In this study,we aimto investigate certain triple integral transformand its application to a class of partial differentialequations.We discuss various properties of the new transformincluding inversion, linearity, exi...In this study,we aimto investigate certain triple integral transformand its application to a class of partial differentialequations.We discuss various properties of the new transformincluding inversion, linearity, existence, scaling andshifting, etc. Then,we derive several results enfolding partial derivatives and establish amulti-convolution theorem.Further, we apply the aforementioned transform to some classical functions and many types of partial differentialequations involving heat equations,wave equations, Laplace equations, and Poisson equations aswell.Moreover,wedraw some figures to illustrate 3-D contour plots for exact solutions of some selected examples involving differentvalues in their variables.展开更多
Following exploitation of a coal seam, the final stress field is the sum of in situ stress field and an excavation stress field. Based on this feature, we firstly established a mechanics analytical model of the mining...Following exploitation of a coal seam, the final stress field is the sum of in situ stress field and an excavation stress field. Based on this feature, we firstly established a mechanics analytical model of the mining floor strata. Then the study applied Fourier integral transform to solve a biharmonic equation,obtaining the analytical solution of the stress and displacement of the mining floor. Additionally, this investigation used the Mohr–Coulomb yield criterion to determine the plastic failure depth of the floor strata. The calculation process showed that the plastic failure depth of the floor and floor heave are related to the mining width, burial depth and physical–mechanical properties. The results from an example show that the curve of the plastic failure depth of the mining floor is characterized by a funnel shape and the maximum failure depth generates in the middle of mining floor; and that the maximum and minimum principal stresses change distinctly in the shallow layer and tend to a fixed value with an increase in depth. Based on the displacement results, the maximum floor heave appears in the middle of the stope and its value is 0.107 m. This will provide a basis for floor control. Lastly, we have verified the analytical results using FLAC3 Dto simulate floor excavation and find that there is some deviation between the two results, but their overall tendency is consistent which illustrates that the analysis method can well solve the stress and displacement of the floor.展开更多
The generalized integral transform technique (GITT) is used to find a semianalytical numerical solution for dynamic response of an axially moving Timoshenko beam with clamped-clamped and simply-supported boundary co...The generalized integral transform technique (GITT) is used to find a semianalytical numerical solution for dynamic response of an axially moving Timoshenko beam with clamped-clamped and simply-supported boundary conditions, respectively. The implementation of GITT approach for analyzing the forced vibration equation eliminates the space variable and leads to systems of second-order ordinary differential equations (ODEs) in time. The MATHEMATICA built-in function, NDSolve, is used to numerically solve the resulting transformed ODE system. The good convergence behavior of the suggested eigenfunction expansions is demonstrated for calculating the transverse deflection and the angle of rotation of the beam cross-section. Moreover, parametric studies are performed to analyze the effects of the axially moving speed, the axial tension, and the amplitude of external distributed force on the vibration amplitude of axially moving Timoshenko beams.展开更多
We present exact solutions for the Klein Gordon equation with a ring-shaped oscillator potential. The energy eigenvalues and the normalized wave functions are obtained for a particle in the presence of non-central osc...We present exact solutions for the Klein Gordon equation with a ring-shaped oscillator potential. The energy eigenvalues and the normalized wave functions are obtained for a particle in the presence of non-central oscillator potential. The angulm" functions are expressed in terms of the hypergeometric functions. The radial eigenfunetions have been obtained by using the Laplace integral transform. By means of the Laplace transform method, which is efficient and simple, the radial Klein-Gordon equation is reduced to a first-order differential equation.展开更多
Current research is about the injection of a viscous fluid in the presence of a transverse uniform magnetic field to reduce the sliding drag.There is a slip-on both the slider and the ground in the two cases,for examp...Current research is about the injection of a viscous fluid in the presence of a transverse uniform magnetic field to reduce the sliding drag.There is a slip-on both the slider and the ground in the two cases,for example,a long porous slider and a circular porous slider.By utilizing similarity transformation Navier-Stokes equations are converted into coupled equations which are tackled by Integral Transform Method.Solutions are obtained for different values of Reynolds numbers,velocity slip,and magnetic field.We found that surface slip and Reynolds number has a substantial influence on the lift and drag of long and circular sliders,whereas the magnetic effect is also noticeable.展开更多
This paper deals with the determination of temperature distribution and thermal deflection function of a thin circular plate with the stated conditions. The transient heat conduction equation is solved by using Marchi...This paper deals with the determination of temperature distribution and thermal deflection function of a thin circular plate with the stated conditions. The transient heat conduction equation is solved by using Marchi-Zgrablich transform and Laplace transform simultaneously and the results of temperature distribution and thermal deflection function are obtained in terms of infinite series of Bessel function and it is solved for special case by using Mathcad 2007 software and represented graphically by using Microsoft excel 2007.展开更多
This study introduces a novel mathematical model that combines the finite integral transform(FIT)and gradientenhanced physics-informed neural network(g-PINN)to address thermomechanical problems in functionally graded ...This study introduces a novel mathematical model that combines the finite integral transform(FIT)and gradientenhanced physics-informed neural network(g-PINN)to address thermomechanical problems in functionally graded materials with varying properties.The model employs a multilayer heterostructure homogeneous approach within the FIT to linearize and approximate various parameters,such as the thermal conductivity,specific heat,density,stiffness,thermal expansion coefficient,and Poisson’s ratio.The provided FIT and g-PINN techniques are highly proficient in solving the PDEs of energy equations and equations of motion in a spherical domain,particularly when dealing with space-time dependent boundary conditions.The FIT method simplifies the governing partial differential equations into ordinary differential equations for efficient solutions,whereas the g-PINN bypasses linearization,achieving high accuracy with fewer training data(error<3.8%).The approach is applied to a spherical pressure vessel,solving energy and motion equations under complex boundary conditions.Furthermore,extensive parametric studies are conducted herein to demonstrate the impact of different property profiles and radial locations on the transient evolution and dynamic propagation of thermomechanical stresses.However,the accuracy of the presented approach is evaluated by comparing the g-PINN results,which have an error of less than 3.8%.Moreover,this model offers significant potential for optimizing materials in hightemperature reactors and chemical plants,improving safety,extending lifespan,and reducing thermal fatigue under extreme processing conditions.展开更多
The Generalized Integral Transform Technique (GITT) was applied to predict dynamic response of Vortex-Induced Vibration (VIV) of a long flexible cylinder. A nonlinear wake oscillator model was used to represent th...The Generalized Integral Transform Technique (GITT) was applied to predict dynamic response of Vortex-Induced Vibration (VIV) of a long flexible cylinder. A nonlinear wake oscillator model was used to represent the cross-flow force acting on the cylinder, leading to a coupled system of second-order Partial Differential Equations (PDEs) in temporal variable. The GITT approach was used to transform the system of PDEs to a system of Ordinary Differential Equations (ODEs), which was numerically solved by using the Adams-Moulton and Gear method (DIVPAG) developed by the International Mathematics and Statistics Library (IMSL). Numerical results were presented for comparison to those given by the finite difference method and experimental results, allowing a critical evaluation of the technique performance. The influence of variation of mean axial tension induced by elongation of flexible cylinder was evaluated, which was shown to be not negligible in numerical simulation of VIV of a long flexible cylinder.展开更多
In the investigation on fracture mechanics,the potential function was introduced, and the moving differential equation was constructed. By making Laplace and Fourier transformation as well as sine and cosine transform...In the investigation on fracture mechanics,the potential function was introduced, and the moving differential equation was constructed. By making Laplace and Fourier transformation as well as sine and cosine transformation to moving differential equations and various responses, the dual equation which is constructed from boundary conditions lastly was solved. This method of investigating dynamic crack has become a more systematic one that is used widely. Some problems are encountered when the dynamic crack is studied. After the large investigation on the problems, it is discovered that during the process of mathematic derivation, the method is short of precision, and the derived results in this method are accidental and have no credibility.A model for example is taken to explain the problems existing in initial deriving process of the integral_transformation method of dynamic crack.展开更多
In this paper, we introduce the fractional wavelet transformations (FrWT) involving Han- kel-Clifford integral transformation (HCIIT) on the positive half line and studied some of its basic properties. Also we obt...In this paper, we introduce the fractional wavelet transformations (FrWT) involving Han- kel-Clifford integral transformation (HCIIT) on the positive half line and studied some of its basic properties. Also we obtain Parseval's relation and an inversion formula. Examples of fractional powers of Hankel-Clifford integral transformation (FrHClIT) and FrWT are given. Then, we introduce the concept of fractional wavelet packet transformations FrBWPT and FrWPIT, and investigate their properties.展开更多
In this paper, the compatibility between the integral type gauge transformation and the additional symmetry of the constrained KP hierarchy is given. And the string-equation constraint in matrix models is also derived.
This paper serves two purposes. One is to modify Strichartz's results with respect to the asymptotic averages of the Fourier transform of μ on , self-similar measure defined by Hutchinson. Another purpose is to c...This paper serves two purposes. One is to modify Strichartz's results with respect to the asymptotic averages of the Fourier transform of μ on , self-similar measure defined by Hutchinson. Another purpose is to consider a singular integral operator on μ and show that this op- erator is of type (p,p)(1<p<∞).展开更多
By using a certain hybrid-type convolution operator,we first introduce a new subclass of normalized analytic functions in the open unit disk.For members of this analytic function class,we then derive several propertie...By using a certain hybrid-type convolution operator,we first introduce a new subclass of normalized analytic functions in the open unit disk.For members of this analytic function class,we then derive several properties and characteristics including(for example)the modified Hadamard products,Holder's inequalities and convolution properties as well as some closure properties under a general family of integral transforms.展开更多
Given the Laplace transform F(s) of a function f(t), we develop a new algorithm to find on approximation to f(t) by the use of the dassical Jacobi polynomials. The main contribution of our work is the development of a...Given the Laplace transform F(s) of a function f(t), we develop a new algorithm to find on approximation to f(t) by the use of the dassical Jacobi polynomials. The main contribution of our work is the development of a new and very effective method to determine the coefficients in the finite series ex-pansion that approximation f(t) in terms of Jacobi polynomials. Some numerical examples are illustrated.展开更多
The new inversion formula of the Laplace transform is considered. In the formula we use only the positive values ofx SiCoLT(x) = c S(x), L(S(x)) = T(x), c = const., x 〉 O,from the real axis. Si is the sinus...The new inversion formula of the Laplace transform is considered. In the formula we use only the positive values ofx SiCoLT(x) = c S(x), L(S(x)) = T(x), c = const., x 〉 O,from the real axis. Si is the sinus transform, Co is the cosines transform of Fourier and L is the Laplace transform.展开更多
We propose a new two-fold integration transformation in p-q phase space∫∫^∞-∞dpdq/π e^2i(p-x)(q-y)f(p,q)≡G(x,y),which possesses some well-behaved transformation properties. We apply this transformation t...We propose a new two-fold integration transformation in p-q phase space∫∫^∞-∞dpdq/π e^2i(p-x)(q-y)f(p,q)≡G(x,y),which possesses some well-behaved transformation properties. We apply this transformation to the Weyl ordering of operators, especially those Q-P ordered and P-Q ordered operators.展开更多
Using the Weyl ordering of operators expansion formula (Hong-Yi Fan, J. Phys.A 25 (1992) 3443) this paper finds a kind of two-fold integration transformation about the Wigner operator △( q',p) q-number transf...Using the Weyl ordering of operators expansion formula (Hong-Yi Fan, J. Phys.A 25 (1992) 3443) this paper finds a kind of two-fold integration transformation about the Wigner operator △( q',p) q-number transform) in phase space quantum mechanics,∫∫∞-∞dp'dq'/π △(q',p')e-2i( p-p')( q-q')=δ( p-P)δ( q-Q),∫∫∞-∞dqdpδ(p-P)δ(q-Q)e2i(p-p')(q-q')=△(q',p'),whereQ,P are the coordinate and momentum operators, respectively. We apply it to study mutual converting formulae among Q-P ordering, P-Q ordering and Weyl ordering of operators. In this way, the contents of phase space quantum mechanics can be enriched. The formula of the Weyl ordering of operators expansion and the technique of integration within the Weyl ordered product of operators are used in this discussion.展开更多
In the past,convolutional neural network(CNN)has become one of the most popular deep learning frameworks,and has been widely used in Hyperspectral image classification tasks.Convolution(Conv)in CNN uses filter weights...In the past,convolutional neural network(CNN)has become one of the most popular deep learning frameworks,and has been widely used in Hyperspectral image classification tasks.Convolution(Conv)in CNN uses filter weights to extract features in local receiving domain,and the weight parameters are shared globally,which more focus on the highfrequency information of the image.Different from Conv,Transformer can obtain the long‐term dependence between long‐distance features through modelling,and adaptively focus on different regions.In addition,Transformer is considered as a low‐pass filter,which more focuses on the low‐frequency information of the image.Considering the complementary characteristics of Conv and Transformer,the two modes can be integrated for full feature extraction.In addition,the most important image features correspond to the discrimination region,while the secondary image features represent important but easily ignored regions,which are also conducive to the classification of HSIs.In this study,a complementary integrated Transformer network(CITNet)for hyperspectral image classification is proposed.Firstly,three‐dimensional convolution(Conv3D)and two‐dimensional convolution(Conv2D)are utilised to extract the shallow semantic information of the image.In order to enhance the secondary features,a channel Gaussian modulation attention module is proposed,which is embedded between Conv3D and Conv2D.This module can not only enhance secondary features,but suppress the most important and least important features.Then,considering the different and complementary characteristics of Conv and Transformer,a complementary integrated Transformer module is designed.Finally,through a large number of experiments,this study evaluates the classification performance of CITNet and several state‐of‐the‐art networks on five common datasets.The experimental results show that compared with these classification networks,CITNet can provide better classification performance.展开更多
As a natural and important extension of Fan's paper (Fan Hong-Yi 2010 Chin. Phys. B 19 040305) by employing the formula of operators' Weyl ordering expansion and the bipartite entangled state representation this p...As a natural and important extension of Fan's paper (Fan Hong-Yi 2010 Chin. Phys. B 19 040305) by employing the formula of operators' Weyl ordering expansion and the bipartite entangled state representation this paper finds a new two-fold complex integration transformation about the Wigner operator A (#, ~) (in its entangled form) in phase space quantum mechanics, and its inverse transformation. In this way, some operator ordering problems regarding to (a1-a2) and (a1+a2) can be solved and the contents of phase space quantum mechanics can be enriched, where ai,ai are bosonic creation and annihilation operators, respectively.展开更多
The integrated hydraulic transformer has a compact structure and no throttling loss in the process of pressure regulation.It is widely used in the common pressure rail hydrostatic transmission system.The integrated hy...The integrated hydraulic transformer has a compact structure and no throttling loss in the process of pressure regulation.It is widely used in the common pressure rail hydrostatic transmission system.The integrated hydraulic transformer is realized by designing more than three ports on the distribution plate,and the voltage transformation characteristics of the integrated hydraulic transformer with different port numbers are different.In this paper,the influence of port number on the pressure ratio of integrated hydraulic transformer was studied,and the pressure ratio characteristics of 3⁃ports,4⁃ports,and 5⁃ports integrated hydraulic transformer were obtained,and an experimental platform was built for experimental verification,which shows that the simulation results are consistent with the experimental results and provides a theoretical basis for the design of integrated hydraulic transformer.展开更多
文摘In this study,we aimto investigate certain triple integral transformand its application to a class of partial differentialequations.We discuss various properties of the new transformincluding inversion, linearity, existence, scaling andshifting, etc. Then,we derive several results enfolding partial derivatives and establish amulti-convolution theorem.Further, we apply the aforementioned transform to some classical functions and many types of partial differentialequations involving heat equations,wave equations, Laplace equations, and Poisson equations aswell.Moreover,wedraw some figures to illustrate 3-D contour plots for exact solutions of some selected examples involving differentvalues in their variables.
基金the National Basic Research Program of China(No.2014CB046300)the National Natural Science Foundation of China(No.51174196)
文摘Following exploitation of a coal seam, the final stress field is the sum of in situ stress field and an excavation stress field. Based on this feature, we firstly established a mechanics analytical model of the mining floor strata. Then the study applied Fourier integral transform to solve a biharmonic equation,obtaining the analytical solution of the stress and displacement of the mining floor. Additionally, this investigation used the Mohr–Coulomb yield criterion to determine the plastic failure depth of the floor strata. The calculation process showed that the plastic failure depth of the floor and floor heave are related to the mining width, burial depth and physical–mechanical properties. The results from an example show that the curve of the plastic failure depth of the mining floor is characterized by a funnel shape and the maximum failure depth generates in the middle of mining floor; and that the maximum and minimum principal stresses change distinctly in the shallow layer and tend to a fixed value with an increase in depth. Based on the displacement results, the maximum floor heave appears in the middle of the stope and its value is 0.107 m. This will provide a basis for floor control. Lastly, we have verified the analytical results using FLAC3 Dto simulate floor excavation and find that there is some deviation between the two results, but their overall tendency is consistent which illustrates that the analysis method can well solve the stress and displacement of the floor.
基金Project supported by the Science Foundation of China University of Petroleum in Beijing(No.2462013YJRC003)
文摘The generalized integral transform technique (GITT) is used to find a semianalytical numerical solution for dynamic response of an axially moving Timoshenko beam with clamped-clamped and simply-supported boundary conditions, respectively. The implementation of GITT approach for analyzing the forced vibration equation eliminates the space variable and leads to systems of second-order ordinary differential equations (ODEs) in time. The MATHEMATICA built-in function, NDSolve, is used to numerically solve the resulting transformed ODE system. The good convergence behavior of the suggested eigenfunction expansions is demonstrated for calculating the transverse deflection and the angle of rotation of the beam cross-section. Moreover, parametric studies are performed to analyze the effects of the axially moving speed, the axial tension, and the amplitude of external distributed force on the vibration amplitude of axially moving Timoshenko beams.
文摘We present exact solutions for the Klein Gordon equation with a ring-shaped oscillator potential. The energy eigenvalues and the normalized wave functions are obtained for a particle in the presence of non-central oscillator potential. The angulm" functions are expressed in terms of the hypergeometric functions. The radial eigenfunetions have been obtained by using the Laplace integral transform. By means of the Laplace transform method, which is efficient and simple, the radial Klein-Gordon equation is reduced to a first-order differential equation.
文摘Current research is about the injection of a viscous fluid in the presence of a transverse uniform magnetic field to reduce the sliding drag.There is a slip-on both the slider and the ground in the two cases,for example,a long porous slider and a circular porous slider.By utilizing similarity transformation Navier-Stokes equations are converted into coupled equations which are tackled by Integral Transform Method.Solutions are obtained for different values of Reynolds numbers,velocity slip,and magnetic field.We found that surface slip and Reynolds number has a substantial influence on the lift and drag of long and circular sliders,whereas the magnetic effect is also noticeable.
文摘This paper deals with the determination of temperature distribution and thermal deflection function of a thin circular plate with the stated conditions. The transient heat conduction equation is solved by using Marchi-Zgrablich transform and Laplace transform simultaneously and the results of temperature distribution and thermal deflection function are obtained in terms of infinite series of Bessel function and it is solved for special case by using Mathcad 2007 software and represented graphically by using Microsoft excel 2007.
文摘This study introduces a novel mathematical model that combines the finite integral transform(FIT)and gradientenhanced physics-informed neural network(g-PINN)to address thermomechanical problems in functionally graded materials with varying properties.The model employs a multilayer heterostructure homogeneous approach within the FIT to linearize and approximate various parameters,such as the thermal conductivity,specific heat,density,stiffness,thermal expansion coefficient,and Poisson’s ratio.The provided FIT and g-PINN techniques are highly proficient in solving the PDEs of energy equations and equations of motion in a spherical domain,particularly when dealing with space-time dependent boundary conditions.The FIT method simplifies the governing partial differential equations into ordinary differential equations for efficient solutions,whereas the g-PINN bypasses linearization,achieving high accuracy with fewer training data(error<3.8%).The approach is applied to a spherical pressure vessel,solving energy and motion equations under complex boundary conditions.Furthermore,extensive parametric studies are conducted herein to demonstrate the impact of different property profiles and radial locations on the transient evolution and dynamic propagation of thermomechanical stresses.However,the accuracy of the presented approach is evaluated by comparing the g-PINN results,which have an error of less than 3.8%.Moreover,this model offers significant potential for optimizing materials in hightemperature reactors and chemical plants,improving safety,extending lifespan,and reducing thermal fatigue under extreme processing conditions.
基金financial support provided by CNPq,CAPES and FAPERJ ofBrazil for their research workfinancial support provided by China Scholarship Council
文摘The Generalized Integral Transform Technique (GITT) was applied to predict dynamic response of Vortex-Induced Vibration (VIV) of a long flexible cylinder. A nonlinear wake oscillator model was used to represent the cross-flow force acting on the cylinder, leading to a coupled system of second-order Partial Differential Equations (PDEs) in temporal variable. The GITT approach was used to transform the system of PDEs to a system of Ordinary Differential Equations (ODEs), which was numerically solved by using the Adams-Moulton and Gear method (DIVPAG) developed by the International Mathematics and Statistics Library (IMSL). Numerical results were presented for comparison to those given by the finite difference method and experimental results, allowing a critical evaluation of the technique performance. The influence of variation of mean axial tension induced by elongation of flexible cylinder was evaluated, which was shown to be not negligible in numerical simulation of VIV of a long flexible cylinder.
文摘In the investigation on fracture mechanics,the potential function was introduced, and the moving differential equation was constructed. By making Laplace and Fourier transformation as well as sine and cosine transformation to moving differential equations and various responses, the dual equation which is constructed from boundary conditions lastly was solved. This method of investigating dynamic crack has become a more systematic one that is used widely. Some problems are encountered when the dynamic crack is studied. After the large investigation on the problems, it is discovered that during the process of mathematic derivation, the method is short of precision, and the derived results in this method are accidental and have no credibility.A model for example is taken to explain the problems existing in initial deriving process of the integral_transformation method of dynamic crack.
基金Supported by Govt. of India,Ministry of Science&Technology,DST(Grant No.DST/INSPIRE FELLOWSHIP/2012/479)
文摘In this paper, we introduce the fractional wavelet transformations (FrWT) involving Han- kel-Clifford integral transformation (HCIIT) on the positive half line and studied some of its basic properties. Also we obtain Parseval's relation and an inversion formula. Examples of fractional powers of Hankel-Clifford integral transformation (FrHClIT) and FrWT are given. Then, we introduce the concept of fractional wavelet packet transformations FrBWPT and FrWPIT, and investigate their properties.
基金supported by the Fundamental Research Funds for the Central Universities(2015QNA43)
文摘In this paper, the compatibility between the integral type gauge transformation and the additional symmetry of the constrained KP hierarchy is given. And the string-equation constraint in matrix models is also derived.
文摘This paper serves two purposes. One is to modify Strichartz's results with respect to the asymptotic averages of the Fourier transform of μ on , self-similar measure defined by Hutchinson. Another purpose is to consider a singular integral operator on μ and show that this op- erator is of type (p,p)(1<p<∞).
文摘By using a certain hybrid-type convolution operator,we first introduce a new subclass of normalized analytic functions in the open unit disk.For members of this analytic function class,we then derive several properties and characteristics including(for example)the modified Hadamard products,Holder's inequalities and convolution properties as well as some closure properties under a general family of integral transforms.
文摘Given the Laplace transform F(s) of a function f(t), we develop a new algorithm to find on approximation to f(t) by the use of the dassical Jacobi polynomials. The main contribution of our work is the development of a new and very effective method to determine the coefficients in the finite series ex-pansion that approximation f(t) in terms of Jacobi polynomials. Some numerical examples are illustrated.
文摘The new inversion formula of the Laplace transform is considered. In the formula we use only the positive values ofx SiCoLT(x) = c S(x), L(S(x)) = T(x), c = const., x 〉 O,from the real axis. Si is the sinus transform, Co is the cosines transform of Fourier and L is the Laplace transform.
基金National Natural Science Foundation of China under Grant Nos.10775097 and 10874174
文摘We propose a new two-fold integration transformation in p-q phase space∫∫^∞-∞dpdq/π e^2i(p-x)(q-y)f(p,q)≡G(x,y),which possesses some well-behaved transformation properties. We apply this transformation to the Weyl ordering of operators, especially those Q-P ordered and P-Q ordered operators.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 10775097 and 10874174)Specialized Research Fund for the Doctoral Program of Higher Education of China
文摘Using the Weyl ordering of operators expansion formula (Hong-Yi Fan, J. Phys.A 25 (1992) 3443) this paper finds a kind of two-fold integration transformation about the Wigner operator △( q',p) q-number transform) in phase space quantum mechanics,∫∫∞-∞dp'dq'/π △(q',p')e-2i( p-p')( q-q')=δ( p-P)δ( q-Q),∫∫∞-∞dqdpδ(p-P)δ(q-Q)e2i(p-p')(q-q')=△(q',p'),whereQ,P are the coordinate and momentum operators, respectively. We apply it to study mutual converting formulae among Q-P ordering, P-Q ordering and Weyl ordering of operators. In this way, the contents of phase space quantum mechanics can be enriched. The formula of the Weyl ordering of operators expansion and the technique of integration within the Weyl ordered product of operators are used in this discussion.
基金funded in part by the National Natural Science Foundation of China(42271409,62071084)in part by the Heilongjiang Science Foundation Project of China under Grant LH2021D022in part by the Leading Talents Project of the State Ethnic Affairs Commission,and in part by the Fundamental Research Funds in Heilongjiang Provincial Universities of China under Grant 145209149.
文摘In the past,convolutional neural network(CNN)has become one of the most popular deep learning frameworks,and has been widely used in Hyperspectral image classification tasks.Convolution(Conv)in CNN uses filter weights to extract features in local receiving domain,and the weight parameters are shared globally,which more focus on the highfrequency information of the image.Different from Conv,Transformer can obtain the long‐term dependence between long‐distance features through modelling,and adaptively focus on different regions.In addition,Transformer is considered as a low‐pass filter,which more focuses on the low‐frequency information of the image.Considering the complementary characteristics of Conv and Transformer,the two modes can be integrated for full feature extraction.In addition,the most important image features correspond to the discrimination region,while the secondary image features represent important but easily ignored regions,which are also conducive to the classification of HSIs.In this study,a complementary integrated Transformer network(CITNet)for hyperspectral image classification is proposed.Firstly,three‐dimensional convolution(Conv3D)and two‐dimensional convolution(Conv2D)are utilised to extract the shallow semantic information of the image.In order to enhance the secondary features,a channel Gaussian modulation attention module is proposed,which is embedded between Conv3D and Conv2D.This module can not only enhance secondary features,but suppress the most important and least important features.Then,considering the different and complementary characteristics of Conv and Transformer,a complementary integrated Transformer module is designed.Finally,through a large number of experiments,this study evaluates the classification performance of CITNet and several state‐of‐the‐art networks on five common datasets.The experimental results show that compared with these classification networks,CITNet can provide better classification performance.
基金supported by the National Natural Science Foundation of China (Grant Nos. 10775097 and 10874174)the President Foundation of Chinese Academy of Sciences
文摘As a natural and important extension of Fan's paper (Fan Hong-Yi 2010 Chin. Phys. B 19 040305) by employing the formula of operators' Weyl ordering expansion and the bipartite entangled state representation this paper finds a new two-fold complex integration transformation about the Wigner operator A (#, ~) (in its entangled form) in phase space quantum mechanics, and its inverse transformation. In this way, some operator ordering problems regarding to (a1-a2) and (a1+a2) can be solved and the contents of phase space quantum mechanics can be enriched, where ai,ai are bosonic creation and annihilation operators, respectively.
基金the National Key Research and Development Plan Projects(Grant No.2018YFB2001200)the Natural Science Foundation of the Jiangsu Higher Education Institutions of China(Grant Nos.19KJB460026,19KJA140002)the Six Talent Peak Training Projects in Jiangsu Province(Grant No.JXQC-36).
文摘The integrated hydraulic transformer has a compact structure and no throttling loss in the process of pressure regulation.It is widely used in the common pressure rail hydrostatic transmission system.The integrated hydraulic transformer is realized by designing more than three ports on the distribution plate,and the voltage transformation characteristics of the integrated hydraulic transformer with different port numbers are different.In this paper,the influence of port number on the pressure ratio of integrated hydraulic transformer was studied,and the pressure ratio characteristics of 3⁃ports,4⁃ports,and 5⁃ports integrated hydraulic transformer were obtained,and an experimental platform was built for experimental verification,which shows that the simulation results are consistent with the experimental results and provides a theoretical basis for the design of integrated hydraulic transformer.