Integrity is significant for safety-of-life applications. Receiver autonomous integrity monitoring(RAIM) has been developed to provide integrity service for civil aviation. At first,the conventional RAIM algorithm i...Integrity is significant for safety-of-life applications. Receiver autonomous integrity monitoring(RAIM) has been developed to provide integrity service for civil aviation. At first,the conventional RAIM algorithm is only suitable for single fault detection, single GNSS constellation. However, multiple satellite failure should be considered when more than one satellite navigation system are adopted. To detect and exclude multi-fault, most current algorithms perform an iteration procedure considering all possible fault model which lead to heavy computation burden. An alternative RAIM is presented in this paper based on multiple satellite constellations(for example, GPS and Bei Dou(BDS) etc.) and robust estimation for multi-fault detection and exclusion, which can not only detect multi-failures,but also control the influences of near failure observation. Besides, the RAIM algorithm based on robust estimation is more efficient than the current RAIM algorithm for multiple constellation and multiple faults. Finally, the algorithm is tested by GPS/Bei Dou data.展开更多
Efficient data management in healthcare is essential for providing timely and accurate patient care, yet traditional partitioning methods in relational databases often struggle with the high volume, heterogeneity, and...Efficient data management in healthcare is essential for providing timely and accurate patient care, yet traditional partitioning methods in relational databases often struggle with the high volume, heterogeneity, and regulatory complexity of healthcare data. This research introduces a tailored partitioning strategy leveraging the MD5 hashing algorithm to enhance data insertion, query performance, and load balancing in healthcare systems. By applying a consistent hash function to patient IDs, our approach achieves uniform distribution of records across partitions, optimizing retrieval paths and reducing access latency while ensuring data integrity and compliance. We evaluated the method through experiments focusing on partitioning efficiency, scalability, and fault tolerance. The partitioning efficiency analysis compared our MD5-based approach with standard round-robin methods, measuring insertion times, query latency, and data distribution balance. Scalability tests assessed system performance across increasing dataset sizes and varying partition counts, while fault tolerance experiments examined data integrity and retrieval performance under simulated partition failures. The experimental results demonstrate that the MD5-based partitioning strategy significantly reduces query retrieval times by optimizing data access patterns, achieving up to X% better performance compared to round-robin methods. It also scales effectively with larger datasets, maintaining low latency and ensuring robust resilience under failure scenarios. This novel approach offers a scalable, efficient, and fault-tolerant solution for healthcare systems, facilitating faster clinical decision-making and improved patient care in complex data environments.展开更多
This paper analyzes the fundamental frequency impedance presents a novel transmission line pilot protection scheme characteristic of a thyristor controlled series capacitor (TCSC) and based on fault component integr...This paper analyzes the fundamental frequency impedance presents a novel transmission line pilot protection scheme characteristic of a thyristor controlled series capacitor (TCSC) and based on fault component integrated impedance (FCII) calculated for a transmission line with TCSC and controllable shunt reactor (CSR). The FCII is defined as the ratio of the sum of the fault component voltage phasors of a transmission line with TCSC and CSR to the sum of the fault component current phasors where all the phasors are determined at both line's terminals. It can be used to distinguish internal faults occurring on the line from external ones. If the fault is an external one the FCII reflects the line's capacitive impedance and has large value. If the fault is an internal one on the line the FCII reflects the impedance of the equivalent system and the line and is relatively small. The new pilot protection scheme can be easily set and has the fault phase selection ability and also it is not affected by the capacitive current and the fault transition resistance. It is not sensitive to compensation level and dynamics of TCSC and CSR. The effectiveness of the new scheme is validated against data obtained in ATP simulations and Northwest China 750 kV Project.展开更多
基金supported by the National 863 project(2013AA122501-1)the National Natural Science Foundation of China(41020144004,41474015,41374019,41374003,41274040)
文摘Integrity is significant for safety-of-life applications. Receiver autonomous integrity monitoring(RAIM) has been developed to provide integrity service for civil aviation. At first,the conventional RAIM algorithm is only suitable for single fault detection, single GNSS constellation. However, multiple satellite failure should be considered when more than one satellite navigation system are adopted. To detect and exclude multi-fault, most current algorithms perform an iteration procedure considering all possible fault model which lead to heavy computation burden. An alternative RAIM is presented in this paper based on multiple satellite constellations(for example, GPS and Bei Dou(BDS) etc.) and robust estimation for multi-fault detection and exclusion, which can not only detect multi-failures,but also control the influences of near failure observation. Besides, the RAIM algorithm based on robust estimation is more efficient than the current RAIM algorithm for multiple constellation and multiple faults. Finally, the algorithm is tested by GPS/Bei Dou data.
文摘Efficient data management in healthcare is essential for providing timely and accurate patient care, yet traditional partitioning methods in relational databases often struggle with the high volume, heterogeneity, and regulatory complexity of healthcare data. This research introduces a tailored partitioning strategy leveraging the MD5 hashing algorithm to enhance data insertion, query performance, and load balancing in healthcare systems. By applying a consistent hash function to patient IDs, our approach achieves uniform distribution of records across partitions, optimizing retrieval paths and reducing access latency while ensuring data integrity and compliance. We evaluated the method through experiments focusing on partitioning efficiency, scalability, and fault tolerance. The partitioning efficiency analysis compared our MD5-based approach with standard round-robin methods, measuring insertion times, query latency, and data distribution balance. Scalability tests assessed system performance across increasing dataset sizes and varying partition counts, while fault tolerance experiments examined data integrity and retrieval performance under simulated partition failures. The experimental results demonstrate that the MD5-based partitioning strategy significantly reduces query retrieval times by optimizing data access patterns, achieving up to X% better performance compared to round-robin methods. It also scales effectively with larger datasets, maintaining low latency and ensuring robust resilience under failure scenarios. This novel approach offers a scalable, efficient, and fault-tolerant solution for healthcare systems, facilitating faster clinical decision-making and improved patient care in complex data environments.
基金supported by the National Natural Science Foundation of China (Grant Nos.50877061 and 51037005)
文摘This paper analyzes the fundamental frequency impedance presents a novel transmission line pilot protection scheme characteristic of a thyristor controlled series capacitor (TCSC) and based on fault component integrated impedance (FCII) calculated for a transmission line with TCSC and controllable shunt reactor (CSR). The FCII is defined as the ratio of the sum of the fault component voltage phasors of a transmission line with TCSC and CSR to the sum of the fault component current phasors where all the phasors are determined at both line's terminals. It can be used to distinguish internal faults occurring on the line from external ones. If the fault is an external one the FCII reflects the line's capacitive impedance and has large value. If the fault is an internal one on the line the FCII reflects the impedance of the equivalent system and the line and is relatively small. The new pilot protection scheme can be easily set and has the fault phase selection ability and also it is not affected by the capacitive current and the fault transition resistance. It is not sensitive to compensation level and dynamics of TCSC and CSR. The effectiveness of the new scheme is validated against data obtained in ATP simulations and Northwest China 750 kV Project.