This paper investigates the traffic offloading optimization challenge in Space-Air-Ground Integrated Networks(SAGIN)through a novel Recursive Multi-Agent Proximal Policy Optimization(RMAPPO)algorithm.The exponential g...This paper investigates the traffic offloading optimization challenge in Space-Air-Ground Integrated Networks(SAGIN)through a novel Recursive Multi-Agent Proximal Policy Optimization(RMAPPO)algorithm.The exponential growth of mobile devices and data traffic has substantially increased network congestion,particularly in urban areas and regions with limited terrestrial infrastructure.Our approach jointly optimizes unmanned aerial vehicle(UAV)trajectories and satellite-assisted offloading strategies to simultaneously maximize data throughput,minimize energy consumption,and maintain equitable resource distribution.The proposed RMAPPO framework incorporates recurrent neural networks(RNNs)to model temporal dependencies in UAV mobility patterns and utilizes a decentralized multi-agent reinforcement learning architecture to reduce communication overhead while improving system robustness.The proposed RMAPPO algorithm was evaluated through simulation experiments,with the results indicating that it significantly enhances the cumulative traffic offloading rate of nodes and reduces the energy consumption of UAVs.展开更多
The rapid growth of low-Earth-orbit satellites has injected new vitality into future service provisioning.However,given the inherent volatility of network traffic,ensuring differentiated quality of service in highly d...The rapid growth of low-Earth-orbit satellites has injected new vitality into future service provisioning.However,given the inherent volatility of network traffic,ensuring differentiated quality of service in highly dynamic networks remains a significant challenge.In this paper,we propose an online learning-based resource scheduling scheme for satellite-terrestrial integrated networks(STINs)aimed at providing on-demand services with minimal resource utilization.Specifically,we focus on:①accurately characterizing the STIN channel,②predicting resource demand with uncertainty guarantees,and③implementing mixed timescale resource scheduling.For the STIN channel,we adopt the 3rd Generation Partnership Project channel and antenna models for non-terrestrial networks.We employ a one-dimensional convolution and attention-assisted long short-term memory architecture for average demand prediction,while introducing conformal prediction to mitigate uncertainties arising from burst traffic.Additionally,we develop a dual-timescale optimization framework that includes resource reservation on a larger timescale and resource adjustment on a smaller timescale.We also designed an online resource scheduling algorithm based on online convex optimization to guarantee long-term performance with limited knowledge of time-varying network information.Based on the Network Simulator 3 implementation of the STIN channel under our high-fidelity satellite Internet simulation platform,numerical results using a real-world dataset demonstrate the accuracy and efficiency of the prediction algorithms and online resource scheduling scheme.展开更多
With the rapid growth of connected devices,traditional edge-cloud systems are under overload pressure.Using mobile edge computing(MEC)to assist unmanned aerial vehicles(UAVs)as low altitude platform stations(LAPS)for ...With the rapid growth of connected devices,traditional edge-cloud systems are under overload pressure.Using mobile edge computing(MEC)to assist unmanned aerial vehicles(UAVs)as low altitude platform stations(LAPS)for communication and computation to build air-ground integrated networks(AGINs)offers a promising solution for seamless network coverage of remote internet of things(IoT)devices in the future.To address the performance demands of future mobile devices(MDs),we proposed an MEC-assisted AGIN system.The goal is to minimize the long-term computational overhead of MDs by jointly optimizing transmission power,flight trajecto-ries,resource allocation,and offloading ratios,while utilizing non-orthogonal multiple access(NOMA)to improve device connectivity of large-scale MDs and spectral efficiency.We first designed an adaptive clustering scheme based on K-Means to cluster MDs and established commu-nication links,improving efficiency and load balancing.Then,considering system dynamics,we introduced a partial computation offloading algorithm based on multi-agent deep deterministic pol-icy gradient(MADDPG),modeling the multi-UAV computation offloading problem as a Markov decision process(MDP).This algorithm optimizes resource allocation through centralized training and distributed execution,reducing computational overhead.Simulation results show that the pro-posed algorithm not only converges stably but also outperforms other benchmark algorithms in han-dling complex scenarios with multiple devices.展开更多
To support ubiquitous communication and enhance other 6G applications,the Space-Air-Ground Integrated Network(SAGIN)has become a research hotspot.Traditionally,satellite-ground fusion technologies integrate network en...To support ubiquitous communication and enhance other 6G applications,the Space-Air-Ground Integrated Network(SAGIN)has become a research hotspot.Traditionally,satellite-ground fusion technologies integrate network entities from space,aerial,and terrestrial domains.However,they face challenges such as spectrum scarcity and inefficient satellite handover.This paper explores the Channel-Aware Handover Management(CAHM)strategy in SAGIN for data allocation.Specifically,CAHM utilizes the data receiving capability of Low Earth Orbit(LEO)satellites,considering satellite-ground distance,free-space path loss,and channel gain.Furthermore,CAHM assesses LEO satellite data forwarding capability using signal-to-noise ratio,link duration and buffer queue length.Then,CAHM applies historical data on LEO satellite transmission successes and failures to effectively reduce overall interruption ratio.Simulation results show that CAHM outperforms baseline algorithms in terms of delivery ratio,latency,and interruption ratio.展开更多
The cooperation of multiple Unmanned Aerial Vehicles(UAVs) has become a promising scenario in Space-Air-Ground Integrated Networks(SAGINs) recently due to their widespread applications,where wireless communication is ...The cooperation of multiple Unmanned Aerial Vehicles(UAVs) has become a promising scenario in Space-Air-Ground Integrated Networks(SAGINs) recently due to their widespread applications,where wireless communication is a basic necessity and is normally categorized into control and nonpayload communication(CNPC) as well as payload communication. In this paper, we attempt to tackle two challenges of UAV communication respectively on establishing reliable CNPC links against the high mobility of UAVs as well as changeable communication conditions, and on offering dynamic resource optimization for Quality-of-Service(QoS) guaranteed payload communication with variable link connectivity. Firstly, we propose the concept of air controlling center(ACC), a virtual application equipped on the infrastructure in SAGINs, which can collect global information for estimating UAV trajectory and communication channels. We then introduce the knapsack problem for modelling resource optimization of UAV communication in order to provide optimal access points for both CNPC and payload communication. Meanwhile, using the air controlling information, predictive decision algorithm and handover strategy are introduced for the reliable connection with multiple access points. Simulation results demonstrate that our proposal ensures an approximate always-on reliable accessing of communication links and outperforms the existing methods against high mobility,sparse distribution, and physical obstacles.展开更多
In this paper, we propose a novel AIenabled space-air-ground integrated networks(SAGIN). This new integrated networks architecture consists of LEO satellites and civil aircrafts carrying aerial base stations, called &...In this paper, we propose a novel AIenabled space-air-ground integrated networks(SAGIN). This new integrated networks architecture consists of LEO satellites and civil aircrafts carrying aerial base stations, called "civil aircraft assisted SAGIN(CAA-SAGIN)". The assistance of civil aircrafts can reduce the stress of satellite networks, improve the performance of SAGIN, decrease the construction cost and save space resources. Taking the Chinese mainland as an example, this paper has analyzed the distribution of civil aircrafts, and obtained the coverage characteristics of civil aircraft assisted networks(CAAN). Taking Starlink as the benchmark, this paper has calculated the service gap of CAAN, and designed the joint coverage constellation. The simulation results prove that the number of satellites in CAASAGIN can be greatly reduced with the assistance of civil aircrafts at the same data rate.展开更多
As the sixth generation network(6G)emerges,the Internet of remote things(IoRT)has become a critical issue.However,conventional terrestrial networks cannot meet the delay-sensitive data collection needs of IoRT network...As the sixth generation network(6G)emerges,the Internet of remote things(IoRT)has become a critical issue.However,conventional terrestrial networks cannot meet the delay-sensitive data collection needs of IoRT networks,and the Space-Air-Ground integrated network(SAGIN)holds promise.We propose a novel setup that integrates non-orthogonal multiple access(NOMA)and wireless power transfer(WPT)to collect latency-sensitive data from IoRT networks.To extend the lifetime of devices,we aim to minimize the maximum energy consumption among all IoRT devices.Due to the coupling between variables,the resulting problem is non-convex.We first decouple the variables and split the original problem into four subproblems.Then,we propose an iterative algorithm to solve the corresponding subproblems based on successive convex approximation(SCA)techniques and slack variables.Finally,simulation results show that the NOMA strategy has a tremendous advantage over the OMA scheme in terms of network lifetime and energy efficiency,providing valuable insights.展开更多
Passive detection of moving target is an important part of intelligent surveillance. Satellite has the potential to play a key role in many applications of space-air-ground integrated networks(SAGIN). In this paper, w...Passive detection of moving target is an important part of intelligent surveillance. Satellite has the potential to play a key role in many applications of space-air-ground integrated networks(SAGIN). In this paper, we propose a novel intelligent passive detection method for aerial target based on reservoir computing networks. Specifically, delayed feedback networks are utilized to refine the direct signals from the satellite in the reference channels. In addition, the satellite direct wave interference in the monitoring channels adopts adaptive interference suppression using the minimum mean square error filter. Furthermore, we employ decoupling echo state networks to predict the clutter interference in the monitoring channels and construct the detection statistics accordingly. Finally, a multilayer perceptron is adopted to detect the echo signal after interference suppression. Extensive simulations is conducted to evaluate the performance of our proposed method. Results show that the detection probability is almost 100% when the signal-to-interference ratio of echo signal is-36 dB, which demonstrates that our proposed method achieves efficient passive detection for aerial targets in typical SAGIN scenarios.展开更多
The ubiquitous and deterministic communication systems are becoming indispensable for future vertical applications such as industrial automation systems and smart grids.5G-TSN(Time-Sensitive Networking)integrated netw...The ubiquitous and deterministic communication systems are becoming indispensable for future vertical applications such as industrial automation systems and smart grids.5G-TSN(Time-Sensitive Networking)integrated networks with the 5G system(5GS)as a TSN bridge are promising to provide the required communication service.To guarantee the endto-end(E2E)QoS(Quality of Service)performance of traffic is a great challenge in 5G-TSN integrated networks.A dynamic QoS mapping method is proposed in this paper.It is based on the improved K-means clustering algorithm and the rough set theory(IKCRQM).The IKC-RQM designs a dynamic and loadaware QoS mapping algorithm to improve its flexibility.An adaptive semi-persistent scheduling(ASPS)mechanism is proposed to solve the challenging deterministic scheduling in 5GS.It includes two parts:one part is the persistent resource allocation for timesensitive flows,and the other part is the dynamic resource allocation based on the max-min fair share algorithm.Simulation results show that the proposed IKC-RQM algorithm achieves flexible and appropriate QoS mapping,and the ASPS performs corresponding resource allocations to guarantee the deterministic transmissions of time-sensitive flows in 5G-TSN integrated networks.展开更多
In this paper, we investigate a cooperation mechanism for satellite-terrestrial integrated networks. The terrestrial relays act as the supplement of traditional small cells and cooperatively provide seamless coverage ...In this paper, we investigate a cooperation mechanism for satellite-terrestrial integrated networks. The terrestrial relays act as the supplement of traditional small cells and cooperatively provide seamless coverage for users in the densely populated areas.To deal with the dynamic satellite backhaul links and backhaul capacity caused by the satellite mobility, severe co-channel interference in both satellite backhaul links and user links introduced by spectrum sharing,and the difference demands of users as well as heterogeneous characteristics of terrestrial backhaul and satellite backhaul, we propose a joint user association and satellite selection scheme to maximize the total sum rate. The optimization problem is formulated via jointly considering the influence of dynamic backhaul links, individual requirements and targeted interference management strategies, which is decomposed into two subproblems: user association and satellite selection. The user association is formulated as a nonconvex optimization problem, and solved through a low-complexity heuristic scheme to find the most suitable access point serving each user. Then, the satellite selection is resolved based on the cooperation among terrestrial relays to maximize the total backhaul capacity with the minimum date rate constraints. Finally,simulation results show the effectiveness of the proposed scheme in terms of total sum rate and power efficiency of TRs' backhaul.展开更多
With the rapid development of low-orbit satellite com-munication networks both domestically and internationally,space-terrestrial integrated networks will become the future development trend.For space and terrestrial ...With the rapid development of low-orbit satellite com-munication networks both domestically and internationally,space-terrestrial integrated networks will become the future development trend.For space and terrestrial networks with limi-ted resources,the utilization efficiency of the entire space-terres-trial integrated networks resources can be affected by the core network indirectly.In order to improve the response efficiency of core networks expansion construction,early warning of the core network elements capacity is necessary.Based on the inte-grated architecture of space and terrestrial network,multidimen-sional factors are considered in this paper,including the number of terminals,login users,and the rules of users’migration during holidays.Using artifical intelligence(AI)technologies,the regis-tered users of the access and mobility management function(AMF),authorization users of the unified data management(UDM),protocol data unit(PDU)sessions of session manage-ment function(SMF)are predicted in combination with the num-ber of login users,the number of terminals.Therefore,the core network elements capacity can be predicted in advance.The proposed method is proven to be effective based on the data from real network.展开更多
The application of Non-Orthogonal Multiple Access(NOMA) technology into satelliteaerial-ground integrated networks can meet the requirements of ultra-high rate and massive connectivity for the Sixth-Generation(6G) com...The application of Non-Orthogonal Multiple Access(NOMA) technology into satelliteaerial-ground integrated networks can meet the requirements of ultra-high rate and massive connectivity for the Sixth-Generation(6G) communication systems. We consider an uplink NOMA scenario for such a satellite-aerial-ground integrated network where multiple users communicate with satellite under the help of an Unmanned Aerial Vehicle(UAV) as an aerial relay equipped with a phased array. Supposing that buffer-aided decode-and-forward protocol is adopted at the UAV relay, we first formulate an optimization problem to maximize Ergodic Sum Rate(ESR) of the considered system subject to individual power constraint and quality-of-service constraint of each user.Then, with known imperfect channel state information of each user, we propose a joint power allocation and robust Beam Forming(BF) iterative algorithm to maximize ESR for the user-to-UAV link. Besides, to take the advantages of Free-Space Optical(FSO) and millimeter Wave(mmWave)communications, we present a switch-based hybrid FSO/mmWave scheme and a robust BF algorithm for the UAV-to-satellite link to achieve higher rate. Moreover, a closed-form ESR expression is derived. Finally, the effectiveness and correctness of the proposed solutions are verified by numerical simulations, and the performance evaluation results show that the proposed solutions not only achieve performance enhancement and robustness, but also outperform the orthogonal multiple access significantly.展开更多
The future 6G networks will integrates space and terrestrial networks to realize a fully connected world with extensive collaboration.However,how to build trust between multiple parties is a difficult problem for secu...The future 6G networks will integrates space and terrestrial networks to realize a fully connected world with extensive collaboration.However,how to build trust between multiple parties is a difficult problem for secure cooperation without a reliable third-party.Blockchain is a promising technology to solve this problem by converting the trust between multi-parties to the trust to the common shared data.Several works have proposed to apply the incentive mechanism in blockchain to encourage effective cooperation,but how to evaluate the cooperation performance and avoid breach of contract is not discussed.In this paper,a secure relay scheme is proposed based on the consortium blockchain system composed by different operators.In particular,smart contract checks the integrity of the message based on RSA accumulator,and executes transactions automatically when the message is delivered successfully.Detailed procedures are introduced for both uplink and downlink relay.Implementation based on Hyperledger Fabric proves the effectiveness of the proposed scheme and shows that the complexity of the scheme is low enough for practical deployment.展开更多
The space-air-ground integrated network(SAGIN)combines the superiority of the satellite,aerial,and ground communications,which is envisioned to provide high-precision positioning ability as well as seamless connectivi...The space-air-ground integrated network(SAGIN)combines the superiority of the satellite,aerial,and ground communications,which is envisioned to provide high-precision positioning ability as well as seamless connectivity in the 5G and Beyond 5G(B5G)systems.In this paper,we propose a three-dimensional SAGIN localization scheme for ground agents utilizing multi-source information from satellites,base stations and unmanned aerial vehicles(UAVs).Based on the designed scheme,we derive the positioning performance bound and establish a distributed maximum likelihood algorithm to jointly estimate the positions and clock offsets of ground agents.Simulation results demonstrate the validity of the SAGIN localization scheme and reveal the effects of the number of satellites,the number of base stations,the number of UAVs and clock noise on positioning performance.展开更多
With the rapid development of the mobile internet and the massive deployment of the Internet of Things, mobile devices, including both the consumer electronics and the sensors, become hungrier for the energy than ever...With the rapid development of the mobile internet and the massive deployment of the Internet of Things, mobile devices, including both the consumer electronics and the sensors, become hungrier for the energy than ever before. Conventional cable based charging largely restrict the movement of the mobile devices. Wireless charging hence emerges as an essential technique for enabling our ultimate goal of charging anytime and anywhere. By efficiently exploiting the legacy of the existing communication infrastructure, we propose a nov- el data and energy integrated network (DEIN) in order to re- alise the radio frequency (RF) based wireless charging with- out degrading the information transmission. In this treatise, we focus on the implementation of the DEIN in both the theoretical and practical aspects, concerning the transceiver architecture design and the rectifier circuit design. Furthermore, we also present a Wi-Fi based testbed for demonstrating the availability of the RF based wireless charging.展开更多
The integration of different heterogeneous access networks is one of the remarkable characteristics of the next generation network,in which users with multi-network interface terminals can independently select access ...The integration of different heterogeneous access networks is one of the remarkable characteristics of the next generation network,in which users with multi-network interface terminals can independently select access network to obtain the most desired service.A kind of unified quantification model of non-monotone quality of service(QoS) and a model of non-cooperative game between users and networks are proposed for heterogeneous network access selection.An optimal network pricing mechanism could be formulated by using a novel strategy which is used in this non-cooperative game model to balance the interests of both the users and the networks.This access network selection mechanism could select the most suitable network for users,and it also could provide the basis when formulating QoS standards in heterogeneous integrated networks.The simulation results show that this network selection decision-making algorithm can meet the users' demand for different levels service in different scenes and it can also avoid network congestion caused by unbalanced load.展开更多
The Space-Air-Ground-Sea Integrated Networks(SAGSIN)significantly enhance global communication by merging satellite,aviation,terrestrial,and marine networks.Crucial to SAGSIN’s functionality and security is spectrum ...The Space-Air-Ground-Sea Integrated Networks(SAGSIN)significantly enhance global communication by merging satellite,aviation,terrestrial,and marine networks.Crucial to SAGSIN’s functionality and security is spectrum monitoring using deep learning-based Automatic Modulation Classification(AMC),essential for processing and classifying complex modulation signals.However,these AMC models are susceptible to adversarial attacks.Thus,we introduce the Deep Time-Frequency Denoising Transformation(DTFDT)defense method to mitigate the impact of adversarial attacks.The DTFDT method is comprised of a deep denoising module and a transformation module.The denoising module maps signals into the time-frequency domain,amplifying the differences between benign and adversarial examples,aiding in the elimination of adversarial perturbations.Concurrently,the transformation module develops a learnable network,generating example-specific transformation matrices suited for signal data,which diminishes the effectiveness of attacks.Extensive evaluations on two datasets,RML2016.10a and DMRadio09.real,demonstrate the superior defense capabilities of DTFDT against various attacks.展开更多
Accurate estimation of mineralogy from geophysical well logs is crucial for characterizing geological formations,particularly in hydrocarbon exploration,CO_(2) sequestration,and geothermal energy development.Current t...Accurate estimation of mineralogy from geophysical well logs is crucial for characterizing geological formations,particularly in hydrocarbon exploration,CO_(2) sequestration,and geothermal energy development.Current techniques,such as multimineral petrophysical analysis,offer details into mineralogical distribution.However,it is inherently time-intensive and demands substantial geological expertise for accurate model evaluation.Furthermore,traditional machine learning techniques often struggle to predict mineralogy accurately and sometimes produce estimations that violate fundamental physical principles.To address this,we present a new approach using Physics-Integrated Neural Networks(PINNs),that combines data-driven learning with domain-specific physical constraints,embedding petrophysical relationships directly into the neural network architecture.This approach enforces that predictions adhere to physical laws.The methodology is applied to the Broom Creek Deep Saline aquifer,a CO_(2) sequestration site in the Williston Basin,to predict the volumes of key mineral constituents—quartz,dolomite,feldspar,anhydrite,illite—along with porosity.Compared to traditional artificial neural networks (ANN),the PINN approach demonstrates higher accuracy and better generalizability,significantly enhancing predictive performance on unseen well datasets.The average mean error across the three blind wells is 0.123 for ANN and 0.042 for PINN,highlighting the superior accuracy of the PINN approach.This method reduces uncertainties in reservoir characterization by improving the reliability of mineralogy and porosity predictions,providing a more robust tool for decision-making in various subsurface geoscience applications.展开更多
In recent years,load balancing routing al-gorithms have been extensively studied in satellite net-works.Most existing studies focus on path selection and hop-count optimization for end-to-end transmis-sion,while overl...In recent years,load balancing routing al-gorithms have been extensively studied in satellite net-works.Most existing studies focus on path selection and hop-count optimization for end-to-end transmis-sion,while overlooking congestion issues on feeder links caused by the limited number and centralized distribution of ground stations.Hence,a multi-service routing algorithm called the Multi-service Load Bal-ancing Routing Algorithm for Traffic Return(MLB-TR)is proposed.Unlike traditional approaches,MLB-TR aims to achieve a broader and more comprehensive load balancing objective.Specifically,based on the service type,an appropriate landing satellite is first selected by considering factors such as shortest path hop count and satellite load.Then,a set of candidate paths from the source satellite to the selected landing satellite is computed.Finally,using the regional load balancing index as the optimization objective,the final transmission path is selected from the candidate path set.Simulation results show that the proposed algo-rithm outperforms the existing works.展开更多
In recent years,intensified environmental pollution and climate change have increasingly exposed the world to natural disasters such as earthquakes and floods,resulting in substantial economic losses[1].These disaster...In recent years,intensified environmental pollution and climate change have increasingly exposed the world to natural disasters such as earthquakes and floods,resulting in substantial economic losses[1].These disasters frequently damage terrestrial communication infrastructures,making the rapid deployment of emergency communication networks in affected areas critical in increasing rescue efficiency[2].展开更多
文摘This paper investigates the traffic offloading optimization challenge in Space-Air-Ground Integrated Networks(SAGIN)through a novel Recursive Multi-Agent Proximal Policy Optimization(RMAPPO)algorithm.The exponential growth of mobile devices and data traffic has substantially increased network congestion,particularly in urban areas and regions with limited terrestrial infrastructure.Our approach jointly optimizes unmanned aerial vehicle(UAV)trajectories and satellite-assisted offloading strategies to simultaneously maximize data throughput,minimize energy consumption,and maintain equitable resource distribution.The proposed RMAPPO framework incorporates recurrent neural networks(RNNs)to model temporal dependencies in UAV mobility patterns and utilizes a decentralized multi-agent reinforcement learning architecture to reduce communication overhead while improving system robustness.The proposed RMAPPO algorithm was evaluated through simulation experiments,with the results indicating that it significantly enhances the cumulative traffic offloading rate of nodes and reduces the energy consumption of UAVs.
基金supported in part by the Major Program of the National Natural Science Foundation of China(62495021 and 62495020).
文摘The rapid growth of low-Earth-orbit satellites has injected new vitality into future service provisioning.However,given the inherent volatility of network traffic,ensuring differentiated quality of service in highly dynamic networks remains a significant challenge.In this paper,we propose an online learning-based resource scheduling scheme for satellite-terrestrial integrated networks(STINs)aimed at providing on-demand services with minimal resource utilization.Specifically,we focus on:①accurately characterizing the STIN channel,②predicting resource demand with uncertainty guarantees,and③implementing mixed timescale resource scheduling.For the STIN channel,we adopt the 3rd Generation Partnership Project channel and antenna models for non-terrestrial networks.We employ a one-dimensional convolution and attention-assisted long short-term memory architecture for average demand prediction,while introducing conformal prediction to mitigate uncertainties arising from burst traffic.Additionally,we develop a dual-timescale optimization framework that includes resource reservation on a larger timescale and resource adjustment on a smaller timescale.We also designed an online resource scheduling algorithm based on online convex optimization to guarantee long-term performance with limited knowledge of time-varying network information.Based on the Network Simulator 3 implementation of the STIN channel under our high-fidelity satellite Internet simulation platform,numerical results using a real-world dataset demonstrate the accuracy and efficiency of the prediction algorithms and online resource scheduling scheme.
基金supported by the Gansu Province Key Research and Development Plan(No.23YFGA0062)Gansu Provin-cial Innovation Fund(No.2022A-215).
文摘With the rapid growth of connected devices,traditional edge-cloud systems are under overload pressure.Using mobile edge computing(MEC)to assist unmanned aerial vehicles(UAVs)as low altitude platform stations(LAPS)for communication and computation to build air-ground integrated networks(AGINs)offers a promising solution for seamless network coverage of remote internet of things(IoT)devices in the future.To address the performance demands of future mobile devices(MDs),we proposed an MEC-assisted AGIN system.The goal is to minimize the long-term computational overhead of MDs by jointly optimizing transmission power,flight trajecto-ries,resource allocation,and offloading ratios,while utilizing non-orthogonal multiple access(NOMA)to improve device connectivity of large-scale MDs and spectral efficiency.We first designed an adaptive clustering scheme based on K-Means to cluster MDs and established commu-nication links,improving efficiency and load balancing.Then,considering system dynamics,we introduced a partial computation offloading algorithm based on multi-agent deep deterministic pol-icy gradient(MADDPG),modeling the multi-UAV computation offloading problem as a Markov decision process(MDP).This algorithm optimizes resource allocation through centralized training and distributed execution,reducing computational overhead.Simulation results show that the pro-posed algorithm not only converges stably but also outperforms other benchmark algorithms in han-dling complex scenarios with multiple devices.
基金National Key Research and Development Program of China(2022YFE0139300)Hubei Province Key Research and Development Program(2024BAB051)+1 种基金Guangdong Basic and Applied Basic Research Foundation(2022B1515120067)Wuhan Key Research and Development Program(2024050702030136).
文摘To support ubiquitous communication and enhance other 6G applications,the Space-Air-Ground Integrated Network(SAGIN)has become a research hotspot.Traditionally,satellite-ground fusion technologies integrate network entities from space,aerial,and terrestrial domains.However,they face challenges such as spectrum scarcity and inefficient satellite handover.This paper explores the Channel-Aware Handover Management(CAHM)strategy in SAGIN for data allocation.Specifically,CAHM utilizes the data receiving capability of Low Earth Orbit(LEO)satellites,considering satellite-ground distance,free-space path loss,and channel gain.Furthermore,CAHM assesses LEO satellite data forwarding capability using signal-to-noise ratio,link duration and buffer queue length.Then,CAHM applies historical data on LEO satellite transmission successes and failures to effectively reduce overall interruption ratio.Simulation results show that CAHM outperforms baseline algorithms in terms of delivery ratio,latency,and interruption ratio.
基金supported by the the National Key Research and Development Program of China under No. 2019YFB1803200National Natural Science Foundation of China under Grants 61620106001。
文摘The cooperation of multiple Unmanned Aerial Vehicles(UAVs) has become a promising scenario in Space-Air-Ground Integrated Networks(SAGINs) recently due to their widespread applications,where wireless communication is a basic necessity and is normally categorized into control and nonpayload communication(CNPC) as well as payload communication. In this paper, we attempt to tackle two challenges of UAV communication respectively on establishing reliable CNPC links against the high mobility of UAVs as well as changeable communication conditions, and on offering dynamic resource optimization for Quality-of-Service(QoS) guaranteed payload communication with variable link connectivity. Firstly, we propose the concept of air controlling center(ACC), a virtual application equipped on the infrastructure in SAGINs, which can collect global information for estimating UAV trajectory and communication channels. We then introduce the knapsack problem for modelling resource optimization of UAV communication in order to provide optimal access points for both CNPC and payload communication. Meanwhile, using the air controlling information, predictive decision algorithm and handover strategy are introduced for the reliable connection with multiple access points. Simulation results demonstrate that our proposal ensures an approximate always-on reliable accessing of communication links and outperforms the existing methods against high mobility,sparse distribution, and physical obstacles.
基金supported by National Nature Science Foundation of China (No. 61871155)。
文摘In this paper, we propose a novel AIenabled space-air-ground integrated networks(SAGIN). This new integrated networks architecture consists of LEO satellites and civil aircrafts carrying aerial base stations, called "civil aircraft assisted SAGIN(CAA-SAGIN)". The assistance of civil aircrafts can reduce the stress of satellite networks, improve the performance of SAGIN, decrease the construction cost and save space resources. Taking the Chinese mainland as an example, this paper has analyzed the distribution of civil aircrafts, and obtained the coverage characteristics of civil aircraft assisted networks(CAAN). Taking Starlink as the benchmark, this paper has calculated the service gap of CAAN, and designed the joint coverage constellation. The simulation results prove that the number of satellites in CAASAGIN can be greatly reduced with the assistance of civil aircrafts at the same data rate.
基金supported by National Natural Science Foundation of China(No.62171158)the project“The Major Key Project of PCL(PCL2021A03-1)”from Peng Cheng Laboratorysupported by the Science and the Research Fund Program of Guangdong Key Laboratory of Aerospace Communication and Networking Technology(2018B030322004).
文摘As the sixth generation network(6G)emerges,the Internet of remote things(IoRT)has become a critical issue.However,conventional terrestrial networks cannot meet the delay-sensitive data collection needs of IoRT networks,and the Space-Air-Ground integrated network(SAGIN)holds promise.We propose a novel setup that integrates non-orthogonal multiple access(NOMA)and wireless power transfer(WPT)to collect latency-sensitive data from IoRT networks.To extend the lifetime of devices,we aim to minimize the maximum energy consumption among all IoRT devices.Due to the coupling between variables,the resulting problem is non-convex.We first decouple the variables and split the original problem into four subproblems.Then,we propose an iterative algorithm to solve the corresponding subproblems based on successive convex approximation(SCA)techniques and slack variables.Finally,simulation results show that the NOMA strategy has a tremendous advantage over the OMA scheme in terms of network lifetime and energy efficiency,providing valuable insights.
基金supported by the National Natural Science Foundation of China under Grant 62071364in part by the Aeronautical Science Foundation of China under Grant 2020Z073081001+2 种基金in part by the Fundamental Research Funds for the Central Universities under Grant JB210104in part by the Shaanxi Provincial Key Research and Development Program under Grant 2019GY-043in part by the 111 Project under Grant B08038。
文摘Passive detection of moving target is an important part of intelligent surveillance. Satellite has the potential to play a key role in many applications of space-air-ground integrated networks(SAGIN). In this paper, we propose a novel intelligent passive detection method for aerial target based on reservoir computing networks. Specifically, delayed feedback networks are utilized to refine the direct signals from the satellite in the reference channels. In addition, the satellite direct wave interference in the monitoring channels adopts adaptive interference suppression using the minimum mean square error filter. Furthermore, we employ decoupling echo state networks to predict the clutter interference in the monitoring channels and construct the detection statistics accordingly. Finally, a multilayer perceptron is adopted to detect the echo signal after interference suppression. Extensive simulations is conducted to evaluate the performance of our proposed method. Results show that the detection probability is almost 100% when the signal-to-interference ratio of echo signal is-36 dB, which demonstrates that our proposed method achieves efficient passive detection for aerial targets in typical SAGIN scenarios.
基金supported by National Key Research and Development Project under Grant No.2020YFB1710900Sichuan International Cooperation Project of Science and Technology Innovation under Grant No.2022YFH0022。
文摘The ubiquitous and deterministic communication systems are becoming indispensable for future vertical applications such as industrial automation systems and smart grids.5G-TSN(Time-Sensitive Networking)integrated networks with the 5G system(5GS)as a TSN bridge are promising to provide the required communication service.To guarantee the endto-end(E2E)QoS(Quality of Service)performance of traffic is a great challenge in 5G-TSN integrated networks.A dynamic QoS mapping method is proposed in this paper.It is based on the improved K-means clustering algorithm and the rough set theory(IKCRQM).The IKC-RQM designs a dynamic and loadaware QoS mapping algorithm to improve its flexibility.An adaptive semi-persistent scheduling(ASPS)mechanism is proposed to solve the challenging deterministic scheduling in 5GS.It includes two parts:one part is the persistent resource allocation for timesensitive flows,and the other part is the dynamic resource allocation based on the max-min fair share algorithm.Simulation results show that the proposed IKC-RQM algorithm achieves flexible and appropriate QoS mapping,and the ASPS performs corresponding resource allocations to guarantee the deterministic transmissions of time-sensitive flows in 5G-TSN integrated networks.
基金supported by National Natural Science Foundation of China (No. 62201593, 62471480, and 62171466)。
文摘In this paper, we investigate a cooperation mechanism for satellite-terrestrial integrated networks. The terrestrial relays act as the supplement of traditional small cells and cooperatively provide seamless coverage for users in the densely populated areas.To deal with the dynamic satellite backhaul links and backhaul capacity caused by the satellite mobility, severe co-channel interference in both satellite backhaul links and user links introduced by spectrum sharing,and the difference demands of users as well as heterogeneous characteristics of terrestrial backhaul and satellite backhaul, we propose a joint user association and satellite selection scheme to maximize the total sum rate. The optimization problem is formulated via jointly considering the influence of dynamic backhaul links, individual requirements and targeted interference management strategies, which is decomposed into two subproblems: user association and satellite selection. The user association is formulated as a nonconvex optimization problem, and solved through a low-complexity heuristic scheme to find the most suitable access point serving each user. Then, the satellite selection is resolved based on the cooperation among terrestrial relays to maximize the total backhaul capacity with the minimum date rate constraints. Finally,simulation results show the effectiveness of the proposed scheme in terms of total sum rate and power efficiency of TRs' backhaul.
基金This work was supported by the National Key Research Plan(2021YFB2900602).
文摘With the rapid development of low-orbit satellite com-munication networks both domestically and internationally,space-terrestrial integrated networks will become the future development trend.For space and terrestrial networks with limi-ted resources,the utilization efficiency of the entire space-terres-trial integrated networks resources can be affected by the core network indirectly.In order to improve the response efficiency of core networks expansion construction,early warning of the core network elements capacity is necessary.Based on the inte-grated architecture of space and terrestrial network,multidimen-sional factors are considered in this paper,including the number of terminals,login users,and the rules of users’migration during holidays.Using artifical intelligence(AI)technologies,the regis-tered users of the access and mobility management function(AMF),authorization users of the unified data management(UDM),protocol data unit(PDU)sessions of session manage-ment function(SMF)are predicted in combination with the num-ber of login users,the number of terminals.Therefore,the core network elements capacity can be predicted in advance.The proposed method is proven to be effective based on the data from real network.
基金co-supported by the Key International Cooperation Research Project,China(No.61720106003)Jiangsu Province Science and Technology Project,China(No.BE2021031)+4 种基金the Shanghai Aerospace Science and Technology Innovation Foundation,China(No.SAST2019-095)NUPTSF(No.NY220111)the Research Project of Science and Technology on Complex Electronic System Simulation Laboratory,China(No.DXZT-JC-ZZ-2019-009)the National Natural Science Foundation of China(No.61801234)the Postgraduate Research and Practice Innovation Program of Jiangsu Province,China(No.KYCX210739)。
文摘The application of Non-Orthogonal Multiple Access(NOMA) technology into satelliteaerial-ground integrated networks can meet the requirements of ultra-high rate and massive connectivity for the Sixth-Generation(6G) communication systems. We consider an uplink NOMA scenario for such a satellite-aerial-ground integrated network where multiple users communicate with satellite under the help of an Unmanned Aerial Vehicle(UAV) as an aerial relay equipped with a phased array. Supposing that buffer-aided decode-and-forward protocol is adopted at the UAV relay, we first formulate an optimization problem to maximize Ergodic Sum Rate(ESR) of the considered system subject to individual power constraint and quality-of-service constraint of each user.Then, with known imperfect channel state information of each user, we propose a joint power allocation and robust Beam Forming(BF) iterative algorithm to maximize ESR for the user-to-UAV link. Besides, to take the advantages of Free-Space Optical(FSO) and millimeter Wave(mmWave)communications, we present a switch-based hybrid FSO/mmWave scheme and a robust BF algorithm for the UAV-to-satellite link to achieve higher rate. Moreover, a closed-form ESR expression is derived. Finally, the effectiveness and correctness of the proposed solutions are verified by numerical simulations, and the performance evaluation results show that the proposed solutions not only achieve performance enhancement and robustness, but also outperform the orthogonal multiple access significantly.
基金supported by National Key Research and Development Program of Chain(No.2021YFE0205300)National Natural Science Foundation of China(No.62171313).
文摘The future 6G networks will integrates space and terrestrial networks to realize a fully connected world with extensive collaboration.However,how to build trust between multiple parties is a difficult problem for secure cooperation without a reliable third-party.Blockchain is a promising technology to solve this problem by converting the trust between multi-parties to the trust to the common shared data.Several works have proposed to apply the incentive mechanism in blockchain to encourage effective cooperation,but how to evaluate the cooperation performance and avoid breach of contract is not discussed.In this paper,a secure relay scheme is proposed based on the consortium blockchain system composed by different operators.In particular,smart contract checks the integrity of the message based on RSA accumulator,and executes transactions automatically when the message is delivered successfully.Detailed procedures are introduced for both uplink and downlink relay.Implementation based on Hyperledger Fabric proves the effectiveness of the proposed scheme and shows that the complexity of the scheme is low enough for practical deployment.
文摘The space-air-ground integrated network(SAGIN)combines the superiority of the satellite,aerial,and ground communications,which is envisioned to provide high-precision positioning ability as well as seamless connectivity in the 5G and Beyond 5G(B5G)systems.In this paper,we propose a three-dimensional SAGIN localization scheme for ground agents utilizing multi-source information from satellites,base stations and unmanned aerial vehicles(UAVs).Based on the designed scheme,we derive the positioning performance bound and establish a distributed maximum likelihood algorithm to jointly estimate the positions and clock offsets of ground agents.Simulation results demonstrate the validity of the SAGIN localization scheme and reveal the effects of the number of satellites,the number of base stations,the number of UAVs and clock noise on positioning performance.
基金supported by University of Electronic Science and Technology of China under Grant No.ZYGX2016KYQD103
文摘With the rapid development of the mobile internet and the massive deployment of the Internet of Things, mobile devices, including both the consumer electronics and the sensors, become hungrier for the energy than ever before. Conventional cable based charging largely restrict the movement of the mobile devices. Wireless charging hence emerges as an essential technique for enabling our ultimate goal of charging anytime and anywhere. By efficiently exploiting the legacy of the existing communication infrastructure, we propose a nov- el data and energy integrated network (DEIN) in order to re- alise the radio frequency (RF) based wireless charging with- out degrading the information transmission. In this treatise, we focus on the implementation of the DEIN in both the theoretical and practical aspects, concerning the transceiver architecture design and the rectifier circuit design. Furthermore, we also present a Wi-Fi based testbed for demonstrating the availability of the RF based wireless charging.
基金Supported by the National Natural Science Foundation of China(No.61272120)the Science and Technology Project of Xi'an(No.CXY1117(5))
文摘The integration of different heterogeneous access networks is one of the remarkable characteristics of the next generation network,in which users with multi-network interface terminals can independently select access network to obtain the most desired service.A kind of unified quantification model of non-monotone quality of service(QoS) and a model of non-cooperative game between users and networks are proposed for heterogeneous network access selection.An optimal network pricing mechanism could be formulated by using a novel strategy which is used in this non-cooperative game model to balance the interests of both the users and the networks.This access network selection mechanism could select the most suitable network for users,and it also could provide the basis when formulating QoS standards in heterogeneous integrated networks.The simulation results show that this network selection decision-making algorithm can meet the users' demand for different levels service in different scenes and it can also avoid network congestion caused by unbalanced load.
文摘The Space-Air-Ground-Sea Integrated Networks(SAGSIN)significantly enhance global communication by merging satellite,aviation,terrestrial,and marine networks.Crucial to SAGSIN’s functionality and security is spectrum monitoring using deep learning-based Automatic Modulation Classification(AMC),essential for processing and classifying complex modulation signals.However,these AMC models are susceptible to adversarial attacks.Thus,we introduce the Deep Time-Frequency Denoising Transformation(DTFDT)defense method to mitigate the impact of adversarial attacks.The DTFDT method is comprised of a deep denoising module and a transformation module.The denoising module maps signals into the time-frequency domain,amplifying the differences between benign and adversarial examples,aiding in the elimination of adversarial perturbations.Concurrently,the transformation module develops a learnable network,generating example-specific transformation matrices suited for signal data,which diminishes the effectiveness of attacks.Extensive evaluations on two datasets,RML2016.10a and DMRadio09.real,demonstrate the superior defense capabilities of DTFDT against various attacks.
基金the North Dakota Industrial Commission (NDIC) for their financial supportprovided by the University of North Dakota Computational Research Center。
文摘Accurate estimation of mineralogy from geophysical well logs is crucial for characterizing geological formations,particularly in hydrocarbon exploration,CO_(2) sequestration,and geothermal energy development.Current techniques,such as multimineral petrophysical analysis,offer details into mineralogical distribution.However,it is inherently time-intensive and demands substantial geological expertise for accurate model evaluation.Furthermore,traditional machine learning techniques often struggle to predict mineralogy accurately and sometimes produce estimations that violate fundamental physical principles.To address this,we present a new approach using Physics-Integrated Neural Networks(PINNs),that combines data-driven learning with domain-specific physical constraints,embedding petrophysical relationships directly into the neural network architecture.This approach enforces that predictions adhere to physical laws.The methodology is applied to the Broom Creek Deep Saline aquifer,a CO_(2) sequestration site in the Williston Basin,to predict the volumes of key mineral constituents—quartz,dolomite,feldspar,anhydrite,illite—along with porosity.Compared to traditional artificial neural networks (ANN),the PINN approach demonstrates higher accuracy and better generalizability,significantly enhancing predictive performance on unseen well datasets.The average mean error across the three blind wells is 0.123 for ANN and 0.042 for PINN,highlighting the superior accuracy of the PINN approach.This method reduces uncertainties in reservoir characterization by improving the reliability of mineralogy and porosity predictions,providing a more robust tool for decision-making in various subsurface geoscience applications.
基金supported by the National Key Research and Development Program of China under Grant No.2022YFB2902501the Fundamental Research Funds for the Central Universities under Grant No.2023ZCJH09the Haidian District Golden Bridge Seed Fund of Beijing Municipality under Grant No.S2024161.
文摘In recent years,load balancing routing al-gorithms have been extensively studied in satellite net-works.Most existing studies focus on path selection and hop-count optimization for end-to-end transmis-sion,while overlooking congestion issues on feeder links caused by the limited number and centralized distribution of ground stations.Hence,a multi-service routing algorithm called the Multi-service Load Bal-ancing Routing Algorithm for Traffic Return(MLB-TR)is proposed.Unlike traditional approaches,MLB-TR aims to achieve a broader and more comprehensive load balancing objective.Specifically,based on the service type,an appropriate landing satellite is first selected by considering factors such as shortest path hop count and satellite load.Then,a set of candidate paths from the source satellite to the selected landing satellite is computed.Finally,using the regional load balancing index as the optimization objective,the final transmission path is selected from the candidate path set.Simulation results show that the proposed algo-rithm outperforms the existing works.
基金supported in part by the National Natural Science Foundation of China(U2441226).
文摘In recent years,intensified environmental pollution and climate change have increasingly exposed the world to natural disasters such as earthquakes and floods,resulting in substantial economic losses[1].These disasters frequently damage terrestrial communication infrastructures,making the rapid deployment of emergency communication networks in affected areas critical in increasing rescue efficiency[2].