Carbon-based air cathodes offer low cost,high electrical conductivity,and structural tunability.However,they suffer from limited catalytic activity and inefficient gas transport,and they typically rely on noble metal ...Carbon-based air cathodes offer low cost,high electrical conductivity,and structural tunability.However,they suffer from limited catalytic activity and inefficient gas transport,and they typically rely on noble metal additives or complex multilayer configurations.To tackle these issues,this study devised a self-activated integrated carbon-based air cathode.By integrating in situ catalytic site construction with structural optimization,the strategy not only induces the formation of oxygen functional groups(─C─OH,─C═O,─COOH),hierarchical pores,and uniformly distributed active sites,but also establishes a favorable electronic and mass-transport environment.Furthermore,the roll-pressing-based integrated design streamlines electrode construction,reinforces interfacial bonding,and significantly enhances mechanical stability.Density functional theory(DFT)calculations show that oxygen functional groups initiate hydrogen bonding interaction and promote charge enrichment,which improves the activity of the cathode and facilitates intermediate adsorption/desorption in oxygen reduction and evolution reactions processes.As a result,the integrated air cathode-based rechargeable zinc-air batteries(RZABs)achieve a high specific capacity of 811 mAh g^(-1).It also performs well in quasi-solid-state RZABs and silicon-air batteries systems across a wide temperature range,demonstrating strong adaptability and application potential.This study provides a scalable and cost-effective design strategy for high-performance carbon-based air cathodes,offering new insights into advancing durable and practical metal-air energy systems.展开更多
Surface deformation calculations due to environmental loading typically rely on the Preliminary Reference Earth Model(PREM),which assumes a homogeneous and isotropic Earth structure,leading to noticeable errors.To enh...Surface deformation calculations due to environmental loading typically rely on the Preliminary Reference Earth Model(PREM),which assumes a homogeneous and isotropic Earth structure,leading to noticeable errors.To enhance accuracy,the high-precision crustal model CRUST 1.0 is used to refine calculations of regional surface deformation caused by hydrological and non-tidal atmospheric loading.The improved model is applied to 27 Global Navigation Satellite System(GNSS)reference stations in the first phase of the Crustal Movement Observation Network of China(CMONOC),considering their geographical locations.Green's functions are employed to compute surface deformation at each site.Results indicate relative discrepancies of 11.78%and 14.14%for non-tidal atmospheric and hydrological loading compared to PREM,with vertical deformation differences reaching an average of 18.95%.Additionally,the distinct spatial distribution characteristics of the relative differences in each direction indicate that the improved RPREM model is more responsive to the mass variations derived from Gravity Recovery and Climate Experiment(GRACE).The results suggest that the improved PRREM model demonstrates higher sensitivity to loading variations than the PREM model.Utilizing the enhanced method of calculating surface deformation through the utilization of Green's function at the site could effectively reduce the calculation error caused by regional structure,leading to enhanced uniformity and isotropy of PREM.展开更多
In this study,an improved integrated radial basis function with nonuniform shape parameter is introduced.The proposed shape parameter varies in each support domain and is defined byθ=1/d_(max),where d_(max)is the max...In this study,an improved integrated radial basis function with nonuniform shape parameter is introduced.The proposed shape parameter varies in each support domain and is defined byθ=1/d_(max),where d_(max)is the maximum distance of any pair of nodes in the support domain.The proposed method is verified and shows good performance.The results are stable and accurate with any number of nodes and an arbitrary nodal distribution.Notably,the support domain should be large enough to obtain accurate results.This method is then applied for transient analysis of curved shell structures made from functionally graded materials with complex geometries.Through several numerical examples,the accuracy of the proposed approach is demonstrated and discussed.Additionally,the influence of various factors on the dynamic behavior of the structures,including the power-law index,different materials,loading conditions,and geometrical parameters of the structures,was investigated.展开更多
The method of integrated Green's function for the calculation of the tilt(?)load tide proposed by this paper is sn improvement and s development of the current widely used method proposed by Farrell, and it is s n...The method of integrated Green's function for the calculation of the tilt(?)load tide proposed by this paper is sn improvement and s development of the current widely used method proposed by Farrell, and it is s new method of calculation. According to this method, the integrated Green's function of tilt load tide has been calculated first, then on the basis of the cotidal charts the tilt load tide caused by the oceanic tides at any point on the continent can be easily calculated through algebraic procedures. As an example of application of this method the tilt load tides of M_2 have been calculated on the basis of cotidal charts of Schwiderski for the following three stations: Wuchang, Tai'an and Xuzhou.展开更多
Functional Dyspepsia(FD)is a common functional gastrointestinal disorder in internal medicine,characterized by a protracted course and high recurrence rate,significantly affecting patients’quality of life.Western med...Functional Dyspepsia(FD)is a common functional gastrointestinal disorder in internal medicine,characterized by a protracted course and high recurrence rate,significantly affecting patients’quality of life.Western medical treatment primarily focuses on symptomatic relief,with limitations such as limited long-term efficacy and a high likelihood of adverse reactions.Traditional Chinese Medicine(TCM)herbal treatment for FD,based on syndrome differentiation and treatment,offers advantages of holistic regulation and fewer side effects.With the development of integrated traditional Chinese and Western medicine,the application of herbal medicine in FD treatment has gradually shifted from a single syndrome-based approach to a synergistic model of“herbal medicine+conventional Western medical regimen”.This review summarizes the application of herbal medicine under the guidance of TCM theory,the practice of herbal medicine in integrated traditional Chinese and Western medical settings,and the grading and evaluation of evidence-based medicine.Through analysis,the aim is to further promote the standardized and evidence-based application of herbal medicine in the integrated treatment of FD.展开更多
Objective:To analyze the efficacy of whole-course local simultaneous integrated boost intensity-modulated radiotherapy(SIB-IMRT)on patients with locally advanced esophageal squamous cell carcinoma(ESCC).Methods:88 pat...Objective:To analyze the efficacy of whole-course local simultaneous integrated boost intensity-modulated radiotherapy(SIB-IMRT)on patients with locally advanced esophageal squamous cell carcinoma(ESCC).Methods:88 patients with ESCC admitted to the hospital between October 2022 and October 2024 were selected and randomly divided into two groups using a random number table.The experimental group received SIB-IMRT treatment,while the control group received conventional intensity-modulated radiotherapy(C-IMRT).The objective remission rate,immune function,tumor markers,and adverse reaction rate were compared between the two groups.Results:The objective remission rate in the experimental group was higher than that in the control group(P<0.05).Before treatment,there was no difference in immune function levels and tumor marker levels between the two groups(P>0.05).After treatment,the immune function levels in the experimental group were better than those in the control group,and the tumor marker levels were lower than those in the control group(P<0.05).The adverse reaction rate in the experimental group was lower than that in the control group(P<0.05).Conclusion:SIB-IMRT can improve the objective remission rate of patients with ESCC,protect their immune function,down-regulate tumor marker levels,and prevent side effects after treatment.展开更多
Exogenous neural stem cell transplantation has become one of the most promising treatment methods for chronic stroke.Recent studies have shown that most ischemia-reperfusion model rats recover spontaneously after inju...Exogenous neural stem cell transplantation has become one of the most promising treatment methods for chronic stroke.Recent studies have shown that most ischemia-reperfusion model rats recover spontaneously after injury,which limits the ability to observe long-term behavioral recovery.Here,we used a severe stroke rat model with 150 minutes of ischemia,which produced severe behavioral deficiencies that persisted at 12 weeks,to study the therapeutic effect of neural stem cells on neural restoration in chronic stroke.Our study showed that stroke model rats treated with human neural stem cells had long-term sustained recovery of motor function,reduced infarction volume,long-term human neural stem cell survival,and improved local inflammatory environment and angiogenesis.We also demonstrated that transplanted human neural stem cells differentiated into mature neurons in vivo,formed stable functional synaptic connections with host neurons,and exhibited the electrophysiological properties of functional mature neurons,indicating that they replaced the damaged host neurons.The findings showed that human fetal-derived neural stem cells had long-term effects for neurological recovery in a model of severe stroke,which suggests that human neural stem cells-based therapy may be effective for repairing damaged neural circuits in stroke patients.展开更多
The structure of a microwave radiator used for medical purposes is described. The dyadic Green's function and the method are used to analyze this Kind of multimode rectangular medium-filled cavity. The distributio...The structure of a microwave radiator used for medical purposes is described. The dyadic Green's function and the method are used to analyze this Kind of multimode rectangular medium-filled cavity. The distribution of electromagnetic field intensity and the power density,as well as the temperature effect in the biological sample load are obtained.OPtimization of the size of cavity and the position of the input aperture have been performed with the computer to optimize the uniformity or microwave effect and the input VSWR.Necessary experiments were performed to compare the data obtained with theoretical analysis.展开更多
Few studies of wave propagation in layered saturated soils have been reported in the literature.In this paper,a general solution of the equation of wave motion in saturated soils,based on one kind of practical Blot...Few studies of wave propagation in layered saturated soils have been reported in the literature.In this paper,a general solution of the equation of wave motion in saturated soils,based on one kind of practical Blot's equation, was deduced by introducing wave potentials.Then exact dynamic-stiffness matrices for a poroelastic soil layer and half- space were derived,which extended Wolf's theory for an elastic layered site to the case of poroelasticity,thus resolving a fundamental problem in the field of wave propagation and soil-structure interaction in a poroelastic layered soil site.By using the integral transform method,Green's functions of horizontal and vertical uniformly distributed loads in a poroelastic layered soil site were given.Finally,the theory was verified by numerical examples and dynamic responses by comparing three different soil sites.This study has the following advantages:all parameters in the dynamic-stiffness matrices have explicitly physical meanings and the thickness of the sub-layers does not affect the precision of the calculation which is very convenient for engineering applications.The present theory can degenerate into Wolf's theory and yields numerical results approaching those for an ideal elastic layered site when porosity tends to zero.展开更多
The solutions of Green’s function are significant for simplification of problem on a two-phase saturated medium.Using transformation of axisymmetric cylindrical coordinate and Sommerfeld’s integral,superposition of ...The solutions of Green’s function are significant for simplification of problem on a two-phase saturated medium.Using transformation of axisymmetric cylindrical coordinate and Sommerfeld’s integral,superposition of the influence field on a free surface,authors obtained the solutions of a two-phase saturated medium subjected to a concentrated force on the semi-space.展开更多
A new type of dual boundary integral equations(DBIE)is presented first,through which,a smaller system of equations needs to be solved in fracture analysis.Then a non-conforming crack tip element in two-dimensional pro...A new type of dual boundary integral equations(DBIE)is presented first,through which,a smaller system of equations needs to be solved in fracture analysis.Then a non-conforming crack tip element in two-dimensional problems is proposed.The exact formula for the hypersingular integral over the non-con- forming crack tip element is given next.By virtue of Green's-function-library strategy,a series of stress in- tensity factors(SIF)of different crack orientations,locations and/or sizes in a complicated structure can be obtained easily and efficiently.Finally,several examples of fracture analysis in two dimensions are given to demonstrate the accuracy and efficiency of the method proposed.展开更多
In dealing with the square lattice model,we replace the traditionally needed Born-Von Karmann periodic boundary condition with additional Hamiltonian terms to make up a ring lattice.In doing so,the lattice Green's...In dealing with the square lattice model,we replace the traditionally needed Born-Von Karmann periodic boundary condition with additional Hamiltonian terms to make up a ring lattice.In doing so,the lattice Green's function of an infinite square lattice in the second nearest-neighbour interaction approximation can be derived by means of the matrix Green's function method.It is shown that the density of states may change when the second nearest-neighbour interaction is turned on.展开更多
The popularization of portable,implantable and wearable microelectronics has greatly stimulated the rapid development of high-power planar micro-supercapacitors(PMSCs).Particularly,the introduction of new functionalit...The popularization of portable,implantable and wearable microelectronics has greatly stimulated the rapid development of high-power planar micro-supercapacitors(PMSCs).Particularly,the introduction of new functionalities(e.g.,high voltage,flexibility,stretchability,self-healing,electrochromism and photo/thermal response)to PMSCs is essential for building multifunctional PMSCs and their smart selfpowered integrated microsystems.In this review,we summarized the latest advances in PMSCs from various functional microdevices to their smart integrated microsystems.Primarily,the functionalities of PMSCs are characterized by three major factors to emphasize their electrochemical behavior and unique scope of application.These include but are not limited to high-voltage outputs(realized through asymmetric configuration,novel electrolyte and modular integration),mechanical resilience that includes various feats of flexibility or stretchability,and response to stimuli(self-healing,electrochromic,photo-responsive,or thermal-responsive properties).Furthermore,three representative integrated microsystems including energy harvester-PMSC,PMSC-energy consumption,and all-in-one selfpowered microsystems are elaborately overviewed to understand the emerging intelligent interaction models.Finally,the key perspectives,challenges and opportunities of PMSCs for powering smart microelectronics are proposed in brief.展开更多
For a continuous,increasing functionω:[0,∞)→C of finite exponential type,we establish a Hille-Yosida type theorem for strongly continuous α-times(α>0)integrated cosine operator functions with O(ω).It includes...For a continuous,increasing functionω:[0,∞)→C of finite exponential type,we establish a Hille-Yosida type theorem for strongly continuous α-times(α>0)integrated cosine operator functions with O(ω).It includes the corresponding results for n-times integrated cosine operator functions that are polynomially bounded and exponentially bounded.展开更多
New general expressions of spectral Green's functions for scalar and vector potentialsof vertical and horizontal electric as well as magnetic dipoles in a multi-layered medium are pre-sented and verified theoretic...New general expressions of spectral Green's functions for scalar and vector potentialsof vertical and horizontal electric as well as magnetic dipoles in a multi-layered medium are pre-sented and verified theoretically.In addition to their amplicity,the quasi-static images of theseexpressions can be extracted without any difficulty.It is the most important that the spatialGreen's functions in representation of Sommerfeld integrals can be easily obtained by using dis-crete complex image theory.Some numerical results for different kinds of multi-layered mediumpresented in the end are used to verify the correctness of the general expressions.展开更多
Using the entangled state representation we present a formulation of Green'sfunction in solving Schrodinger equation for bipartite system with kinetic coupling.
This paper presents a method to derive the Dyadic Green’s Function(DGF)ofa loaded rectangular waveguide by using the image method.In the calculation of the DGF,we use the integral transformation and replace the multi...This paper presents a method to derive the Dyadic Green’s Function(DGF)ofa loaded rectangular waveguide by using the image method.In the calculation of the DGF,we use the integral transformation and replace the multi-infinite summation by a single one;thus it greatly simplifies the calculation and saves computer time.As an example of the DGF’sapplication,we give the moment method’s scattering field calculation of a metal sphere resting onthe broad wall of the loaded rectangular waveguide.Results of our calculations well agree withboth data of experiments performed in our laboratory and those are published.It is easy to seethat the method used in this paper can be expanded to other related waveguide problems.展开更多
This methodological investigation deals with measurement and valuation of ecological service functions for urban green space. Social, economic and ecological dimensions for such types of function were analyzed and a ...This methodological investigation deals with measurement and valuation of ecological service functions for urban green space. Social, economic and ecological dimensions for such types of function were analyzed and a concept “integrated ecological service functions” (IESF) was put forward for evaluation. Based upon this conceptual approach, an index system for measuring IESF for urban green space was established. With a methodological integration of fuzzy mathematics, decision making analysis and Delphi method, an AHP fuzzy evaluation techniques for IESF for urban green space, called AFIFUG method, was developed. Such a method has been directly applied to the land use strategic planning of Tianjin out ring green belt(TOGB), and its analysis results have been successfully put into operation.展开更多
Based on the solutions of the Green's function for a saturated porous medium obtained by the authors, and using transformation of axisymmetric coordinates, Sommerfeld integrals and superposition of the influence fiel...Based on the solutions of the Green's function for a saturated porous medium obtained by the authors, and using transformation of axisymmetric coordinates, Sommerfeld integrals and superposition of the influence field on a free surface, the authors have obtained displacement solutions of a saturated porous medium subjected to a torsional force in a half-space. The relationship curves of the displacement solutions and various parameters (permeability, frequency, etc.) under action of a unit of torque are also given in this paper. The results are consistent with previous Reissner's solutions, where a two-phase medium decays to a single-phase medium. The solution is useful in solving relevant dynamic problems of a two- phase saturated medium in engineering.展开更多
The problem of three-dimensional(3D) acoustic scattering in a complex medium has aroused considerable interest of researchers for many years. An ultrasonic scattered field calculating technique is proposed to study th...The problem of three-dimensional(3D) acoustic scattering in a complex medium has aroused considerable interest of researchers for many years. An ultrasonic scattered field calculating technique is proposed to study the scattering echo from strongly scattered materials in a two-layer medium in this work. Firstly, with the high frequency stationary phase method,the Green's function of two-layer fluid media is derived. And then based on the idea of integral equation discretization,the Green's function method is extended to two-layer fluid media to derive the scattering field expression of defects in a complex medium. With this method, the scattering field of 3D defect in a two-layer medium is calculated and the characteristics of received echoes are studied. The results show that this method is able to solve the scattering P wave field of 3D defect with arbitrary shape at any scattering intensity in two-layer media. Considering the circumstance of waterimmersion ultrasonic non-destructive test(NDT), the scattering sound field characteristics of different types of defects are analyzed by simulation, which will help to optimize the detection scheme and corresponding imaging method in practice so as to improve the detection quality.展开更多
基金funded by the National Nature Science Foundation of China(62264006,62574102)“Thousand Talents Program”of Yunnan Province for Young Talents,Innovative Research Teams(in Science and Technology)in the University of Yunnan Province(IRTSTYN),XingDian Talent Support Program for Young Talents,and Frontier Research Team of Kunming University 2023,The Basic Research Project of Yunnan Province(Nos.202201AU070022)+2 种基金Kunming University Talent Introduction Fund(Nos.YJL20024)Yunnan Province Education Department Scientific Research Fund Project(Nos.2024Y759)Undergraduate Innovation and Entrepreneurship Training Program Project of Yunnan Provincial(202411393005)。
文摘Carbon-based air cathodes offer low cost,high electrical conductivity,and structural tunability.However,they suffer from limited catalytic activity and inefficient gas transport,and they typically rely on noble metal additives or complex multilayer configurations.To tackle these issues,this study devised a self-activated integrated carbon-based air cathode.By integrating in situ catalytic site construction with structural optimization,the strategy not only induces the formation of oxygen functional groups(─C─OH,─C═O,─COOH),hierarchical pores,and uniformly distributed active sites,but also establishes a favorable electronic and mass-transport environment.Furthermore,the roll-pressing-based integrated design streamlines electrode construction,reinforces interfacial bonding,and significantly enhances mechanical stability.Density functional theory(DFT)calculations show that oxygen functional groups initiate hydrogen bonding interaction and promote charge enrichment,which improves the activity of the cathode and facilitates intermediate adsorption/desorption in oxygen reduction and evolution reactions processes.As a result,the integrated air cathode-based rechargeable zinc-air batteries(RZABs)achieve a high specific capacity of 811 mAh g^(-1).It also performs well in quasi-solid-state RZABs and silicon-air batteries systems across a wide temperature range,demonstrating strong adaptability and application potential.This study provides a scalable and cost-effective design strategy for high-performance carbon-based air cathodes,offering new insights into advancing durable and practical metal-air energy systems.
基金supported by the National Natural Science Foundation of China(Grant 42204006)the Education Commission of Hubei Province of China(Grant D20232802)+1 种基金the Open Fund of Wuhan,Gravitationand Solid EarthTides,National Observationand Research Station(Grant WHYWZ202407)the Open Fund of Hubei Luojia Laboratory(Grant 230100020,230100019).
文摘Surface deformation calculations due to environmental loading typically rely on the Preliminary Reference Earth Model(PREM),which assumes a homogeneous and isotropic Earth structure,leading to noticeable errors.To enhance accuracy,the high-precision crustal model CRUST 1.0 is used to refine calculations of regional surface deformation caused by hydrological and non-tidal atmospheric loading.The improved model is applied to 27 Global Navigation Satellite System(GNSS)reference stations in the first phase of the Crustal Movement Observation Network of China(CMONOC),considering their geographical locations.Green's functions are employed to compute surface deformation at each site.Results indicate relative discrepancies of 11.78%and 14.14%for non-tidal atmospheric and hydrological loading compared to PREM,with vertical deformation differences reaching an average of 18.95%.Additionally,the distinct spatial distribution characteristics of the relative differences in each direction indicate that the improved RPREM model is more responsive to the mass variations derived from Gravity Recovery and Climate Experiment(GRACE).The results suggest that the improved PRREM model demonstrates higher sensitivity to loading variations than the PREM model.Utilizing the enhanced method of calculating surface deformation through the utilization of Green's function at the site could effectively reduce the calculation error caused by regional structure,leading to enhanced uniformity and isotropy of PREM.
基金Ho Chi Minh City University of Technology (HCMUT), VNU-HCM for supporting this study
文摘In this study,an improved integrated radial basis function with nonuniform shape parameter is introduced.The proposed shape parameter varies in each support domain and is defined byθ=1/d_(max),where d_(max)is the maximum distance of any pair of nodes in the support domain.The proposed method is verified and shows good performance.The results are stable and accurate with any number of nodes and an arbitrary nodal distribution.Notably,the support domain should be large enough to obtain accurate results.This method is then applied for transient analysis of curved shell structures made from functionally graded materials with complex geometries.Through several numerical examples,the accuracy of the proposed approach is demonstrated and discussed.Additionally,the influence of various factors on the dynamic behavior of the structures,including the power-law index,different materials,loading conditions,and geometrical parameters of the structures,was investigated.
文摘The method of integrated Green's function for the calculation of the tilt(?)load tide proposed by this paper is sn improvement and s development of the current widely used method proposed by Farrell, and it is s new method of calculation. According to this method, the integrated Green's function of tilt load tide has been calculated first, then on the basis of the cotidal charts the tilt load tide caused by the oceanic tides at any point on the continent can be easily calculated through algebraic procedures. As an example of application of this method the tilt load tides of M_2 have been calculated on the basis of cotidal charts of Schwiderski for the following three stations: Wuchang, Tai'an and Xuzhou.
文摘Functional Dyspepsia(FD)is a common functional gastrointestinal disorder in internal medicine,characterized by a protracted course and high recurrence rate,significantly affecting patients’quality of life.Western medical treatment primarily focuses on symptomatic relief,with limitations such as limited long-term efficacy and a high likelihood of adverse reactions.Traditional Chinese Medicine(TCM)herbal treatment for FD,based on syndrome differentiation and treatment,offers advantages of holistic regulation and fewer side effects.With the development of integrated traditional Chinese and Western medicine,the application of herbal medicine in FD treatment has gradually shifted from a single syndrome-based approach to a synergistic model of“herbal medicine+conventional Western medical regimen”.This review summarizes the application of herbal medicine under the guidance of TCM theory,the practice of herbal medicine in integrated traditional Chinese and Western medical settings,and the grading and evaluation of evidence-based medicine.Through analysis,the aim is to further promote the standardized and evidence-based application of herbal medicine in the integrated treatment of FD.
文摘Objective:To analyze the efficacy of whole-course local simultaneous integrated boost intensity-modulated radiotherapy(SIB-IMRT)on patients with locally advanced esophageal squamous cell carcinoma(ESCC).Methods:88 patients with ESCC admitted to the hospital between October 2022 and October 2024 were selected and randomly divided into two groups using a random number table.The experimental group received SIB-IMRT treatment,while the control group received conventional intensity-modulated radiotherapy(C-IMRT).The objective remission rate,immune function,tumor markers,and adverse reaction rate were compared between the two groups.Results:The objective remission rate in the experimental group was higher than that in the control group(P<0.05).Before treatment,there was no difference in immune function levels and tumor marker levels between the two groups(P>0.05).After treatment,the immune function levels in the experimental group were better than those in the control group,and the tumor marker levels were lower than those in the control group(P<0.05).The adverse reaction rate in the experimental group was lower than that in the control group(P<0.05).Conclusion:SIB-IMRT can improve the objective remission rate of patients with ESCC,protect their immune function,down-regulate tumor marker levels,and prevent side effects after treatment.
文摘Exogenous neural stem cell transplantation has become one of the most promising treatment methods for chronic stroke.Recent studies have shown that most ischemia-reperfusion model rats recover spontaneously after injury,which limits the ability to observe long-term behavioral recovery.Here,we used a severe stroke rat model with 150 minutes of ischemia,which produced severe behavioral deficiencies that persisted at 12 weeks,to study the therapeutic effect of neural stem cells on neural restoration in chronic stroke.Our study showed that stroke model rats treated with human neural stem cells had long-term sustained recovery of motor function,reduced infarction volume,long-term human neural stem cell survival,and improved local inflammatory environment and angiogenesis.We also demonstrated that transplanted human neural stem cells differentiated into mature neurons in vivo,formed stable functional synaptic connections with host neurons,and exhibited the electrophysiological properties of functional mature neurons,indicating that they replaced the damaged host neurons.The findings showed that human fetal-derived neural stem cells had long-term effects for neurological recovery in a model of severe stroke,which suggests that human neural stem cells-based therapy may be effective for repairing damaged neural circuits in stroke patients.
文摘The structure of a microwave radiator used for medical purposes is described. The dyadic Green's function and the method are used to analyze this Kind of multimode rectangular medium-filled cavity. The distribution of electromagnetic field intensity and the power density,as well as the temperature effect in the biological sample load are obtained.OPtimization of the size of cavity and the position of the input aperture have been performed with the computer to optimize the uniformity or microwave effect and the input VSWR.Necessary experiments were performed to compare the data obtained with theoretical analysis.
基金National Natural Science Foundation of China Under Grant No.50378063
文摘Few studies of wave propagation in layered saturated soils have been reported in the literature.In this paper,a general solution of the equation of wave motion in saturated soils,based on one kind of practical Blot's equation, was deduced by introducing wave potentials.Then exact dynamic-stiffness matrices for a poroelastic soil layer and half- space were derived,which extended Wolf's theory for an elastic layered site to the case of poroelasticity,thus resolving a fundamental problem in the field of wave propagation and soil-structure interaction in a poroelastic layered soil site.By using the integral transform method,Green's functions of horizontal and vertical uniformly distributed loads in a poroelastic layered soil site were given.Finally,the theory was verified by numerical examples and dynamic responses by comparing three different soil sites.This study has the following advantages:all parameters in the dynamic-stiffness matrices have explicitly physical meanings and the thickness of the sub-layers does not affect the precision of the calculation which is very convenient for engineering applications.The present theory can degenerate into Wolf's theory and yields numerical results approaching those for an ideal elastic layered site when porosity tends to zero.
基金supported by the National Natural Science Foundation of China (10572129)
文摘The solutions of Green’s function are significant for simplification of problem on a two-phase saturated medium.Using transformation of axisymmetric cylindrical coordinate and Sommerfeld’s integral,superposition of the influence field on a free surface,authors obtained the solutions of a two-phase saturated medium subjected to a concentrated force on the semi-space.
基金the Aeronautical Science Foundation of China (No.99C53026).
文摘A new type of dual boundary integral equations(DBIE)is presented first,through which,a smaller system of equations needs to be solved in fracture analysis.Then a non-conforming crack tip element in two-dimensional problems is proposed.The exact formula for the hypersingular integral over the non-con- forming crack tip element is given next.By virtue of Green's-function-library strategy,a series of stress in- tensity factors(SIF)of different crack orientations,locations and/or sizes in a complicated structure can be obtained easily and efficiently.Finally,several examples of fracture analysis in two dimensions are given to demonstrate the accuracy and efficiency of the method proposed.
文摘In dealing with the square lattice model,we replace the traditionally needed Born-Von Karmann periodic boundary condition with additional Hamiltonian terms to make up a ring lattice.In doing so,the lattice Green's function of an infinite square lattice in the second nearest-neighbour interaction approximation can be derived by means of the matrix Green's function method.It is shown that the density of states may change when the second nearest-neighbour interaction is turned on.
基金the National Natural Science Foundation of China,China (Grant Nos.22125903,51872283,22109040)the“Transformational Technologies for Clean Energy and Demonstration”Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No.XDA21000000)+4 种基金the Dalian Innovation Support Plan for High Level Talents,China (2019RT09)DICP,China (DICP I202032)the Dalian National Laboratory For Clean Energy (DNL),CAS,DNL Cooperation Fund,CAS,China (DNL202016,DNL202019)the Top-Notch Talent Program of Henan Agricultural University,China (30500947)the Joint Fund of the Yulin University and the Dalian National Laboratory for Clean Energy,China (YLU-DNL Fund 2021002,YLU-DNL Fund 2021009)。
文摘The popularization of portable,implantable and wearable microelectronics has greatly stimulated the rapid development of high-power planar micro-supercapacitors(PMSCs).Particularly,the introduction of new functionalities(e.g.,high voltage,flexibility,stretchability,self-healing,electrochromism and photo/thermal response)to PMSCs is essential for building multifunctional PMSCs and their smart selfpowered integrated microsystems.In this review,we summarized the latest advances in PMSCs from various functional microdevices to their smart integrated microsystems.Primarily,the functionalities of PMSCs are characterized by three major factors to emphasize their electrochemical behavior and unique scope of application.These include but are not limited to high-voltage outputs(realized through asymmetric configuration,novel electrolyte and modular integration),mechanical resilience that includes various feats of flexibility or stretchability,and response to stimuli(self-healing,electrochromic,photo-responsive,or thermal-responsive properties).Furthermore,three representative integrated microsystems including energy harvester-PMSC,PMSC-energy consumption,and all-in-one selfpowered microsystems are elaborately overviewed to understand the emerging intelligent interaction models.Finally,the key perspectives,challenges and opportunities of PMSCs for powering smart microelectronics are proposed in brief.
基金Supported by the Natural Science Foundation of Department of Education of Jiangsu Province(06KJD110087) Supported by the Youth Foundation of NanJing Audit University(NSK2009/C04)
文摘For a continuous,increasing functionω:[0,∞)→C of finite exponential type,we establish a Hille-Yosida type theorem for strongly continuous α-times(α>0)integrated cosine operator functions with O(ω).It includes the corresponding results for n-times integrated cosine operator functions that are polynomially bounded and exponentially bounded.
文摘New general expressions of spectral Green's functions for scalar and vector potentialsof vertical and horizontal electric as well as magnetic dipoles in a multi-layered medium are pre-sented and verified theoretically.In addition to their amplicity,the quasi-static images of theseexpressions can be extracted without any difficulty.It is the most important that the spatialGreen's functions in representation of Sommerfeld integrals can be easily obtained by using dis-crete complex image theory.Some numerical results for different kinds of multi-layered mediumpresented in the end are used to verify the correctness of the general expressions.
文摘Using the entangled state representation we present a formulation of Green'sfunction in solving Schrodinger equation for bipartite system with kinetic coupling.
文摘This paper presents a method to derive the Dyadic Green’s Function(DGF)ofa loaded rectangular waveguide by using the image method.In the calculation of the DGF,we use the integral transformation and replace the multi-infinite summation by a single one;thus it greatly simplifies the calculation and saves computer time.As an example of the DGF’sapplication,we give the moment method’s scattering field calculation of a metal sphere resting onthe broad wall of the loaded rectangular waveguide.Results of our calculations well agree withboth data of experiments performed in our laboratory and those are published.It is easy to seethat the method used in this paper can be expanded to other related waveguide problems.
文摘This methodological investigation deals with measurement and valuation of ecological service functions for urban green space. Social, economic and ecological dimensions for such types of function were analyzed and a concept “integrated ecological service functions” (IESF) was put forward for evaluation. Based upon this conceptual approach, an index system for measuring IESF for urban green space was established. With a methodological integration of fuzzy mathematics, decision making analysis and Delphi method, an AHP fuzzy evaluation techniques for IESF for urban green space, called AFIFUG method, was developed. Such a method has been directly applied to the land use strategic planning of Tianjin out ring green belt(TOGB), and its analysis results have been successfully put into operation.
基金National Natural Science Foundation of China Under Grant No.11172268
文摘Based on the solutions of the Green's function for a saturated porous medium obtained by the authors, and using transformation of axisymmetric coordinates, Sommerfeld integrals and superposition of the influence field on a free surface, the authors have obtained displacement solutions of a saturated porous medium subjected to a torsional force in a half-space. The relationship curves of the displacement solutions and various parameters (permeability, frequency, etc.) under action of a unit of torque are also given in this paper. The results are consistent with previous Reissner's solutions, where a two-phase medium decays to a single-phase medium. The solution is useful in solving relevant dynamic problems of a two- phase saturated medium in engineering.
基金Project supported by the Key Research Program of Frontier Sciences, Chinese Academy of Sciences (Grant No. ZDBS-LY-7023)。
文摘The problem of three-dimensional(3D) acoustic scattering in a complex medium has aroused considerable interest of researchers for many years. An ultrasonic scattered field calculating technique is proposed to study the scattering echo from strongly scattered materials in a two-layer medium in this work. Firstly, with the high frequency stationary phase method,the Green's function of two-layer fluid media is derived. And then based on the idea of integral equation discretization,the Green's function method is extended to two-layer fluid media to derive the scattering field expression of defects in a complex medium. With this method, the scattering field of 3D defect in a two-layer medium is calculated and the characteristics of received echoes are studied. The results show that this method is able to solve the scattering P wave field of 3D defect with arbitrary shape at any scattering intensity in two-layer media. Considering the circumstance of waterimmersion ultrasonic non-destructive test(NDT), the scattering sound field characteristics of different types of defects are analyzed by simulation, which will help to optimize the detection scheme and corresponding imaging method in practice so as to improve the detection quality.