyears. ISO has paid attention to the issue of the integrated management systems since the ISO 9000family standards for quality management systems (QMS) and ISO 14000 series standards for environmentmanagement system (EMS) were published. ISO/TAG (Technical Advisory Group) 12 was formed by theISO/TM (Technical Management Board) in early 1997 with the mandate to achieve greater compatibilitybetween the relevant ISO/TC 176 and ISO/TC 207 standards in the field of management systems,auditing, terms and definitions. The report was submitted to TMB by TAG 12 in 1999.展开更多
Multi-criteria handoff algorithms have been playing a more important role than the traditional handoff algorithms.In order to balance the satisfaction of users and the efficiency of networks,it is necessary to develop...Multi-criteria handoff algorithms have been playing a more important role than the traditional handoff algorithms.In order to balance the satisfaction of users and the efficiency of networks,it is necessary to develop new technologies to improve the validity of handoff algorithms.Intelligent and optimized handoff algorithms in hybrid networks that integrate Ad hoc and mobile cellular systems are well-adaptive and robust.They are able to implement handoffs adaptively,according to specific multi-factors such as different Quality of Service(QoS)requirements,network states and mobile node conditions in the future hybrid networks.Therefore,these intelligent and optimized algorithms can make more effective handover decision,and accordingly improve the system’s performance.The future research will tackle intelligent or optimized vertical handoff algorithms for integrated Ad hoc and mobile cellular networks to improve their whole system performance.展开更多
Green hydrogen can be produced by consuming surplus renewable generations.It can be injected into the natural gas networks,accelerating the decarbonization of energy systems.However,with the fluctuation of renewable e...Green hydrogen can be produced by consuming surplus renewable generations.It can be injected into the natural gas networks,accelerating the decarbonization of energy systems.However,with the fluctuation of renewable energies,the gas composition in the gas network may change dramatically as the hydrogen injection fluctuates.The gas interchangeability may be adversely affected.To investigate the ability to defend the fluctuated hydrogen injection,this paper proposes a gas interchangeability resilience evaluation method for hydrogen-blended integrated electricity and gas systems(H-IEGS).First,gas interchangeability resilience is defined by proposing several novel metrics.Then,A two-stage gas interchangeability management scheme is proposed to accommodate the hydrogen injections.The steady-state optimal electricity and hydrogen-gas energy flow technique is performed first to obtain the desired operating state of the H-IEGS.Then,the dynamic gas composition tracking is implemented to calculate the real-time traveling of hydrogen contents in the gas network,and evaluate the time-varying gas interchangeability metrics.Moreover,to improve the computation efficiency,a self-adaptive linearization technique is proposed and embedded in the solution process of discretized partial derivative equations.Finally,an IEEE 24 bus reliability test system and Belgium natural gas system are used to validate the proposed method.展开更多
Data-driven research on recycled aggregate concrete(RAC)has long faced the challenge of lacking a unified testing standard dataset,hindering accurate model evaluation and trust in predictive outcomes.This paper review...Data-driven research on recycled aggregate concrete(RAC)has long faced the challenge of lacking a unified testing standard dataset,hindering accurate model evaluation and trust in predictive outcomes.This paper reviews critical parameters influencing mechanical properties in 35 RAC studies,compiles four datasets encompassing these parameters,and compiles the performance and key findings of 77 published data-driven models.Baseline capability tests are conducted on the nine most used models.The paper also outlines advanced methodological frameworks for future RAC research,examining the principles and challenges of physics-informed neural networks(PINNs)and generative adversarial networks(GANs),and employs SHAP and PDP tools to interpret model behaviour and enhance transparency.Findings indicate a clear trend toward integrated systems,hybrid models,and advanced optimization strategies,with integrated tree-based models showing superior performance across various prediction tasks.Based on this comprehensive review,we offer a recommendation for future research on how AI can be effectively oriented in RAC studies to support practical deployment and build confidence in data-driven approaches.展开更多
In the missile-borne Strapdown Inertial Navigation System/Global Navigation Satellite System(SINS/GNSS)integrated navigation system,due to the factors such as the high dynamics,the signal blocking by obstacles,the sig...In the missile-borne Strapdown Inertial Navigation System/Global Navigation Satellite System(SINS/GNSS)integrated navigation system,due to the factors such as the high dynamics,the signal blocking by obstacles,the signal intefereces,etc.,there always exist pulse interferences or measurement information interruptions in the satellite receiver,which make nonstationary measurement process.The traditional Kalman Filter(KF)can tackle the state estimation problem under Gaussian white noise,but its performance will be significantly reduced under nonGaussian noises.In order to deal with the non-Gaussian conditions in the actual missile-borne SINS/GNSS integrated navigation systems,a Maximum Versoria Criterion Extended Kalman Filter(MVC-EKF)algorithm is proposed based on the MVC and the idea of M-estimation,which assigns a smaller weight to the anomalous measurements so as to suppress the influence of anomalous measurements on the state estimation while maintaining a relatively low calculation cost.Finally,the integrated navigation simulation experiments prove the effectiveness and robustness of the proposed algorithm.展开更多
This study presents a(2+1)-dimensional complex coupled dispersionless system.A Lax pair is proposed,and the Darboux transformation is employed to construct multisoliton solutions.These solutions exhibit a range of wav...This study presents a(2+1)-dimensional complex coupled dispersionless system.A Lax pair is proposed,and the Darboux transformation is employed to construct multisoliton solutions.These solutions exhibit a range of wave phenomena,including bright and dark solitons,S-shaped formations,parabolic profiles,and periodic wave patterns.Additionally,it is shown that the system is equivalent to the sine-Gordon equation and the negative flow of the modified Korteweg-de Vries hierarchy through appropriate transformations.展开更多
Comprehensive energy systems can synergize multiple forms of energy to meet user-side load demand,making full use of renewable energy for energy supply.However,the system often suffers from high instability in renewab...Comprehensive energy systems can synergize multiple forms of energy to meet user-side load demand,making full use of renewable energy for energy supply.However,the system often suffers from high instability in renewable energy supply or high variability in demand during operation,resulting in a mismatch between system supply and demand.This mismatch directly affects the energy supply efficiency of the system.The traditional single optimization approach,e.g.,the two-stage co-optimization approach,has limitations in achieving both economic and energy savings,particularly as it does not consider the time scale.To address these issues,this study proposes a design framework for a two-layer collaborative optimization approach that incorporates multiple time scales and demand response coordination.The upper layer optimizes the capacity of the energy storage system,while the lower layer optimizes the coordinated operation of the energy supply facilities.In the lower layer optimization,the day-ahead scheduling phase considers tariff-based demand response to shift and curtail hot and cold electricity loads.The intraday optimization stage adjusts the results of the day-ahead scheduling to further optimize energy distribution and utilization,enhancing system economics and environmental friendliness.Analyzed in conjunction with practical cases,the results demonstrate that the optimization method improves the operational stability of the system and can reduce the total annual operating cost by 7.61%.Increasing the use of hybrid energy storage in the integrated energy system reduces total annual operating costs by 4.01%.If the use of demand response is added to the integrated energy system,the total annual operating cost can be reduced by 5.38%.This paper provides a theoretical reference for integrated energy system operation optimization studies.展开更多
Gas-fired power generator(GPG)planning in the integrated gas-electricity systems(IGES)is the fundamental guarantee for optimal utilization of natural gas energy.The reliability level is significant for GPG planning to...Gas-fired power generator(GPG)planning in the integrated gas-electricity systems(IGES)is the fundamental guarantee for optimal utilization of natural gas energy.The reliability level is significant for GPG planning to ensure the secure operation of IGES.However,existing planning research considering reliability focuses on the system-level reliability index,which rarely accurately reflects GPG reliability's importance.A set of device-level reliability indices is proposed to consider the characteristics of GPG in IGES,which enriches the reliability index set and provides a complete index system for planning and considering reliability.Furthermore,solving the GPG capacity and location planning model considering the reliability index is time-consuming and difficult to solve directly.For enhancing the solving efficiency,a point-to-point mathematical mapping relationship of the reliability index and the GPG planning is constructed based on bilinear interpolation theory.Based on the proposed mapping relationship and reliability index,a novel GPG fast planning method is established to obtain the optimal planning scheme of GPG meeting reliability requirements directly.This method avoids repeatedly adjusting the optimization scheme to meet the reliability index.Finally,a modified IEEE 24-bus power system combined with an NGS 10-node gas system is adopted to verify the effectiveness of the established model and proposed method.展开更多
This paper proposes a decentralized robust two-stage dispatch framework for multi-area integrated electric-gas systems (M-IEGSs), with the consideration of Weymouth and linepack equations of tie-pipelines. The overall...This paper proposes a decentralized robust two-stage dispatch framework for multi-area integrated electric-gas systems (M-IEGSs), with the consideration of Weymouth and linepack equations of tie-pipelines. The overall methodology includes the equivalent conversion for the robust two-stage program and the decentralized optimization for the equivalent form. To obtain a tractable and equivalent counterpart for the robust two-stage program, a quadruple-loop procedure based on the column-and-constraint generation (C&CG) and the penalty convex-concave procedure (P-CCP) algorithms is derived, resulting in a series of mixed integer second-order cone programs (MISOCPs). Then, an improved I-ADMM is proposed to realize the decentralized optimization for MISOCPs. Moreover, three acceleration methods are devised to reduce the computation burden. Simulation results validate the effectiveness of the proposed methodology and corresponding acceleration measures.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.82270892)Natural Science Foundation of Hubei Province(Grant No.2022CFB287)+2 种基金Xianning City Science and Technology Plan Project(Grant No.2022ZRKX052)School projects of Hubei University of Science and Technology(Grant No.2022T01,2021WG05,2021TNB01)Hubei University of Science and Technology School-level Fund(Grant No.BK202122).
文摘Background:Diabetic cardiomyopathy(DCM)is a type of cardiomyopathy caused by long-term diabetes,characterized by abnormal myocardial structure and function,which can lead to heart failure.Berberine(BBR),a quaternary ammonium alkaloid isolated from Coptidis Rhizoma,a traditional Chinese medicine,has superior anti-diabetic and heart-protective properties.The purpose of this study is to assess the impact of BBR on DCM.Methods:This study used a systems pharmacology approach to evaluate the related proteins and signalling pathways between BBR and DCM targets,combined with experimental validation using diabetic mouse heart sections.Microstructural and pathological changes were observed using Hematoxylin-eosin,Masson’s trichrome stain and wheat germ agglutinin staining.Immunofluorescence and western blot were used to determine protein expression.Results:The results indicate that BBR and DCM share 21 core relevant targets,with cross-targets predominantly located in mitochondrial,endoplasmic reticulum,and plasma membrane components.BBR exerts its main effects in improving DCM by maintaining mitochondrial integrity,particularly involving the PI3K-AKT-GSK3βand apoptosis signalling pathways.In addition,post-treatment changes in the key targets of BBR,including cysteine aspartate specific protease(Caspase)-3,phosphoinositide 3-kinase(PI3K)and mitochondria-related proteins,are suggestive of its efficacy.Conclusion:BBR crucially improves DCM by maintaining mitochondrial integrity,inhibiting apoptosis,and modulating PI3K-AKT-GSK3βsignaling.Further studies must address animal model limitations and validate clinical efficacy to understand BBR’s mechanisms fully and its potential clinical use.
基金funded by the Science and Technology Project of State Grid Shanxi Electric Power Company(5205E0230001).
文摘With the development of integrated power and gas distribution systems(IPGS)incorporating renewable energy sources(RESs),coordinating the restoration processes of the power distribution system(PS)and the gas distribution system(GS)by utilizing the benefits of RESs enhances service restoration.In this context,this paper proposes a coordinated service restoration framework that considers the uncertainty in RESs and the bi-directional restoration interactions between the PS and GS.Additionally,a coordinated service restoration model is developed considering the two systems’interdependency and the GS’s dynamic characteristics.The objective is to maximize the system resilience index while adhering to operational,dynamic,restoration logic,and interdependency constraints.A method for managing uncertainties in RES output is employed,and convexification techniques are applied to address the nonlinear constraints arising from the physical laws of the IPGS,thereby reducing solution complexity.As a result,the service restoration optimization problem of the IPGS can be formulated as a computationally tractable mixed-integer second-order cone programming problem.The effectiveness and superiority of the proposed framework are demonstrated through numerical simulations conducted on the interdependent IEEE 13-bus PS and 9-node GS.The comparative results show that the proposed framework improves the system resilience index by at least 65.07%compared to traditional methods.
基金supported by National Natural Science Foundation of China(52477101)Natural Science Foundation of Jiangsu Province(BK20210932).
文摘With the intensification of the energy crisis and the worsening greenhouse effect,the development of sustainable integrated energy systems(IES)has become a crucial direction for energy transition.In this context,this paper proposes a low-carbon economic dispatch strategy under the green hydrogen certificate trading(GHCT)and the ladder-type carbon emission trading(CET)mechanism,enabling the coordinated utilization of green and blue hydrogen.Specifically,a proton exchange membrane electrolyzer(PEME)model that accounts for dynamic efficiency characteristics,and a steam methane reforming(SMR)model incorporating waste heat recovery,are developed.Based on these models,a hydrogen production–storage–utilization framework is established to enable the coordinated deployment of green and blue hydrogen.Furthermore,the gas turbine(GT)unit are retrofitted using oxygenenriched combustion carbon capture(OCC)technology,wherein the oxygen produced by PEME is employed to create an oxygen-enriched combustion environment.This approach reduces energy waste and facilitates low-carbon power generation.In addition,the GHCT mechanism is integrated into the system alongside the ladder-type CET mechanism,and their complementary effects are investigated.A comprehensive optimization model is then formulated to simultaneously achieve carbon reduction and economic efficiency across the system.Case study results show that the proposed strategy reduces wind curtailment by 7.77%,carbon emissions by 65.98%,and total cost by 12.57%.This study offers theoretical reference for the low-carbon,economic,and efficient operation of future energy systems.
基金supported by the National Natural Science Foundation of China(No.12171145)。
文摘The economic operation of integrated energy system(IES)faces new challenges such as multi-timescale characteristics of heterogeneous energy sources,and cooperative operation of hybrid energy storage system(HESS).To this end,this paper investigates the multi-timescale rolling opti-mization problem for IES integrated with HESS.Firstly,the architecture of IES with HESS is established,a comparative analysis is conducted to evaluate the advantages of the HESS over a single energy storage system(SESS)in stabilizing power fluctuations.Secondly,the dayahead and real-time scheduling cost functions of IES are established,the day-ahead scheduling mainly depends on operation costs of the components in IES,the real-time optimal scheduling adopts the Lya-punov optimization method to schedule the battery and hydrogen energy storage in each time slot,so as to minimize the real-time average scheduling operation cost,and the problem of day-ahead and real-time scheduling error,which caused by the uncertainty of the energy storage is solved by online optimization.Finally,the proposed model is verified to reduce the scheduling operation cost and the dispatching error by performing an arithmetic example analysis of the IES in Shanghai,which provides a reference for the safe and stable operation of the IES.
基金King Saud University for funding this research through the Researchers Supporting Program Number(RSPD2024R704),King Saud University,Riyadh,Saudi Arabia.
文摘Hot dry rock(HDR)is rich in reserve,widely distributed,green,low-carbon,and has broad development potential and prospects.In this paper,a distributionally robust optimization(DRO)scheduling model for a regionally integrated energy system(RIES)considering HDR co-generation is proposed.First,the HDR-enhanced geothermal system(HDR-EGS)is introduced into the RIES.HDR-EGS realizes the thermoelectric decoupling of combined heat and power(CHP)through coordinated operation with the regional power grid and the regional heat grid,which enhances the system wind power(WP)feed-in space.Secondly,peak-hour loads are shifted using price demand response guidance in the context of time-of-day pricing.Finally,the optimization objective is established to minimize the total cost in the RIES scheduling cycle and construct a DRO scheduling model for RIES with HDR-EGS.By simulating a real small-scale RIES,the results show that HDR-EGS can effectively promote WP consumption and reduce the operating cost of the system.
文摘To address the issues of unclear carbon responsibility attribution,insufficient renewable energy absorption,and simplistic carbon trading mechanisms in integrated energy systems,this paper proposes an electricheat-hydrogen integrated energy system(EHH-IES)optimal scheduling model considering carbon emission stream(CES)and wind-solar accommodation.First,the CES theory is introduced to quantify the carbon emission intensity of each energy conversion device and transmission branch by defining carbon emission rate,branch carbon intensity,and node carbon potential,realizing accurate tracking of carbon flow in the process of multi-energy coupling.Second,a stepped carbon pricing mechanism is established to dynamically adjust carbon trading costs based on the deviation between actual carbon emissions and initial quotas,strengthening the emission reduction incentive.Finally,a lowcarbon economic dispatch model is constructed with the objectives of minimizing operation cost,carbon trading cost,wind-solar curtailment penalty cost,and energy loss.Simulation results show that compared with the traditional economic dispatch scheme 3,the proposed schemel reduces carbon emissions by 53.97%and wind-solar curtailment by 68.89%with a 16.10%increase in total cost.This verifies that the model can effectively improve clean energy utilization and reduce carbon emissions,achieving low-carbon economic operation of EHH-IES,with CES theory ensuring precise carbon flow tracking across multi-energy links.
基金Supported by Beijing Traditional Chinese Medicine Scientific and Technological Development Fund Project,No.BJZYYB-2023-66Beijing Natural Science Foundation,No.7212050the Capital’s Funds for Health Improvement and Research,No.2020-4-2126.
文摘Schizophrenia is characterized by psychotic symptoms,negative symptoms,and cognitive deficits,profoundly affecting individuals and their families.The etiology is multifactorial,involving genetic,endocrine,and immunological risk factors.It is thought that schizophrenia is exclusively linked to alterations in brain structure and function,while the relationship between the brain and many organs may lack sufficient attention.Increasing evidence indicates abnormalities of the interactions between the brain and many organs in patients with schizophrenia.Inter-organ crosstalk affects the onset,course,and management of schizophrenia.Besides,the complex relationship between autonomic nervous system,endocrine system,and immune system further facilitates the development of schizophrenia.The present review summarizes the relationships between the brain and multiple organ systems in schizophrenia,providing new perspectives on the underlying pathophysiological mechanisms of schizophrenia.
基金sponsored by the National Natural Science Foundation of China(Nos.12235007,11975131)。
文摘A new type of symmetry,ren-symmetry,describing anyon physics and corresponding topological physics,is proposed.Ren-symmetry is a generalization of super-symmetry which is widely applied in super-symmetric physics such as super-symmetric quantum mechanics,super-symmetric gravity,super-symmetric string theory,super-symmetric integrable systems and so on.Supersymmetry and Grassmann numbers are,in some sense,dual conceptions,and it turns out that these conceptions coincide for the ren situation,that is,a similar conception of ren-number(R-number)is devised for ren-symmetry.In particular,some basic results of the R-number and ren-symmetry are exposed which allow one to derive,in principle,some new types of integrable systems including ren-integrable models and ren-symmetric integrable systems.Training examples of ren-integrable KdV-type systems and ren-symmetric KdV equations are explicitly given.
基金STI 2030-Major Projects(2022ZD0208601)National Natural Science Foundation of China(52105593)+2 种基金Zhejiang Provincial Natural Science Foundation of China(LDQ24E050001)‘Pioneer’and‘Leading Goose’R&D Program of Zhejiang(2023C01051)Fundamental Research Funds for the Central Universities(226-2024-00085)。
文摘Integration of sensors with engineering thermoplastics allows to track their health and surrounding stimuli.As one of vital backbones to construct sensor systems,copper(Cu)is highly conductive and cost-effective,yet tends to easily oxidize during and after processing.Herein,an in-situ integrated sensor system on engineering thermoplastics via hybrid laser direct writing is proposed,which primarily consists of laser-passivated functional Cu interconnects and laser-induced carbon-based sensors.Through a one-step photothermal treatment,the resulting functional Cu interconnects after reductive sintering and passivation are capable of resisting long-term oxidation failure at high temperatures(up to 170℃)without additional encapsulations.Interfacing with signal processing units,such an all-in-one system is applied for long-term and real-time temperature monitoring.This integrated sensor system with facile laser manufacturing strategies holds potentials for health monitoring and fault diagnosis of advanced equipment such as aircrafts,automobiles,high-speed trains,and medical devices.
文摘The Integrated Agricultural Systems workgroup is examining agricultural systems of the US to determine fundamental principles that underlie successful production systems. Our hypothesis is that principles are applicable across regions, but key drivers interact to influence producer decisions and create distinct production systems. We interviewed agricultural producers to examine the underlying rationale for producer decisions and discern primary factors influencing production and marketing practices. While drivers are common among regions, interactions between drivers and influences on decision-makers vary substantially to create unique production systems. The internal social driver that values farming lifestyle is the principal factor that leads people to farming. The type of farming is partly a lifestyle choice and is influenced by other factors. Economic drivers and marketing options are primary drivers influencing production systems and management choices, as farmers provide an economic foundation for their families. While all producers employed strategies to manage production and marketing risks, these varied with different marketing channels. Identification of key drivers and principles can be used by producers, scientists and policy makers to direct agricultural production and agricultural research. New management systems can be developed that are flexible enough to respond to changing societal demands, and are environmentally and economically sustainable.
文摘I firmly believe that of systems engineering is the requirement-driven force for the progress ofsoftware engineering, artificial intelligence and electronic technologies. The development ofsoftware engineering, artificial intelligence and electronic technologies is the technical supportfor the progress of systems engineering. INTEGRATION can be considered as "bridging" the ex-isting technologies and the People together into a coordinated SYSTEM.
文摘The modern history of management systems is almost the same as the history ofmodem management science. Implicit management systems have been in existence for many 100s ofyears. ISO has paid attention to the issue of the integrated management systems since the ISO 9000family standards for quality management systems (QMS) and ISO 14000 series standards for environmentmanagement system (EMS) were published. ISO/TAG (Technical Advisory Group) 12 was formed by theISO/TM (Technical Management Board) in early 1997 with the mandate to achieve greater compatibilitybetween the relevant ISO/TC 176 and ISO/TC 207 standards in the field of management systems,auditing, terms and definitions. The report was submitted to TMB by TAG 12 in 1999.
基金This work was funded by the High- tech Research and Development Program of China (863 Program) under Grant 2006AA01Z208.
文摘Multi-criteria handoff algorithms have been playing a more important role than the traditional handoff algorithms.In order to balance the satisfaction of users and the efficiency of networks,it is necessary to develop new technologies to improve the validity of handoff algorithms.Intelligent and optimized handoff algorithms in hybrid networks that integrate Ad hoc and mobile cellular systems are well-adaptive and robust.They are able to implement handoffs adaptively,according to specific multi-factors such as different Quality of Service(QoS)requirements,network states and mobile node conditions in the future hybrid networks.Therefore,these intelligent and optimized algorithms can make more effective handover decision,and accordingly improve the system’s performance.The future research will tackle intelligent or optimized vertical handoff algorithms for integrated Ad hoc and mobile cellular networks to improve their whole system performance.
基金supported in part by the Science and Technology Development Fund,Macao SAR(File no.SKL-IOTSC(UM)-2021-2023,File no.0003/2020/AKP,and File no.0117/2022/A3)the Natural Science Foundation of Jiangsu Province,China(Operational reliability evaluation of multi-source and heterogeneous urban multi-energy systems,BK20220261).
文摘Green hydrogen can be produced by consuming surplus renewable generations.It can be injected into the natural gas networks,accelerating the decarbonization of energy systems.However,with the fluctuation of renewable energies,the gas composition in the gas network may change dramatically as the hydrogen injection fluctuates.The gas interchangeability may be adversely affected.To investigate the ability to defend the fluctuated hydrogen injection,this paper proposes a gas interchangeability resilience evaluation method for hydrogen-blended integrated electricity and gas systems(H-IEGS).First,gas interchangeability resilience is defined by proposing several novel metrics.Then,A two-stage gas interchangeability management scheme is proposed to accommodate the hydrogen injections.The steady-state optimal electricity and hydrogen-gas energy flow technique is performed first to obtain the desired operating state of the H-IEGS.Then,the dynamic gas composition tracking is implemented to calculate the real-time traveling of hydrogen contents in the gas network,and evaluate the time-varying gas interchangeability metrics.Moreover,to improve the computation efficiency,a self-adaptive linearization technique is proposed and embedded in the solution process of discretized partial derivative equations.Finally,an IEEE 24 bus reliability test system and Belgium natural gas system are used to validate the proposed method.
文摘Data-driven research on recycled aggregate concrete(RAC)has long faced the challenge of lacking a unified testing standard dataset,hindering accurate model evaluation and trust in predictive outcomes.This paper reviews critical parameters influencing mechanical properties in 35 RAC studies,compiles four datasets encompassing these parameters,and compiles the performance and key findings of 77 published data-driven models.Baseline capability tests are conducted on the nine most used models.The paper also outlines advanced methodological frameworks for future RAC research,examining the principles and challenges of physics-informed neural networks(PINNs)and generative adversarial networks(GANs),and employs SHAP and PDP tools to interpret model behaviour and enhance transparency.Findings indicate a clear trend toward integrated systems,hybrid models,and advanced optimization strategies,with integrated tree-based models showing superior performance across various prediction tasks.Based on this comprehensive review,we offer a recommendation for future research on how AI can be effectively oriented in RAC studies to support practical deployment and build confidence in data-driven approaches.
基金co-supported by the National Natural Science Foundation of China(No.62073264)the Key Research and Development Project of Shaanxi Province,China(No.2021ZDLGY01-01 and 2020ZDLGY06-02)+2 种基金National Natural Science Foundation of China(No.61803309)China Postdoctoral Science Foundation(No.2018M633574)the Aeronautical Science Foundation of China(No.2019ZA053008)。
文摘In the missile-borne Strapdown Inertial Navigation System/Global Navigation Satellite System(SINS/GNSS)integrated navigation system,due to the factors such as the high dynamics,the signal blocking by obstacles,the signal intefereces,etc.,there always exist pulse interferences or measurement information interruptions in the satellite receiver,which make nonstationary measurement process.The traditional Kalman Filter(KF)can tackle the state estimation problem under Gaussian white noise,but its performance will be significantly reduced under nonGaussian noises.In order to deal with the non-Gaussian conditions in the actual missile-borne SINS/GNSS integrated navigation systems,a Maximum Versoria Criterion Extended Kalman Filter(MVC-EKF)algorithm is proposed based on the MVC and the idea of M-estimation,which assigns a smaller weight to the anomalous measurements so as to suppress the influence of anomalous measurements on the state estimation while maintaining a relatively low calculation cost.Finally,the integrated navigation simulation experiments prove the effectiveness and robustness of the proposed algorithm.
文摘This study presents a(2+1)-dimensional complex coupled dispersionless system.A Lax pair is proposed,and the Darboux transformation is employed to construct multisoliton solutions.These solutions exhibit a range of wave phenomena,including bright and dark solitons,S-shaped formations,parabolic profiles,and periodic wave patterns.Additionally,it is shown that the system is equivalent to the sine-Gordon equation and the negative flow of the modified Korteweg-de Vries hierarchy through appropriate transformations.
基金supported by the National key R&D plan“Joint Research and Demonstration for Carbon Reduction Key Technologies in Urban areas and Neighborhoods”(No.2022YFE0208700)the National Natural Science Foundation of China(Project No.52478086)+2 种基金the S&T Program of Hebei(Project No.246Z4510G)the Natural Science Foundation of Hebei Province(Project No.E2023202232)the Science and Technology Research Project for Colleges and Universities in Hebei Province(Project No.CXY2024026).
文摘Comprehensive energy systems can synergize multiple forms of energy to meet user-side load demand,making full use of renewable energy for energy supply.However,the system often suffers from high instability in renewable energy supply or high variability in demand during operation,resulting in a mismatch between system supply and demand.This mismatch directly affects the energy supply efficiency of the system.The traditional single optimization approach,e.g.,the two-stage co-optimization approach,has limitations in achieving both economic and energy savings,particularly as it does not consider the time scale.To address these issues,this study proposes a design framework for a two-layer collaborative optimization approach that incorporates multiple time scales and demand response coordination.The upper layer optimizes the capacity of the energy storage system,while the lower layer optimizes the coordinated operation of the energy supply facilities.In the lower layer optimization,the day-ahead scheduling phase considers tariff-based demand response to shift and curtail hot and cold electricity loads.The intraday optimization stage adjusts the results of the day-ahead scheduling to further optimize energy distribution and utilization,enhancing system economics and environmental friendliness.Analyzed in conjunction with practical cases,the results demonstrate that the optimization method improves the operational stability of the system and can reduce the total annual operating cost by 7.61%.Increasing the use of hybrid energy storage in the integrated energy system reduces total annual operating costs by 4.01%.If the use of demand response is added to the integrated energy system,the total annual operating cost can be reduced by 5.38%.This paper provides a theoretical reference for integrated energy system operation optimization studies.
基金supported in part by the National Natural Science Foundation of China(No.51977042)in part by Innovation Project of Guangxi Graduate Education(No.YCBZ2020002).
文摘Gas-fired power generator(GPG)planning in the integrated gas-electricity systems(IGES)is the fundamental guarantee for optimal utilization of natural gas energy.The reliability level is significant for GPG planning to ensure the secure operation of IGES.However,existing planning research considering reliability focuses on the system-level reliability index,which rarely accurately reflects GPG reliability's importance.A set of device-level reliability indices is proposed to consider the characteristics of GPG in IGES,which enriches the reliability index set and provides a complete index system for planning and considering reliability.Furthermore,solving the GPG capacity and location planning model considering the reliability index is time-consuming and difficult to solve directly.For enhancing the solving efficiency,a point-to-point mathematical mapping relationship of the reliability index and the GPG planning is constructed based on bilinear interpolation theory.Based on the proposed mapping relationship and reliability index,a novel GPG fast planning method is established to obtain the optimal planning scheme of GPG meeting reliability requirements directly.This method avoids repeatedly adjusting the optimization scheme to meet the reliability index.Finally,a modified IEEE 24-bus power system combined with an NGS 10-node gas system is adopted to verify the effectiveness of the established model and proposed method.
文摘This paper proposes a decentralized robust two-stage dispatch framework for multi-area integrated electric-gas systems (M-IEGSs), with the consideration of Weymouth and linepack equations of tie-pipelines. The overall methodology includes the equivalent conversion for the robust two-stage program and the decentralized optimization for the equivalent form. To obtain a tractable and equivalent counterpart for the robust two-stage program, a quadruple-loop procedure based on the column-and-constraint generation (C&CG) and the penalty convex-concave procedure (P-CCP) algorithms is derived, resulting in a series of mixed integer second-order cone programs (MISOCPs). Then, an improved I-ADMM is proposed to realize the decentralized optimization for MISOCPs. Moreover, three acceleration methods are devised to reduce the computation burden. Simulation results validate the effectiveness of the proposed methodology and corresponding acceleration measures.