The angle/range-based integrated navigation system is a favorable navigation solution for deep space explorers.However,the statistical characteristics of the measurement noise are time-varying,leading to inaccuracies ...The angle/range-based integrated navigation system is a favorable navigation solution for deep space explorers.However,the statistical characteristics of the measurement noise are time-varying,leading to inaccuracies in the derived measurement covariance even causing filter divergence.To reduce the gap between theoretical and actual covariances,some adaptive methods use empirically determined and unchanged forgetting factors to scale innovations within the sliding window.However,the constant weighting sequence cannot accurately adapt to the time-varying measurement noise in dynamic processes.Therefore,this paper proposes an Adaptive Robust Unscented Kalman Filter with Time-varying forgetting factors(TFF-ARUKF)for the angle/range integrated navigation system.Firstly,based on a statistically linear regression model approximating the nonlinear measurement model,the M-estimator is adopted to suppress the interference of outliers.Secondly,the covariance matching method is combined with the Huber linear regression problem to adaptively adjust the measurement noise covariance used in the M-estimation.Thirdly,to capture the time-varying characteristics of the measurement noise in each estimation,a new timevarying forgetting factors selection strategy is designed to dynamically adjust the adaptive matrix used in the covariance matching method.Simulations and experimental analysis compared with EKF,AMUKF,ARUKF,and Student's t-based methods have validated the effectiveness and robustness of the proposed algorithm.展开更多
In this study, the problem of measuring noise pollution distribution by the intertial-based integrated navigation system is effectively suppressed. Based on nonlinear inertial navigation error modeling, a nested dual ...In this study, the problem of measuring noise pollution distribution by the intertial-based integrated navigation system is effectively suppressed. Based on nonlinear inertial navigation error modeling, a nested dual Kalman filter framework structure is developed. It consists of unscented Kalman filter (UKF)master filter and Kalman filter slave filter. This method uses nonlinear UKF for integrated navigation state estimation. At the same time, the exact noise measurement covariance is estimated by the Kalman filter dependency filter. The algorithm based on dual adaptive UKF (Dual-AUKF) has high accuracy and robustness, especially in the case of measurement information interference. Finally, vehicle-mounted and ship-mounted integrated navigation tests are conducted. Compared with traditional UKF and the Sage-Husa adaptive UKF (SH-AUKF), this method has comparable filtering accuracy and better filtering stability. The effectiveness of the proposed algorithm is verified.展开更多
To improve the navigation accuracy of an autonomous underwater vehicle (AUV), a novel terrain passive integrated navigation system (TPINS) is presented. According to the characteristics of the underwater environme...To improve the navigation accuracy of an autonomous underwater vehicle (AUV), a novel terrain passive integrated navigation system (TPINS) is presented. According to the characteristics of the underwater environment and AUV navigation requirements of low cost and high accuracy, a novel TPINS is designed with a configuration of the strapdown inertial navigation system (SINS), the terrain reference navigation system (TRNS), the Doppler velocity sonar (DVS), the magnetic compass and the navigation computer utilizing the unscented Kalman filter (UKF) to fuse the navigation information from various navigation sensors. Linear filter equations for the extended Kalman filter (EKF), nonlinear filter equations for the UKF and measurement equations of navigation sensors are addressed. It is indicated from the comparable simulation experiments of the EKF and the UKF that AUV navigation precision is improved substantially with the proposed sensors and the UKF when compared to the EKF. The TPINS designed with the proposed sensors and the UKF is effective in reducing AUV navigation position errors and improving the stability and precision of the AUV underwater integrated navigation.展开更多
A marine INS/GPS adaptive navigation system is presented. GPS with two antenna providing vessel' s altitude is selected as the auxiliary system fusing with INS to improve the performance of the hybrid system. The Kal...A marine INS/GPS adaptive navigation system is presented. GPS with two antenna providing vessel' s altitude is selected as the auxiliary system fusing with INS to improve the performance of the hybrid system. The Kalman filter is the most frequently used algorithm in the integrated navigation system, which is capable of estimating INS errors online based on the measured errors between INS and GPS. The standard Kalman filter (SKF) assumes that the statistics of the noise on each sensor are given. As long as the noise distributions do not change, the Kalman filter will give the optimal estimation. However GPS receiver will be disturbed easily and thus temporally changing measurement noise will join into the outputs of GPS, which will lead to performance degradation of the Kalman filter. Many researchers introduce fuzzy logic control method into innovation-based adaptive estimation adaptive Kalman filtering (IAE-AKF) algorithm, and accordingly propose various adaptive Kalman filters. However how to design the fuzzy logic controller is a very complicated problem still without a convincing solution. A novel IAE-AKF is proposed herein, which is based on the maximum likelihood criterion for the proper computation of the filter innovation covariance and hence of the filter gain. The approach is direct and simple without having to establish fuzzy inference rules. After having deduced the proposed IAEAKF algorithm theoretically in detail, the approach is tested by the simulation based on the system error model of the developed INS/GPS integrated marine navigation system. Simulation results show that the adaptive Kalman filter outperforms the SKF with higher accuracy, robustness and less computation. It is demonstra- ted that this proposed approach is a valid solution for the unknown changing measurement noise exited in the Kalman filter.展开更多
For the underwater integrated navigation system, information fusion is an important technology. This paper introduces the Kalman filter as the most useful information fusion technology, and then gives a summary of the...For the underwater integrated navigation system, information fusion is an important technology. This paper introduces the Kalman filter as the most useful information fusion technology, and then gives a summary of the Kalman filter applied in underwater integrated navigation system at present, and points out the further research directions in this field.展开更多
To deal with the low location accuracy issue of existing underwater navigation technologies in autonomous underwater vehicles(AUVs),a distributed fusion algorithm which combines the model's analysis method with a ...To deal with the low location accuracy issue of existing underwater navigation technologies in autonomous underwater vehicles(AUVs),a distributed fusion algorithm which combines the model's analysis method with a multi-scale transformation method is proposed for integrated navigation system based on AUV.First,integrated navigation system theory and system error sources are introduced in details.Secondly,a navigation system's observation equation on the original scale is decomposed into different scales by the discrete wavelet transform method,and noise reduction is performed by setting the wavelet de-noising threshold.At last,the dynamic equation and observation equations are fused on different scales by the wavelet transformation and Kalman filter.The results show that the proposed algorithm has smaller navigation error and higher navigation accuracy.展开更多
The IMU(inertial measurement unit) error equations in the earth fixed coordinates are introduced firstly. A fading Kalman filtering is simply introduced and its shortcomings are analyzed, then an adaptive filtering ...The IMU(inertial measurement unit) error equations in the earth fixed coordinates are introduced firstly. A fading Kalman filtering is simply introduced and its shortcomings are analyzed, then an adaptive filtering is applied in IMU/GPS integrated navigation system, in which the adaptive factor is replaced by the fading factor. A practical example is given. The resuits prove that the adaptive filter combined with the fading factor is valid and reliable when applied in IMU/GPS integrated navigation system.展开更多
In micro-electro-mechanical system based inertial navigation system(MEMS-INS)/global position system(GPS) integrated navigation systems, there exist unknown disturbances and abnormal measurements. In order to obta...In micro-electro-mechanical system based inertial navigation system(MEMS-INS)/global position system(GPS) integrated navigation systems, there exist unknown disturbances and abnormal measurements. In order to obtain high estimation accuracy and enhance detection sensitivity to faults in measurements, this paper deals with the problem of model-based robust estimation(RE) and fault detection(FD). A filter gain matrix and a post-filter are designed to obtain a RE and FD algorithm with current measurements, which is different from most of the existing priori filters using measurements in one-step delay. With the designed filter gain matrix, the H-infinity norm of the transfer function from noise inputs to estimation error outputs is limited within a certain range; with the designed post-filter, the residual signal is robust to disturbances but sensitive to faults. Therefore, the algorithm can guarantee small estimation errors in the presence of disturbances and have high sensitivity to faults. The proposed method is evaluated in an integrated navigation system, and the simulation results show that it is more effective in position estimation and fault signal detection than priori RE and FD algorithms.展开更多
This paper explores multiple model adaptive estimation(MMAE) method, and with it, proposes a novel filtering algorithm. The proposed algorithm is an improved Kalman filter— multiple model adaptive estimation unscente...This paper explores multiple model adaptive estimation(MMAE) method, and with it, proposes a novel filtering algorithm. The proposed algorithm is an improved Kalman filter— multiple model adaptive estimation unscented Kalman filter(MMAE-UKF) rather than conventional Kalman filter methods,like the extended Kalman filter(EKF) and the unscented Kalman filter(UKF). UKF is used as a subfilter to obtain the system state estimate in the MMAE method. Single model filter has poor adaptability with uncertain or unknown system parameters,which the improved filtering method can overcome. Meanwhile,this algorithm is used for integrated navigation system of strapdown inertial navigation system(SINS) and celestial navigation system(CNS) by a ballistic missile's motion. The simulation results indicate that the proposed filtering algorithm has better navigation precision, can achieve optimal estimation of system state, and can be more flexible at the cost of increased computational burden.展开更多
For Inertial Navigation System(INS)/Celestial Navigation System(CNS)/Global Navigation Satellite System(GNSS)integrated navigation system of the missile,the performance of data fusion algorithms based on the Cubature ...For Inertial Navigation System(INS)/Celestial Navigation System(CNS)/Global Navigation Satellite System(GNSS)integrated navigation system of the missile,the performance of data fusion algorithms based on the Cubature Kalman Filter(CKF)is seriously degraded when there are non-Gaussian noise and process-modeling errors in the system model.Therefore,a novel method is proposed,which is called Optimal Data Fusion algorithm based on the Adaptive Fading maximum Correntropy generalized high-degree CKF(AFCCKF-ODF).First,the Adaptive Fading maximum Correntropy generalized high-degree CKF(AFCCKF)is proposed and used as the local filter for the INS/GNSS and INS/CNS subsystems to improve the robustness of local state estimation.Then,the local state estimation is fused based on the minimum variance principle and highdegree cubature criterion to get the globally optimal state.Finally,the experimental results verify that the proposed algorithm can significantly improve the robustness of the missile-borne INS/CNS/GNSS integrated navigation system to non-Gaussian noise and process modeling error and obtain the global optimal navigation information.展开更多
Inertial/gravity matching integrated navigation system can effectively improve the longendurance navigation ability of underwater vehicles.Through the analysis of the matching process,the problem of unequal-interval i...Inertial/gravity matching integrated navigation system can effectively improve the longendurance navigation ability of underwater vehicles.Through the analysis of the matching process,the problem of unequal-interval in matching trajectory is addressed by an unequal-interval data fusion algorithm which is based on the unequal-interval characteristics analysis of the matching trajectory.Compared with previously available methods,the proposed algorithm improves the location precision.In conclusion,simulations of the integrated navigation system demonstrated the effectiveness and superiority of the proposed algorithm.展开更多
In multiple Unmanned Aerial Vehicles(UAV)systems,achieving efficient navigation is essential for executing complex tasks and enhancing autonomy.Traditional navigation methods depend on predefined control strategies an...In multiple Unmanned Aerial Vehicles(UAV)systems,achieving efficient navigation is essential for executing complex tasks and enhancing autonomy.Traditional navigation methods depend on predefined control strategies and trajectory planning and often perform poorly in complex environments.To improve the UAV-environment interaction efficiency,this study proposes a multi-UAV integrated navigation algorithm based on Deep Reinforcement Learning(DRL).This algorithm integrates the Inertial Navigation System(INS),Global Navigation Satellite System(GNSS),and Visual Navigation System(VNS)for comprehensive information fusion.Specifically,an improved multi-UAV integrated navigation algorithm called Information Fusion with MultiAgent Deep Deterministic Policy Gradient(IF-MADDPG)was developed.This algorithm enables UAVs to learn collaboratively and optimize their flight trajectories in real time.Through simulations and experiments,test scenarios in GNSS-denied environments were constructed to evaluate the effectiveness of the algorithm.The experimental results demonstrate that the IF-MADDPG algorithm significantly enhances the collaborative navigation capabilities of multiple UAVs in formation maintenance and GNSS-denied environments.Additionally,it has advantages in terms of mission completion time.This study provides a novel approach for efficient collaboration in multi-UAV systems,which significantly improves the robustness and adaptability of navigation systems.展开更多
As the core information infrastructure of modern information warfare,the offensive and defensive confrontations of satellite navigation systems have given rise to navigation warfare,which focuses on seizing control of...As the core information infrastructure of modern information warfare,the offensive and defensive confrontations of satellite navigation systems have given rise to navigation warfare,which focuses on seizing control of navigation resources.Based on the space segment,control segment,and user segment of satellite navigation systems,this paper systematically constructs an offensive-defensive technology system for navigation warfare,and deeply analyzes core measures such as signal enhancement and suppression,autonomous navigation and link jamming,anti-jamming reception,and integrated navigation.It extracts key technologies including adaptive nulling antennas,joint filtering,and multi-dimensional combined jamming,and discusses the technical effectiveness of these technologies by incorporating relevant cases.The advantages of navigation warfare stem from multi-segment coordination and technological inte-gration.In the future,the development directions of navigation warfare will focus on three aspects:enhancing satellite capabilities,tackling core technical challenges,and building a multi-dimensional system.展开更多
This paper deals with the research of the GPS/INS integrated navigation system applying Extended Kalman Filter, which involves integrated principles, scheme and technology of combining with real INS and GPS receiver d...This paper deals with the research of the GPS/INS integrated navigation system applying Extended Kalman Filter, which involves integrated principles, scheme and technology of combining with real INS and GPS receiver data. Emphases are placed on the modeling of system errors and implementation of the integrated system. Both loose and tightly coupled GPS/INS integrated in schemes are analyzed. On the basis of our experience accumulated in the research of GPS/INS for many years, the GPS/INS integrated navigation developing system is developed. It can be put into efficient and economic use in the study and design of integrated navigation system. It plays an important role in the aeronautical and astronautical fields in China. This system is not only a computer aided design software but also a semi physical simulation system by obtaining real INS and GPS receiver data. So the key software unit of the developing system could be conveniently transferred into practical engineering software in actual hardware integrated system. The application of this system shows that the design ideas and integrated scheme of this development system are successful, and can achieve good navigation result.展开更多
The integration of an inertial navigation system(INS) and a celestial navigation system(CNS) has the superiority of high autonomy. However, its reliability and accuracy are permanently impaired under poor observation ...The integration of an inertial navigation system(INS) and a celestial navigation system(CNS) has the superiority of high autonomy. However, its reliability and accuracy are permanently impaired under poor observation conditions. To address this issue, the present paper proposes a tightly coupled INS/CNS/spectral redshift(SRS) integration framework based on the spectral redshift error measurement. In the proposed method, a spectral redshift error measurement equation is investigated and embedded in the traditional tightly coupled INS/CNS integrated navigation system to achieve better anti-interference under complicated circumstances. Subsequently, the inaccurate redshift estimation from the low signal-to-noise ratio spectrum is considered in the integrated system, and an improved chi-square test-based covariance estimation method is incorporated in the federated Kalman filter, allowing to deal with measurement outliers caused by the inaccurate redshift estimation but not influencing the effect of other correct redshift measurements in suppressing the error of the navigation parameter on the filtering solution. Simulations and comprehensive analyses demonstrate that the proposed tightly coupled INS/CNS/SRS integrated navigation system can effectively handle outliers and outages under hostile observation conditions, resulting in improved performance.展开更多
The Successive Orthogonalization Decentralized Kalman Filter (SODKF ) is a new method which is used for large system state estimation. It can be applied not only to large system decentralization, but also to precisi...The Successive Orthogonalization Decentralized Kalman Filter (SODKF ) is a new method which is used for large system state estimation. It can be applied not only to large system decentralization, but also to precision realization at approximately the same level of the global filter, thus, making possible the engineering operation as well as shortening the computing time. This paper discusses the principles and features of SODKF when used in GPS/INS integrated navigation system. The system will be firstly divided into three subsystems and then corrected in both open and closed loops. The system simulation results by two integrated patterns show that SODKF is efficient and realizable. While the three subsystems are simulated in series, the computing speed doubles that of the global system. In addition, its optimal estimating precision remains unchanged. It can be concluded from this paper that large integrated navigation systems with GPS, INS, Terrain Match, Loran C, Doppler Radar and Radio Altimeter can be made more efficient by this multi subsystem of navigation.展开更多
The integrated strap-down inertial nav igation system/olelestial navigation system(SINS/CNS)i an important autonomous navigation method with efective concealment and high predision.Both accelerometer biss and star ens...The integrated strap-down inertial nav igation system/olelestial navigation system(SINS/CNS)i an important autonomous navigation method with efective concealment and high predision.Both accelerometer biss and star ensor installation error ame important factors that aflect the performanoe of this mavigation system,which needl to be calibratexd and compensatedl.A new acelerometer bias and star sensor installation error joint calibration method for the SINS/CNS integrated navigation system i propoeed.In this newly propoeed method,the installation error of star sensor is augmented to the state vector,and the star vector,nadir angle,horkzontal poeition error and velbcity error ame ueed a8 measurementa to calbrate the two errors mentioned above.Simulations show that both accelerometer bias and star sensor installation enror an be calibratedl efectively.展开更多
The principles of the SINS/DVL integrated navigation system are introduced, and the compass status accuracy is compared. When the heading is changed, the dead reckoning algorithm using the heading information of the S...The principles of the SINS/DVL integrated navigation system are introduced, and the compass status accuracy is compared. When the heading is changed, the dead reckoning algorithm using the heading information of the SINS (Strapdown inertial navigation systems) and DVL (doppler velocity log) is adopted to substitute the SINS/DVL integrated system. The simulation results show that the method can improve the accuracy of integrated navigation system when AUV (autonomous underwater vehicle) is in motion.展开更多
There are many filtering methods that can be used for the initial alignment of an integrated inertial navigation system. This paper discussed the use of GPS, but focused on two kinds of filters for the initial alignme...There are many filtering methods that can be used for the initial alignment of an integrated inertial navigation system. This paper discussed the use of GPS, but focused on two kinds of filters for the initial alignment of an integrated strapdown inertial navigation system (SINS). One method is based on the Kalman filter (KF), and the other is based on the robust filter. Simulation results showed that the filter provides a quick transient response and a little more accurate estimate than KF, given substantial process noise or unknown noise statistics. So the robust filter is an effective and useful method for initial alignment of SINS. This research should make the use of SINS more popular, and is also a step for further research.展开更多
A new nonlinear algorithm is proposed for strapdown inertial navigation system (SINS)/celestial navigation system (CNS)/global positioning system (GPS) integrated navigation systems. The algorithm employs a nonl...A new nonlinear algorithm is proposed for strapdown inertial navigation system (SINS)/celestial navigation system (CNS)/global positioning system (GPS) integrated navigation systems. The algorithm employs a nonlinear system error model which can be modified by unscented Kalman filter (UKF) to give predictions of local filters. And these predictions can be fused by the federated Kalman filter. In the system error model, the rotation vector is introduced to denote vehicle's attitude and has less variables than the quaternion. Also, the UKF method is simplified to estimate the system error model, which can both lead to less calculation and reduce algorithm implement time. In the information fusion section, a modified federated Kalman filter is proposed to solve the singular covariance problem. Specifically, the new algorithm is applied to maneuvering vehicles, and simulation results show that this algorithm is more accurate than the linear integrated navigation algorithm.展开更多
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDA0350400)。
文摘The angle/range-based integrated navigation system is a favorable navigation solution for deep space explorers.However,the statistical characteristics of the measurement noise are time-varying,leading to inaccuracies in the derived measurement covariance even causing filter divergence.To reduce the gap between theoretical and actual covariances,some adaptive methods use empirically determined and unchanged forgetting factors to scale innovations within the sliding window.However,the constant weighting sequence cannot accurately adapt to the time-varying measurement noise in dynamic processes.Therefore,this paper proposes an Adaptive Robust Unscented Kalman Filter with Time-varying forgetting factors(TFF-ARUKF)for the angle/range integrated navigation system.Firstly,based on a statistically linear regression model approximating the nonlinear measurement model,the M-estimator is adopted to suppress the interference of outliers.Secondly,the covariance matching method is combined with the Huber linear regression problem to adaptively adjust the measurement noise covariance used in the M-estimation.Thirdly,to capture the time-varying characteristics of the measurement noise in each estimation,a new timevarying forgetting factors selection strategy is designed to dynamically adjust the adaptive matrix used in the covariance matching method.Simulations and experimental analysis compared with EKF,AMUKF,ARUKF,and Student's t-based methods have validated the effectiveness and robustness of the proposed algorithm.
基金supported by China Postdoctoral Science Foundation(2023M741882)the National Natural Science Foundation of China(62103222,62273195)。
文摘In this study, the problem of measuring noise pollution distribution by the intertial-based integrated navigation system is effectively suppressed. Based on nonlinear inertial navigation error modeling, a nested dual Kalman filter framework structure is developed. It consists of unscented Kalman filter (UKF)master filter and Kalman filter slave filter. This method uses nonlinear UKF for integrated navigation state estimation. At the same time, the exact noise measurement covariance is estimated by the Kalman filter dependency filter. The algorithm based on dual adaptive UKF (Dual-AUKF) has high accuracy and robustness, especially in the case of measurement information interference. Finally, vehicle-mounted and ship-mounted integrated navigation tests are conducted. Compared with traditional UKF and the Sage-Husa adaptive UKF (SH-AUKF), this method has comparable filtering accuracy and better filtering stability. The effectiveness of the proposed algorithm is verified.
基金Pre-Research Program of General Armament Department during the11th Five-Year Plan Period (No51309020503)the National Defense Basic Research Program of China (973Program)(No973-61334)+1 种基金the National Natural Science Foundation of China(No50575042)Specialized Research Fund for the Doctoral Program of Higher Education (No20050286026)
文摘To improve the navigation accuracy of an autonomous underwater vehicle (AUV), a novel terrain passive integrated navigation system (TPINS) is presented. According to the characteristics of the underwater environment and AUV navigation requirements of low cost and high accuracy, a novel TPINS is designed with a configuration of the strapdown inertial navigation system (SINS), the terrain reference navigation system (TRNS), the Doppler velocity sonar (DVS), the magnetic compass and the navigation computer utilizing the unscented Kalman filter (UKF) to fuse the navigation information from various navigation sensors. Linear filter equations for the extended Kalman filter (EKF), nonlinear filter equations for the UKF and measurement equations of navigation sensors are addressed. It is indicated from the comparable simulation experiments of the EKF and the UKF that AUV navigation precision is improved substantially with the proposed sensors and the UKF when compared to the EKF. The TPINS designed with the proposed sensors and the UKF is effective in reducing AUV navigation position errors and improving the stability and precision of the AUV underwater integrated navigation.
基金This project was supported by the National Natural Science Foundation of China (40125013 &40376011)
文摘A marine INS/GPS adaptive navigation system is presented. GPS with two antenna providing vessel' s altitude is selected as the auxiliary system fusing with INS to improve the performance of the hybrid system. The Kalman filter is the most frequently used algorithm in the integrated navigation system, which is capable of estimating INS errors online based on the measured errors between INS and GPS. The standard Kalman filter (SKF) assumes that the statistics of the noise on each sensor are given. As long as the noise distributions do not change, the Kalman filter will give the optimal estimation. However GPS receiver will be disturbed easily and thus temporally changing measurement noise will join into the outputs of GPS, which will lead to performance degradation of the Kalman filter. Many researchers introduce fuzzy logic control method into innovation-based adaptive estimation adaptive Kalman filtering (IAE-AKF) algorithm, and accordingly propose various adaptive Kalman filters. However how to design the fuzzy logic controller is a very complicated problem still without a convincing solution. A novel IAE-AKF is proposed herein, which is based on the maximum likelihood criterion for the proper computation of the filter innovation covariance and hence of the filter gain. The approach is direct and simple without having to establish fuzzy inference rules. After having deduced the proposed IAEAKF algorithm theoretically in detail, the approach is tested by the simulation based on the system error model of the developed INS/GPS integrated marine navigation system. Simulation results show that the adaptive Kalman filter outperforms the SKF with higher accuracy, robustness and less computation. It is demonstra- ted that this proposed approach is a valid solution for the unknown changing measurement noise exited in the Kalman filter.
文摘For the underwater integrated navigation system, information fusion is an important technology. This paper introduces the Kalman filter as the most useful information fusion technology, and then gives a summary of the Kalman filter applied in underwater integrated navigation system at present, and points out the further research directions in this field.
基金National Natural Science Foundation of China(51779057,51709061,51509057)the Equipment Pre-Research Project(41412030201)the National 863 High Technology Development Plan Project(2011AA09A106)。
文摘To deal with the low location accuracy issue of existing underwater navigation technologies in autonomous underwater vehicles(AUVs),a distributed fusion algorithm which combines the model's analysis method with a multi-scale transformation method is proposed for integrated navigation system based on AUV.First,integrated navigation system theory and system error sources are introduced in details.Secondly,a navigation system's observation equation on the original scale is decomposed into different scales by the discrete wavelet transform method,and noise reduction is performed by setting the wavelet de-noising threshold.At last,the dynamic equation and observation equations are fused on different scales by the wavelet transformation and Kalman filter.The results show that the proposed algorithm has smaller navigation error and higher navigation accuracy.
基金Supported by the National Natural Science Foundation of China (No.40274002 No.40474001).
文摘The IMU(inertial measurement unit) error equations in the earth fixed coordinates are introduced firstly. A fading Kalman filtering is simply introduced and its shortcomings are analyzed, then an adaptive filtering is applied in IMU/GPS integrated navigation system, in which the adaptive factor is replaced by the fading factor. A practical example is given. The resuits prove that the adaptive filter combined with the fading factor is valid and reliable when applied in IMU/GPS integrated navigation system.
基金co-supported by the National Natural Science Foundation of China(No.61153002)the Aeronautical Science Foundation of China(No.20130153002)
文摘In micro-electro-mechanical system based inertial navigation system(MEMS-INS)/global position system(GPS) integrated navigation systems, there exist unknown disturbances and abnormal measurements. In order to obtain high estimation accuracy and enhance detection sensitivity to faults in measurements, this paper deals with the problem of model-based robust estimation(RE) and fault detection(FD). A filter gain matrix and a post-filter are designed to obtain a RE and FD algorithm with current measurements, which is different from most of the existing priori filters using measurements in one-step delay. With the designed filter gain matrix, the H-infinity norm of the transfer function from noise inputs to estimation error outputs is limited within a certain range; with the designed post-filter, the residual signal is robust to disturbances but sensitive to faults. Therefore, the algorithm can guarantee small estimation errors in the presence of disturbances and have high sensitivity to faults. The proposed method is evaluated in an integrated navigation system, and the simulation results show that it is more effective in position estimation and fault signal detection than priori RE and FD algorithms.
基金supported by the National Basic Research Program of China(973Program)(2014CB744206)
文摘This paper explores multiple model adaptive estimation(MMAE) method, and with it, proposes a novel filtering algorithm. The proposed algorithm is an improved Kalman filter— multiple model adaptive estimation unscented Kalman filter(MMAE-UKF) rather than conventional Kalman filter methods,like the extended Kalman filter(EKF) and the unscented Kalman filter(UKF). UKF is used as a subfilter to obtain the system state estimate in the MMAE method. Single model filter has poor adaptability with uncertain or unknown system parameters,which the improved filtering method can overcome. Meanwhile,this algorithm is used for integrated navigation system of strapdown inertial navigation system(SINS) and celestial navigation system(CNS) by a ballistic missile's motion. The simulation results indicate that the proposed filtering algorithm has better navigation precision, can achieve optimal estimation of system state, and can be more flexible at the cost of increased computational burden.
基金supported by the National Natural Science Foundation of China(Nos.61873064 and 51375087)the Transformation Program of Science and Technology Achievements of Jiangsu Province(No.BA2016139)the Postgraduate Research&Practice Innovation Program of Jiangsu Province(No.KYCX18_0073)。
文摘For Inertial Navigation System(INS)/Celestial Navigation System(CNS)/Global Navigation Satellite System(GNSS)integrated navigation system of the missile,the performance of data fusion algorithms based on the Cubature Kalman Filter(CKF)is seriously degraded when there are non-Gaussian noise and process-modeling errors in the system model.Therefore,a novel method is proposed,which is called Optimal Data Fusion algorithm based on the Adaptive Fading maximum Correntropy generalized high-degree CKF(AFCCKF-ODF).First,the Adaptive Fading maximum Correntropy generalized high-degree CKF(AFCCKF)is proposed and used as the local filter for the INS/GNSS and INS/CNS subsystems to improve the robustness of local state estimation.Then,the local state estimation is fused based on the minimum variance principle and highdegree cubature criterion to get the globally optimal state.Finally,the experimental results verify that the proposed algorithm can significantly improve the robustness of the missile-borne INS/CNS/GNSS integrated navigation system to non-Gaussian noise and process modeling error and obtain the global optimal navigation information.
基金Supported by the National Natural Science Foundation for Outstanding Youth(61422102)Special Fund for Basic Research on Scientific Instruments of the National Natural Science Foundation of China(61127004)
文摘Inertial/gravity matching integrated navigation system can effectively improve the longendurance navigation ability of underwater vehicles.Through the analysis of the matching process,the problem of unequal-interval in matching trajectory is addressed by an unequal-interval data fusion algorithm which is based on the unequal-interval characteristics analysis of the matching trajectory.Compared with previously available methods,the proposed algorithm improves the location precision.In conclusion,simulations of the integrated navigation system demonstrated the effectiveness and superiority of the proposed algorithm.
基金co-supported by the National Natural Science Foundation of China(Nos.92371201 and 52192633)the Natural Science Foundation of Shaanxi Province of China(No.2022JC-03)the Aeronautical Science Foundation of China(No.ASFC-20220019070002)。
文摘In multiple Unmanned Aerial Vehicles(UAV)systems,achieving efficient navigation is essential for executing complex tasks and enhancing autonomy.Traditional navigation methods depend on predefined control strategies and trajectory planning and often perform poorly in complex environments.To improve the UAV-environment interaction efficiency,this study proposes a multi-UAV integrated navigation algorithm based on Deep Reinforcement Learning(DRL).This algorithm integrates the Inertial Navigation System(INS),Global Navigation Satellite System(GNSS),and Visual Navigation System(VNS)for comprehensive information fusion.Specifically,an improved multi-UAV integrated navigation algorithm called Information Fusion with MultiAgent Deep Deterministic Policy Gradient(IF-MADDPG)was developed.This algorithm enables UAVs to learn collaboratively and optimize their flight trajectories in real time.Through simulations and experiments,test scenarios in GNSS-denied environments were constructed to evaluate the effectiveness of the algorithm.The experimental results demonstrate that the IF-MADDPG algorithm significantly enhances the collaborative navigation capabilities of multiple UAVs in formation maintenance and GNSS-denied environments.Additionally,it has advantages in terms of mission completion time.This study provides a novel approach for efficient collaboration in multi-UAV systems,which significantly improves the robustness and adaptability of navigation systems.
文摘As the core information infrastructure of modern information warfare,the offensive and defensive confrontations of satellite navigation systems have given rise to navigation warfare,which focuses on seizing control of navigation resources.Based on the space segment,control segment,and user segment of satellite navigation systems,this paper systematically constructs an offensive-defensive technology system for navigation warfare,and deeply analyzes core measures such as signal enhancement and suppression,autonomous navigation and link jamming,anti-jamming reception,and integrated navigation.It extracts key technologies including adaptive nulling antennas,joint filtering,and multi-dimensional combined jamming,and discusses the technical effectiveness of these technologies by incorporating relevant cases.The advantages of navigation warfare stem from multi-segment coordination and technological inte-gration.In the future,the development directions of navigation warfare will focus on three aspects:enhancing satellite capabilities,tackling core technical challenges,and building a multi-dimensional system.
文摘This paper deals with the research of the GPS/INS integrated navigation system applying Extended Kalman Filter, which involves integrated principles, scheme and technology of combining with real INS and GPS receiver data. Emphases are placed on the modeling of system errors and implementation of the integrated system. Both loose and tightly coupled GPS/INS integrated in schemes are analyzed. On the basis of our experience accumulated in the research of GPS/INS for many years, the GPS/INS integrated navigation developing system is developed. It can be put into efficient and economic use in the study and design of integrated navigation system. It plays an important role in the aeronautical and astronautical fields in China. This system is not only a computer aided design software but also a semi physical simulation system by obtaining real INS and GPS receiver data. So the key software unit of the developing system could be conveniently transferred into practical engineering software in actual hardware integrated system. The application of this system shows that the design ideas and integrated scheme of this development system are successful, and can achieve good navigation result.
基金supported by the National Natural Science Foundation of China(Grant Nos.42004021&41904028)the Shenzhen Science and Technology Program(Grant No.JCYJ20210324121602008)the Shaanxi Natural Science Basic Research Project,China(Grant No.2022-JM313)。
文摘The integration of an inertial navigation system(INS) and a celestial navigation system(CNS) has the superiority of high autonomy. However, its reliability and accuracy are permanently impaired under poor observation conditions. To address this issue, the present paper proposes a tightly coupled INS/CNS/spectral redshift(SRS) integration framework based on the spectral redshift error measurement. In the proposed method, a spectral redshift error measurement equation is investigated and embedded in the traditional tightly coupled INS/CNS integrated navigation system to achieve better anti-interference under complicated circumstances. Subsequently, the inaccurate redshift estimation from the low signal-to-noise ratio spectrum is considered in the integrated system, and an improved chi-square test-based covariance estimation method is incorporated in the federated Kalman filter, allowing to deal with measurement outliers caused by the inaccurate redshift estimation but not influencing the effect of other correct redshift measurements in suppressing the error of the navigation parameter on the filtering solution. Simulations and comprehensive analyses demonstrate that the proposed tightly coupled INS/CNS/SRS integrated navigation system can effectively handle outliers and outages under hostile observation conditions, resulting in improved performance.
文摘The Successive Orthogonalization Decentralized Kalman Filter (SODKF ) is a new method which is used for large system state estimation. It can be applied not only to large system decentralization, but also to precision realization at approximately the same level of the global filter, thus, making possible the engineering operation as well as shortening the computing time. This paper discusses the principles and features of SODKF when used in GPS/INS integrated navigation system. The system will be firstly divided into three subsystems and then corrected in both open and closed loops. The system simulation results by two integrated patterns show that SODKF is efficient and realizable. While the three subsystems are simulated in series, the computing speed doubles that of the global system. In addition, its optimal estimating precision remains unchanged. It can be concluded from this paper that large integrated navigation systems with GPS, INS, Terrain Match, Loran C, Doppler Radar and Radio Altimeter can be made more efficient by this multi subsystem of navigation.
文摘The integrated strap-down inertial nav igation system/olelestial navigation system(SINS/CNS)i an important autonomous navigation method with efective concealment and high predision.Both accelerometer biss and star ensor installation error ame important factors that aflect the performanoe of this mavigation system,which needl to be calibratexd and compensatedl.A new acelerometer bias and star sensor installation error joint calibration method for the SINS/CNS integrated navigation system i propoeed.In this newly propoeed method,the installation error of star sensor is augmented to the state vector,and the star vector,nadir angle,horkzontal poeition error and velbcity error ame ueed a8 measurementa to calbrate the two errors mentioned above.Simulations show that both accelerometer bias and star sensor installation enror an be calibratedl efectively.
文摘The principles of the SINS/DVL integrated navigation system are introduced, and the compass status accuracy is compared. When the heading is changed, the dead reckoning algorithm using the heading information of the SINS (Strapdown inertial navigation systems) and DVL (doppler velocity log) is adopted to substitute the SINS/DVL integrated system. The simulation results show that the method can improve the accuracy of integrated navigation system when AUV (autonomous underwater vehicle) is in motion.
基金the National Natural Science Foundationunder Grant No.60604019.
文摘There are many filtering methods that can be used for the initial alignment of an integrated inertial navigation system. This paper discussed the use of GPS, but focused on two kinds of filters for the initial alignment of an integrated strapdown inertial navigation system (SINS). One method is based on the Kalman filter (KF), and the other is based on the robust filter. Simulation results showed that the filter provides a quick transient response and a little more accurate estimate than KF, given substantial process noise or unknown noise statistics. So the robust filter is an effective and useful method for initial alignment of SINS. This research should make the use of SINS more popular, and is also a step for further research.
基金supported by the National Natural Science Foundation of China (60535010)
文摘A new nonlinear algorithm is proposed for strapdown inertial navigation system (SINS)/celestial navigation system (CNS)/global positioning system (GPS) integrated navigation systems. The algorithm employs a nonlinear system error model which can be modified by unscented Kalman filter (UKF) to give predictions of local filters. And these predictions can be fused by the federated Kalman filter. In the system error model, the rotation vector is introduced to denote vehicle's attitude and has less variables than the quaternion. Also, the UKF method is simplified to estimate the system error model, which can both lead to less calculation and reduce algorithm implement time. In the information fusion section, a modified federated Kalman filter is proposed to solve the singular covariance problem. Specifically, the new algorithm is applied to maneuvering vehicles, and simulation results show that this algorithm is more accurate than the linear integrated navigation algorithm.