In the structural reliability analysis,the first-order reliability method(FORM)often yields significant errors when addressing nonlinear problems.Although the second-order reliability method(SORM)can provide higher ac...In the structural reliability analysis,the first-order reliability method(FORM)often yields significant errors when addressing nonlinear problems.Although the second-order reliability method(SORM)can provide higher accuracy,the additional computation of the Hessian matrix leads to lower computational efficiency.Additionally,when the dimensionality of the random variables is high,the approximation formula of SORM can result in larger errors.To address these issues,a structural reliability analysis method based on Kriging and spherical cap area integral is proposed.Firstly,this method integrates FORM with the quasi-Newton algorithm Broyden-Fletcher-Goldfarb-Shanno(BFGS),trains the Kriging model by using sample points from the algorithm’s iteration process,and combines the Kriging model with gradient information to approximate the Hessian matrix.Then,the failure surface is approximated as a rotating paraboloid,utilizing the spherical cap to replace the complex surface.For the n-dimensional case,the hyperspherical cap area expression is combined with the integral method to calculate the failure probability.Finally,the method is validated through three examples,demonstrating improved computational accuracy and efficiency compared to traditional methods.展开更多
In this study,an improved integrated radial basis function with nonuniform shape parameter is introduced.The proposed shape parameter varies in each support domain and is defined byθ=1/d_(max),where d_(max)is the max...In this study,an improved integrated radial basis function with nonuniform shape parameter is introduced.The proposed shape parameter varies in each support domain and is defined byθ=1/d_(max),where d_(max)is the maximum distance of any pair of nodes in the support domain.The proposed method is verified and shows good performance.The results are stable and accurate with any number of nodes and an arbitrary nodal distribution.Notably,the support domain should be large enough to obtain accurate results.This method is then applied for transient analysis of curved shell structures made from functionally graded materials with complex geometries.Through several numerical examples,the accuracy of the proposed approach is demonstrated and discussed.Additionally,the influence of various factors on the dynamic behavior of the structures,including the power-law index,different materials,loading conditions,and geometrical parameters of the structures,was investigated.展开更多
This paper studies the sensing base station(SBS)that has great potential to improve the safety of vehicles and pedestrians on roads.SBS can detect the targets on the road with communication signals using the integrate...This paper studies the sensing base station(SBS)that has great potential to improve the safety of vehicles and pedestrians on roads.SBS can detect the targets on the road with communication signals using the integrated sensing and communication(ISAC)technique.Compared with vehicle-mounted radar,SBS has a better sensing field due to its higher deployment position,which can help solve the problem of sensing blind areas.In this paper,key technologies of SBS are studied,including the beamforming algorithm,beam scanning scheme,and interference cancellation algorithm.To transmit and receive ISAC signals simultaneously,a double-coupling antenna array is applied.The free detection beam and directional communication beam are proposed for joint communication and sensing to meet the requirements of beamwidth and pointing directions.The joint timespace-frequency domain division multiple access algorithm is proposed to cancel the interference of SBS,including multiuser interference and duplex interference between sensing and communication.Finally,the sensing and communication performance of SBS under the industrial scientific medical power limitation is analyzed and simulated.Simulation results show that the communication rate of SBS can reach over 100 Mbps and the range of sensing and communication can reach about 500 m.展开更多
Clifford analysis is an important branch of modern analysis;it has a very important theoretical significance and application value,and its conclusions can be applied to the Maxwell equation,Yang-Mill field theory,quan...Clifford analysis is an important branch of modern analysis;it has a very important theoretical significance and application value,and its conclusions can be applied to the Maxwell equation,Yang-Mill field theory,quantum mechanics and value problems.In this paper,we first give the definition of a quasi-Cauchy type integral in complex Clifford analysis,and get the Plemelj formula for it.Second,we discuss the H?lder continuity for the Cauchy-type integral operators with values in a complex Clifford algebra.Finally,we prove the existence of solutions for a class of linear boundary value problems and give the integral representation for the solution.展开更多
Classical Chinese characters,presented through calligraphy,seal engraving,or painting,can exhibit different aesthetics and essences of Chinese characters,making them the most important asset of the Chinese people.Call...Classical Chinese characters,presented through calligraphy,seal engraving,or painting,can exhibit different aesthetics and essences of Chinese characters,making them the most important asset of the Chinese people.Calligraphy and seal engraving,as two closely related systems in traditional Chinese art,have developed through the ages.Due to changes in lifestyle and advancements in modern technology,their original functions of daily writing and verification have gradually diminished.Instead,they have increasingly played a significant role in commercial art.This study utilizes the Evaluation Grid Method(EGM)and the Analytic Hierarchy Process(AHP)to research the key preference factors in the application of calligraphy and seal engraving imagery.Different from the traditional 5-point equal interval semantic questionnaire,this study employs a non-equal interval semantic questionnaire with a golden ratio scale,distinguishing the importance ratio of adjacent semantic meanings and highlighting the weighted emphasis on visual aesthetics.Additionally,the study uses Importance-Performance Analysis(IPA)and Technique for Order Preference by Similarity to Ideal Solution(TOPSIS)to obtain the key preference sequence of calligraphy and seal engraving culture.Plus,the Choquet integral comprehensive evaluation is used as a reference for IPA comparison.It is hoped that this study can provide cultural imagery references and research methods,injecting further creativity into industrial design.展开更多
Integrated data and energy transfer(IDET)enables the electromagnetic waves to transmit wireless energy at the same time of data delivery for lowpower devices.In this paper,an energy harvesting modulation(EHM)assisted ...Integrated data and energy transfer(IDET)enables the electromagnetic waves to transmit wireless energy at the same time of data delivery for lowpower devices.In this paper,an energy harvesting modulation(EHM)assisted multi-user IDET system is studied,where all the received signals at the users are exploited for energy harvesting without the degradation of wireless data transfer(WDT)performance.The joint IDET performance is then analysed theoretically by conceiving a practical time-dependent wireless channel.With the aid of the AO based algorithm,the average effective data rate among users are maximized by ensuring the BER and the wireless energy transfer(WET)performance.Simulation results validate and evaluate the IDET performance of the EHM assisted system,which also demonstrates that the optimal number of user clusters and IDET time slots should be allocated,in order to improve the WET and WDT performance.展开更多
Around the world,there has been a notable shift toward the use of renewable energy technology due to the growing demand for energy and the ongoing depletion of conventional resources,such as fossil fuels.Following thi...Around the world,there has been a notable shift toward the use of renewable energy technology due to the growing demand for energy and the ongoing depletion of conventional resources,such as fossil fuels.Following this worldwide trend,Brunei’s government has initiated several strategic programs aimed at encouraging the establishment of energy from renewable sources in the nation’s energy mix.These initiatives are designed not only to support environmental sustainability but also to make energy from renewable sources increasingly competitive in comparison to more conventional energy sources like gas and oil,which have historically dominated Brunei’s energy market.The optimization of a hybrid energy system that combines diesel generators,solar photovoltaic(PV)panels,and the national power grid is the focus of this study.The objective is to identify the most cost-effective and environmentally sustainable configuration that can reliably meet local energy demands.During optimization,several configuration was tried and tested,including only grid,PV and Grid and PV-generator.HOMER(Hybrid Optimization of Multiple Energy Resources)software,a popular simulation tool that makes it possible to simulate and analyze hybrid energy systems,is utilized in the optimization process.Inside the HOMER Pro optimization,various system configuration is taken into account for the optimization.While simulating,it takes into account different combinations of components such as solar panels,wind turbines and batteries.Later on,it is being ranked by different factors such as net present cost(NPC),Cost of Energy(COE),etc.A comprehensive techno-economic research is carried out to evaluate various system configurations,considering key performance indicators such as total energy generation cost,operational expenditure,and greenhouse gas emissions.The results provide valuable insights into how renewable-based hybrid systems can reduce environmental impact while maintaining economic viability,supporting Brunei’s broader goals of energy diversification and sustainability.The study also emphasizes how such hybrid systems could be scaled for off-grid and rural populations in Brunei,where a dependable electricity supply is still a problem.Furthermore,sensitivity analyses were performed to evaluate the effects of variations in solar irradiation,load demand,and fuel prices on the overall system performance.Policymakers and energy planners can use these insights to help them make data-driven decisions about future investments in infrastructure for renewable energy.展开更多
Hematopoiesis originates in the yolk sac,which forms prior to the establishment of blood circulation and exhibits distinct developmental processes between primates and mice.Despite increasing appreciation of yolk sac ...Hematopoiesis originates in the yolk sac,which forms prior to the establishment of blood circulation and exhibits distinct developmental processes between primates and mice.Despite increasing appreciation of yolk sac hematopoiesis for its lifelong contribution to the adult hematopoietic system and its regulatory roles in organogenesis,cross-species differences,particularly before the onset of blood circulation,remain incompletely understood.In this study,we constructed an integrative cross-species transcriptome atlas of pre-circulation hematopoiesis in humans,monkeys(Macaca fascicularis),and mice.This analysis identified conserved populations between primates and mice,while also revealing more differentiated myeloid,erythroid,and megakaryocytic lineages in pre-circulation primates compared to mice.Specifically,SPP1-expressingmacrophageswere detected in primates before the onset of blood circulation but were absent in mice.Cell-cell communication analysis identified CSF1+extraembryonic mesoderm cells as a potential supportive niche for macrophage generation,with ligand-receptor interactions between macrophages and other cell populations in the human yolk sac.Interestingly,pre-circulation SPP1+macrophages exhibited hallmark signatures reminiscent of a macrophage subset that positively regulates hematopoietic stem cell generation.Our findings provide a valuable cross-species resource,advancing our understanding of human pre-circulation yolk sac hematopoiesis and offering a theoretical basis for the regeneration of functional blood cells.展开更多
In order to improve the detection accuracy of Doppler asymmetric spatial heterodyne(DASH)interferometer in harsh temperatures,an opto-mechanical-thermal integration analysis is carried out.Firstly,the correlation betw...In order to improve the detection accuracy of Doppler asymmetric spatial heterodyne(DASH)interferometer in harsh temperatures,an opto-mechanical-thermal integration analysis is carried out.Firstly,the correlation between the interference phase and temperature is established according to the working principle and the phase algorithm of the interferometer.Secondly,the optical mechanical thermal analysis model and thermal deformation data acquisition model are designed.The deformation data of the interference module and the imaging optical system at different temperatures are given by temperature load simulation analysis,and the phase error caused by thermal deformation is obtained by fitting.Finally,based on the wind speed error caused by thermal deformation of each component,a reasonable temperature control scheme is proposed.The results show that the interference module occupies the main cause,the temperature must be controlled within(20±0.05)℃,and the temperature control should be carried out for the temperature sensitive parts,and the wind speed error caused by the part is 3.8 m/s.The thermal drift between the magnification of the imaging optical system and the thermal drift of the relative position between the imaging optical system and the detector should occupy the secondary cause,which should be controlled within(20±2)℃,and the wind speed error caused by the part is 3.05 m/s.In summary,the wind measurement error caused by interference module,imaging optical system,and the relative position between the imaging optical system and the detector can be controlled within 6.85 m/s.The analysis and temperature control schemes presented in this paper can provide theoretical basis for DASH interferometer engineering applications.展开更多
Microsoft Excel is essential for the End-User Approach (EUA), offering versatility in data organization, analysis, and visualization, as well as widespread accessibility. It fosters collaboration and informed decision...Microsoft Excel is essential for the End-User Approach (EUA), offering versatility in data organization, analysis, and visualization, as well as widespread accessibility. It fosters collaboration and informed decision-making across diverse domains. Conversely, Python is indispensable for professional programming due to its versatility, readability, extensive libraries, and robust community support. It enables efficient development, advanced data analysis, data mining, and automation, catering to diverse industries and applications. However, one primary issue when using Microsoft Excel with Python libraries is compatibility and interoperability. While Excel is a widely used tool for data storage and analysis, it may not seamlessly integrate with Python libraries, leading to challenges in reading and writing data, especially in complex or large datasets. Additionally, manipulating Excel files with Python may not always preserve formatting or formulas accurately, potentially affecting data integrity. Moreover, dependency on Excel’s graphical user interface (GUI) for automation can limit scalability and reproducibility compared to Python’s scripting capabilities. This paper covers the integration solution of empowering non-programmers to leverage Python’s capabilities within the familiar Excel environment. This enables users to perform advanced data analysis and automation tasks without requiring extensive programming knowledge. Based on Soliciting feedback from non-programmers who have tested the integration solution, the case study shows how the solution evaluates the ease of implementation, performance, and compatibility of Python with Excel versions.展开更多
This study unfolds an innovative approach aiming to address the critical role of building design in global energy consumption, focusing on optimizing the Window-to-Wall Ratio (WWR), since buildings account for approxi...This study unfolds an innovative approach aiming to address the critical role of building design in global energy consumption, focusing on optimizing the Window-to-Wall Ratio (WWR), since buildings account for approximately 30% of total energy consumed worldwide. The greatest contributors to energy expenditure in buildings are internal artificial lighting and heating and cooling systems. The WWR, determined by the proportion of the building’s glazed area to its wall area, is a significant factor influencing energy efficiency and minimizing energy load. This study introduces the development of a semi-automated computer model designed to offer a real-time, interactive simulation environment, fostering improving communication and engagement between designers and owners. The said model serves to optimize both the WWR and building orientation to align with occupants’ needs and expectations, subsequently reducing annual energy consumption and enhancing the overall building energy performance. The integrated model incorporates Building Information Modeling (BIM), Virtual Reality (VR), and Energy Analysis tools deployed at the conceptual design stage, allowing for the amalgamation of owners’ inputs in the design process and facilitating the creation of more realistic and effective design strategies.展开更多
To enhance the safety of road traffic operations,this paper proposed a model based on stacking integrated learning utilizing American road traffic accident statistics.Initially,the process involved data cleaning,trans...To enhance the safety of road traffic operations,this paper proposed a model based on stacking integrated learning utilizing American road traffic accident statistics.Initially,the process involved data cleaning,transformation,and normalization.Subsequently,various classification models were constructed,including logistic regression,k-nearest neighbors,gradient boosting,decision trees,AdaBoost,and extra trees models.Evaluation metrics such as accuracy,precision,recall,F1 score,and Hamming loss were employed.Upon analysis,the passive-aggressive classifier model exhibited superior comprehensive indices compared to other models.Based on the model’s output results,an in-depth examination of the factors influencing traffic accidents was conducted.Additionally,measures and suggestions aimed at reducing the incidence of severe traffic accidents were presented.These findings served as a valuable reference for mitigating the occurrence of traffic accidents.展开更多
Under the foundation of Cauchy integral formula on certain distinguished boundary for functions with values in universal Clifford algebra, we define the Cauchy type integral with values in a universal Clifford algebra...Under the foundation of Cauchy integral formula on certain distinguished boundary for functions with values in universal Clifford algebra, we define the Cauchy type integral with values in a universal Clifford algebra, obtain its Cauchy principal value and Plemelj formula on certain distinguished boundary.展开更多
The equivalent stress fundamental solution for the elastoplastic dynamic plane strain problem is proposed to transform the virtual work in the third direction to the plane.Subsequently,based on Betti reciprocal theore...The equivalent stress fundamental solution for the elastoplastic dynamic plane strain problem is proposed to transform the virtual work in the third direction to the plane.Subsequently,based on Betti reciprocal theorem,by adopting the time dependent fundamental solutions in terms of displacement,traction and equivalent stress,the boundary integral equations for dynamic elastoplastic analysis for the plane strain problem are established.The establishment procedures for the displacement and the stress boundary integral equations,together with the stress equation at boundary points,are presented in details,while the standard discretization both in time and space under the frame of time domain boundary element method(TD-BEM)and the solution of the algebraic equations are also briefly stated.Two verification examples are presented from different viewpoints,for elastic and elastoplastic analysis,for 1-D and 2-D geometries,and for finite and infinite domains.The TD-BEM formulation for dynamic elastoplastic analysis is presented for the plane strain problem as an example,where the formulation is also applicable for the plane stress problem by properly transforming the elastic constants and adopting the corresponding fundamental solutions.展开更多
The paper applied the isogeometric boundary element method(IGABEM)to thermoelastic problems.The Non-Uniform Rational B-splines(NURBS)used to construct geometric models are employed to discretize the boundary integral ...The paper applied the isogeometric boundary element method(IGABEM)to thermoelastic problems.The Non-Uniform Rational B-splines(NURBS)used to construct geometric models are employed to discretize the boundary integral formulation of the governing equation.Due to the existence of thermal stress,the domain integral term appears in the boundary integral equation.We resolve this problem by incorporating radial integration method into IGABEM which converts the domain integral to the boundary integral.In this way,IGABEM can maintain its advantages in dimensionality reduction and more importantly,seamless integration of CAD and numerical analysis based on boundary representation.The algorithm is verified by numerical examples.展开更多
First, we give a module estimation of the singular integral with a differential element. Then by proving the existences of Cauchy principal value we obtain the transformation formula of the Cauchy-type singular integr...First, we give a module estimation of the singular integral with a differential element. Then by proving the existences of Cauchy principal value we obtain the transformation formula of the Cauchy-type singular integrals with a parameter.展开更多
Homotopy Analysis Method(HAM)is semi-analytic method to solve the linear and nonlinear mathematical models which can be used to obtain the approximate solution.The HAM includes an auxiliary parameter,which is an effic...Homotopy Analysis Method(HAM)is semi-analytic method to solve the linear and nonlinear mathematical models which can be used to obtain the approximate solution.The HAM includes an auxiliary parameter,which is an efficient way to examine and analyze the accuracy of linear and nonlinear problems.The main aim of this work is to explore the approximate solutions of fuzzy Volterra integral equations(both linear and nonlinear)with a separable kernel via HAM.This method provides a reliable way to ensure the convergence of the approximation series.A new general form of HAM is presented and analyzed in the fuzzy domain.A qualitative convergence analysis based on the graphical method of a fuzzy HAM is discussed.The solutions sought by the proposed method show that the HAM is easy to implement and computationally quite attractive.Some solutions of fuzzy second kind Volterra integral equations are solved as numerical examples to show the potential of the method.The results also show that HAM provides an easy way to control and modify the convergence area in order to obtain accurate solutions.展开更多
In this paper,the approximate solutions for two different type of two-dimensional nonlinear integral equations:two-dimensional nonlinear Volterra-Fredholm integral equations and the nonlinear mixed Volterra-Fredholm i...In this paper,the approximate solutions for two different type of two-dimensional nonlinear integral equations:two-dimensional nonlinear Volterra-Fredholm integral equations and the nonlinear mixed Volterra-Fredholm integral equations are obtained using the Laguerre wavelet method.To do this,these two-dimensional nonlinear integral equations are transformed into a system of nonlinear algebraic equations in matrix form.By solving these systems,unknown coefficients are obtained.Also,some theorems are proved for convergence analysis.Some numerical examples are presented and results are compared with the analytical solution to demonstrate the validity and applicability of the proposed method.展开更多
An analytical approach to evaluate the performance of the 3G/ad hoc integrated network is presented. A channel model capturing both path loss and shadowing is applied to the analysis so as to characterize power fallof...An analytical approach to evaluate the performance of the 3G/ad hoc integrated network is presented. A channel model capturing both path loss and shadowing is applied to the analysis so as to characterize power falloff vs. distance. The 3G/ad hoc integrated network scenario model is introduced briefly. Based on this model, several performances of the 3G/ ad hoc integrated network in terms of outage probability, call dropping probability and new call blocking probability are evaluated. The corresponding performance formulae are deduced in accordance with the analytical models. Meanwhile, the formula of the 3G/ad hoc integrated network capacity is deduced on the basis of the formula of the outage probability. It is observed from extensive simulation and numerical analysis that the 3G/ad hoc integrated network remarkably outperforms the 3G network with regards to the network performance. This derived evaluation approach can be applied into planning and optimization of the 3G/ad hoc network.展开更多
This paper proposes a novel numerical solution approach for the kinematic shakedown analysis of strain-hardening thin plates using the C^(1)nodal natural element method(C^(1)nodal NEM).Based on Koiter’s theorem and t...This paper proposes a novel numerical solution approach for the kinematic shakedown analysis of strain-hardening thin plates using the C^(1)nodal natural element method(C^(1)nodal NEM).Based on Koiter’s theorem and the von Mises and two-surface yield criteria,a nonlinear mathematical programming formulation is constructed for the kinematic shakedown analysis of strain-hardening thin plates,and the C^(1)nodal NEM is adopted for discretization.Additionally,König’s theory is used to deal with time integration by treating the generalized plastic strain increment at each load vertex.A direct iterative method is developed to linearize and solve this formulation by modifying the relevant objective function and equality constraints at each iteration.Kinematic shakedown load factors are directly calculated in a monotonically converging manner.Numerical examples validate the accuracy and convergence of the developed method and illustrate the influences of limited and unlimited strain-hardening models on the kinematic shakedown load factors of thin square and circular plates.展开更多
基金National Natural Science Foundation of China(No.52375236)Fundamental Research Funds for the Central Universities,China(No.23D110316)。
文摘In the structural reliability analysis,the first-order reliability method(FORM)often yields significant errors when addressing nonlinear problems.Although the second-order reliability method(SORM)can provide higher accuracy,the additional computation of the Hessian matrix leads to lower computational efficiency.Additionally,when the dimensionality of the random variables is high,the approximation formula of SORM can result in larger errors.To address these issues,a structural reliability analysis method based on Kriging and spherical cap area integral is proposed.Firstly,this method integrates FORM with the quasi-Newton algorithm Broyden-Fletcher-Goldfarb-Shanno(BFGS),trains the Kriging model by using sample points from the algorithm’s iteration process,and combines the Kriging model with gradient information to approximate the Hessian matrix.Then,the failure surface is approximated as a rotating paraboloid,utilizing the spherical cap to replace the complex surface.For the n-dimensional case,the hyperspherical cap area expression is combined with the integral method to calculate the failure probability.Finally,the method is validated through three examples,demonstrating improved computational accuracy and efficiency compared to traditional methods.
基金Ho Chi Minh City University of Technology (HCMUT), VNU-HCM for supporting this study
文摘In this study,an improved integrated radial basis function with nonuniform shape parameter is introduced.The proposed shape parameter varies in each support domain and is defined byθ=1/d_(max),where d_(max)is the maximum distance of any pair of nodes in the support domain.The proposed method is verified and shows good performance.The results are stable and accurate with any number of nodes and an arbitrary nodal distribution.Notably,the support domain should be large enough to obtain accurate results.This method is then applied for transient analysis of curved shell structures made from functionally graded materials with complex geometries.Through several numerical examples,the accuracy of the proposed approach is demonstrated and discussed.Additionally,the influence of various factors on the dynamic behavior of the structures,including the power-law index,different materials,loading conditions,and geometrical parameters of the structures,was investigated.
基金supported in part by the National Natural Science Foundation of China under Grant U21B2014,Grant 92267202,and Grant 62271081.
文摘This paper studies the sensing base station(SBS)that has great potential to improve the safety of vehicles and pedestrians on roads.SBS can detect the targets on the road with communication signals using the integrated sensing and communication(ISAC)technique.Compared with vehicle-mounted radar,SBS has a better sensing field due to its higher deployment position,which can help solve the problem of sensing blind areas.In this paper,key technologies of SBS are studied,including the beamforming algorithm,beam scanning scheme,and interference cancellation algorithm.To transmit and receive ISAC signals simultaneously,a double-coupling antenna array is applied.The free detection beam and directional communication beam are proposed for joint communication and sensing to meet the requirements of beamwidth and pointing directions.The joint timespace-frequency domain division multiple access algorithm is proposed to cancel the interference of SBS,including multiuser interference and duplex interference between sensing and communication.Finally,the sensing and communication performance of SBS under the industrial scientific medical power limitation is analyzed and simulated.Simulation results show that the communication rate of SBS can reach over 100 Mbps and the range of sensing and communication can reach about 500 m.
基金supported by the NSF of Hebei Province(A2022208007)the NSF of China(11571089,11871191)the NSF of Henan Province(222300420397)。
文摘Clifford analysis is an important branch of modern analysis;it has a very important theoretical significance and application value,and its conclusions can be applied to the Maxwell equation,Yang-Mill field theory,quantum mechanics and value problems.In this paper,we first give the definition of a quasi-Cauchy type integral in complex Clifford analysis,and get the Plemelj formula for it.Second,we discuss the H?lder continuity for the Cauchy-type integral operators with values in a complex Clifford algebra.Finally,we prove the existence of solutions for a class of linear boundary value problems and give the integral representation for the solution.
文摘Classical Chinese characters,presented through calligraphy,seal engraving,or painting,can exhibit different aesthetics and essences of Chinese characters,making them the most important asset of the Chinese people.Calligraphy and seal engraving,as two closely related systems in traditional Chinese art,have developed through the ages.Due to changes in lifestyle and advancements in modern technology,their original functions of daily writing and verification have gradually diminished.Instead,they have increasingly played a significant role in commercial art.This study utilizes the Evaluation Grid Method(EGM)and the Analytic Hierarchy Process(AHP)to research the key preference factors in the application of calligraphy and seal engraving imagery.Different from the traditional 5-point equal interval semantic questionnaire,this study employs a non-equal interval semantic questionnaire with a golden ratio scale,distinguishing the importance ratio of adjacent semantic meanings and highlighting the weighted emphasis on visual aesthetics.Additionally,the study uses Importance-Performance Analysis(IPA)and Technique for Order Preference by Similarity to Ideal Solution(TOPSIS)to obtain the key preference sequence of calligraphy and seal engraving culture.Plus,the Choquet integral comprehensive evaluation is used as a reference for IPA comparison.It is hoped that this study can provide cultural imagery references and research methods,injecting further creativity into industrial design.
基金supported in part by the MOST Major Research and Development Project(Grant No.2021YFB2900204)the National Natural Science Foundation of China(NSFC)(Grant No.62201123,No.62132004,No.61971102)+3 种基金China Postdoctoral Science Foundation(Grant No.2022TQ0056)in part by the financial support of the Sichuan Science and Technology Program(Grant No.2022YFH0022)Sichuan Major R&D Project(Grant No.22QYCX0168)the Municipal Government of Quzhou(Grant No.2022D031)。
文摘Integrated data and energy transfer(IDET)enables the electromagnetic waves to transmit wireless energy at the same time of data delivery for lowpower devices.In this paper,an energy harvesting modulation(EHM)assisted multi-user IDET system is studied,where all the received signals at the users are exploited for energy harvesting without the degradation of wireless data transfer(WDT)performance.The joint IDET performance is then analysed theoretically by conceiving a practical time-dependent wireless channel.With the aid of the AO based algorithm,the average effective data rate among users are maximized by ensuring the BER and the wireless energy transfer(WET)performance.Simulation results validate and evaluate the IDET performance of the EHM assisted system,which also demonstrates that the optimal number of user clusters and IDET time slots should be allocated,in order to improve the WET and WDT performance.
基金funded through Deanship of Scientific Research at Northern Border University,Arar,Saudi Arabia—project number“NBU-FFR-2025-3623-06”.
文摘Around the world,there has been a notable shift toward the use of renewable energy technology due to the growing demand for energy and the ongoing depletion of conventional resources,such as fossil fuels.Following this worldwide trend,Brunei’s government has initiated several strategic programs aimed at encouraging the establishment of energy from renewable sources in the nation’s energy mix.These initiatives are designed not only to support environmental sustainability but also to make energy from renewable sources increasingly competitive in comparison to more conventional energy sources like gas and oil,which have historically dominated Brunei’s energy market.The optimization of a hybrid energy system that combines diesel generators,solar photovoltaic(PV)panels,and the national power grid is the focus of this study.The objective is to identify the most cost-effective and environmentally sustainable configuration that can reliably meet local energy demands.During optimization,several configuration was tried and tested,including only grid,PV and Grid and PV-generator.HOMER(Hybrid Optimization of Multiple Energy Resources)software,a popular simulation tool that makes it possible to simulate and analyze hybrid energy systems,is utilized in the optimization process.Inside the HOMER Pro optimization,various system configuration is taken into account for the optimization.While simulating,it takes into account different combinations of components such as solar panels,wind turbines and batteries.Later on,it is being ranked by different factors such as net present cost(NPC),Cost of Energy(COE),etc.A comprehensive techno-economic research is carried out to evaluate various system configurations,considering key performance indicators such as total energy generation cost,operational expenditure,and greenhouse gas emissions.The results provide valuable insights into how renewable-based hybrid systems can reduce environmental impact while maintaining economic viability,supporting Brunei’s broader goals of energy diversification and sustainability.The study also emphasizes how such hybrid systems could be scaled for off-grid and rural populations in Brunei,where a dependable electricity supply is still a problem.Furthermore,sensitivity analyses were performed to evaluate the effects of variations in solar irradiation,load demand,and fuel prices on the overall system performance.Policymakers and energy planners can use these insights to help them make data-driven decisions about future investments in infrastructure for renewable energy.
基金supported by the Beijing Natural Science Foundation(5222035)Beijing Nova Program(Z211100002121033,20230484407)+2 种基金National Key R&D Program of China(2021YFA0805703,2021YFA1100901,2022YFA1105700)National Natural Science Foundation of China(31930054,32100646,82370107,82270118)Program for Guangdong Introducing Innovative and Entrepreneurial Teams(2017ZT07S347)。
文摘Hematopoiesis originates in the yolk sac,which forms prior to the establishment of blood circulation and exhibits distinct developmental processes between primates and mice.Despite increasing appreciation of yolk sac hematopoiesis for its lifelong contribution to the adult hematopoietic system and its regulatory roles in organogenesis,cross-species differences,particularly before the onset of blood circulation,remain incompletely understood.In this study,we constructed an integrative cross-species transcriptome atlas of pre-circulation hematopoiesis in humans,monkeys(Macaca fascicularis),and mice.This analysis identified conserved populations between primates and mice,while also revealing more differentiated myeloid,erythroid,and megakaryocytic lineages in pre-circulation primates compared to mice.Specifically,SPP1-expressingmacrophageswere detected in primates before the onset of blood circulation but were absent in mice.Cell-cell communication analysis identified CSF1+extraembryonic mesoderm cells as a potential supportive niche for macrophage generation,with ligand-receptor interactions between macrophages and other cell populations in the human yolk sac.Interestingly,pre-circulation SPP1+macrophages exhibited hallmark signatures reminiscent of a macrophage subset that positively regulates hematopoietic stem cell generation.Our findings provide a valuable cross-species resource,advancing our understanding of human pre-circulation yolk sac hematopoiesis and offering a theoretical basis for the regeneration of functional blood cells.
文摘In order to improve the detection accuracy of Doppler asymmetric spatial heterodyne(DASH)interferometer in harsh temperatures,an opto-mechanical-thermal integration analysis is carried out.Firstly,the correlation between the interference phase and temperature is established according to the working principle and the phase algorithm of the interferometer.Secondly,the optical mechanical thermal analysis model and thermal deformation data acquisition model are designed.The deformation data of the interference module and the imaging optical system at different temperatures are given by temperature load simulation analysis,and the phase error caused by thermal deformation is obtained by fitting.Finally,based on the wind speed error caused by thermal deformation of each component,a reasonable temperature control scheme is proposed.The results show that the interference module occupies the main cause,the temperature must be controlled within(20±0.05)℃,and the temperature control should be carried out for the temperature sensitive parts,and the wind speed error caused by the part is 3.8 m/s.The thermal drift between the magnification of the imaging optical system and the thermal drift of the relative position between the imaging optical system and the detector should occupy the secondary cause,which should be controlled within(20±2)℃,and the wind speed error caused by the part is 3.05 m/s.In summary,the wind measurement error caused by interference module,imaging optical system,and the relative position between the imaging optical system and the detector can be controlled within 6.85 m/s.The analysis and temperature control schemes presented in this paper can provide theoretical basis for DASH interferometer engineering applications.
文摘Microsoft Excel is essential for the End-User Approach (EUA), offering versatility in data organization, analysis, and visualization, as well as widespread accessibility. It fosters collaboration and informed decision-making across diverse domains. Conversely, Python is indispensable for professional programming due to its versatility, readability, extensive libraries, and robust community support. It enables efficient development, advanced data analysis, data mining, and automation, catering to diverse industries and applications. However, one primary issue when using Microsoft Excel with Python libraries is compatibility and interoperability. While Excel is a widely used tool for data storage and analysis, it may not seamlessly integrate with Python libraries, leading to challenges in reading and writing data, especially in complex or large datasets. Additionally, manipulating Excel files with Python may not always preserve formatting or formulas accurately, potentially affecting data integrity. Moreover, dependency on Excel’s graphical user interface (GUI) for automation can limit scalability and reproducibility compared to Python’s scripting capabilities. This paper covers the integration solution of empowering non-programmers to leverage Python’s capabilities within the familiar Excel environment. This enables users to perform advanced data analysis and automation tasks without requiring extensive programming knowledge. Based on Soliciting feedback from non-programmers who have tested the integration solution, the case study shows how the solution evaluates the ease of implementation, performance, and compatibility of Python with Excel versions.
文摘This study unfolds an innovative approach aiming to address the critical role of building design in global energy consumption, focusing on optimizing the Window-to-Wall Ratio (WWR), since buildings account for approximately 30% of total energy consumed worldwide. The greatest contributors to energy expenditure in buildings are internal artificial lighting and heating and cooling systems. The WWR, determined by the proportion of the building’s glazed area to its wall area, is a significant factor influencing energy efficiency and minimizing energy load. This study introduces the development of a semi-automated computer model designed to offer a real-time, interactive simulation environment, fostering improving communication and engagement between designers and owners. The said model serves to optimize both the WWR and building orientation to align with occupants’ needs and expectations, subsequently reducing annual energy consumption and enhancing the overall building energy performance. The integrated model incorporates Building Information Modeling (BIM), Virtual Reality (VR), and Energy Analysis tools deployed at the conceptual design stage, allowing for the amalgamation of owners’ inputs in the design process and facilitating the creation of more realistic and effective design strategies.
文摘To enhance the safety of road traffic operations,this paper proposed a model based on stacking integrated learning utilizing American road traffic accident statistics.Initially,the process involved data cleaning,transformation,and normalization.Subsequently,various classification models were constructed,including logistic regression,k-nearest neighbors,gradient boosting,decision trees,AdaBoost,and extra trees models.Evaluation metrics such as accuracy,precision,recall,F1 score,and Hamming loss were employed.Upon analysis,the passive-aggressive classifier model exhibited superior comprehensive indices compared to other models.Based on the model’s output results,an in-depth examination of the factors influencing traffic accidents was conducted.Additionally,measures and suggestions aimed at reducing the incidence of severe traffic accidents were presented.These findings served as a valuable reference for mitigating the occurrence of traffic accidents.
基金Supported by the National Natural Science Foundation of China (10471107)
文摘Under the foundation of Cauchy integral formula on certain distinguished boundary for functions with values in universal Clifford algebra, we define the Cauchy type integral with values in a universal Clifford algebra, obtain its Cauchy principal value and Plemelj formula on certain distinguished boundary.
基金The authors would like to acknowledge the financial support provided by Hebei Education Department(Grant QN2020135)the National Key R&D Program of China(Grants 2019YFC1511105 and 2019YFC1511104)the National Natural Science Foundation of China(Grant 51778193).
文摘The equivalent stress fundamental solution for the elastoplastic dynamic plane strain problem is proposed to transform the virtual work in the third direction to the plane.Subsequently,based on Betti reciprocal theorem,by adopting the time dependent fundamental solutions in terms of displacement,traction and equivalent stress,the boundary integral equations for dynamic elastoplastic analysis for the plane strain problem are established.The establishment procedures for the displacement and the stress boundary integral equations,together with the stress equation at boundary points,are presented in details,while the standard discretization both in time and space under the frame of time domain boundary element method(TD-BEM)and the solution of the algebraic equations are also briefly stated.Two verification examples are presented from different viewpoints,for elastic and elastoplastic analysis,for 1-D and 2-D geometries,and for finite and infinite domains.The TD-BEM formulation for dynamic elastoplastic analysis is presented for the plane strain problem as an example,where the formulation is also applicable for the plane stress problem by properly transforming the elastic constants and adopting the corresponding fundamental solutions.
基金This study was funded by the National Natural Science Foundation of China(NSFC)(Grant Nos.11702238,51904202 and 11902212)and Nanhu Scholars Program for Young Scholars of XYNU.
文摘The paper applied the isogeometric boundary element method(IGABEM)to thermoelastic problems.The Non-Uniform Rational B-splines(NURBS)used to construct geometric models are employed to discretize the boundary integral formulation of the governing equation.Due to the existence of thermal stress,the domain integral term appears in the boundary integral equation.We resolve this problem by incorporating radial integration method into IGABEM which converts the domain integral to the boundary integral.In this way,IGABEM can maintain its advantages in dimensionality reduction and more importantly,seamless integration of CAD and numerical analysis based on boundary representation.The algorithm is verified by numerical examples.
基金Supported by the National Natural Science Foundation of China (Grant No. 10801043)the Natural Science Foundation of Hebei Province (Grant No. A2010000346)the Foundation of Hebei University of Science and Technology (Grant No. QD201028)
文摘First, we give a module estimation of the singular integral with a differential element. Then by proving the existences of Cauchy principal value we obtain the transformation formula of the Cauchy-type singular integrals with a parameter.
基金Dr.Ali Jameel and Noraziah Man are very grateful to the Ministry of Higher Education of Malaysia for providing them with the Fundamental Research Grant Scheme(FRGS)S/O No.14188 that supported this research.
文摘Homotopy Analysis Method(HAM)is semi-analytic method to solve the linear and nonlinear mathematical models which can be used to obtain the approximate solution.The HAM includes an auxiliary parameter,which is an efficient way to examine and analyze the accuracy of linear and nonlinear problems.The main aim of this work is to explore the approximate solutions of fuzzy Volterra integral equations(both linear and nonlinear)with a separable kernel via HAM.This method provides a reliable way to ensure the convergence of the approximation series.A new general form of HAM is presented and analyzed in the fuzzy domain.A qualitative convergence analysis based on the graphical method of a fuzzy HAM is discussed.The solutions sought by the proposed method show that the HAM is easy to implement and computationally quite attractive.Some solutions of fuzzy second kind Volterra integral equations are solved as numerical examples to show the potential of the method.The results also show that HAM provides an easy way to control and modify the convergence area in order to obtain accurate solutions.
文摘In this paper,the approximate solutions for two different type of two-dimensional nonlinear integral equations:two-dimensional nonlinear Volterra-Fredholm integral equations and the nonlinear mixed Volterra-Fredholm integral equations are obtained using the Laguerre wavelet method.To do this,these two-dimensional nonlinear integral equations are transformed into a system of nonlinear algebraic equations in matrix form.By solving these systems,unknown coefficients are obtained.Also,some theorems are proved for convergence analysis.Some numerical examples are presented and results are compared with the analytical solution to demonstrate the validity and applicability of the proposed method.
基金The National Natural Science Foundation of China(No.60872004)the Research Fund of National Mobile Communications Research Laboratory of Southeast University(No.2010A08)the Fundamental Research Funds for the Central Universities(No.2009B21814)
文摘An analytical approach to evaluate the performance of the 3G/ad hoc integrated network is presented. A channel model capturing both path loss and shadowing is applied to the analysis so as to characterize power falloff vs. distance. The 3G/ad hoc integrated network scenario model is introduced briefly. Based on this model, several performances of the 3G/ ad hoc integrated network in terms of outage probability, call dropping probability and new call blocking probability are evaluated. The corresponding performance formulae are deduced in accordance with the analytical models. Meanwhile, the formula of the 3G/ad hoc integrated network capacity is deduced on the basis of the formula of the outage probability. It is observed from extensive simulation and numerical analysis that the 3G/ad hoc integrated network remarkably outperforms the 3G network with regards to the network performance. This derived evaluation approach can be applied into planning and optimization of the 3G/ad hoc network.
基金supported by the Chinese Postdoctoral Science Foundation(2013M540934).
文摘This paper proposes a novel numerical solution approach for the kinematic shakedown analysis of strain-hardening thin plates using the C^(1)nodal natural element method(C^(1)nodal NEM).Based on Koiter’s theorem and the von Mises and two-surface yield criteria,a nonlinear mathematical programming formulation is constructed for the kinematic shakedown analysis of strain-hardening thin plates,and the C^(1)nodal NEM is adopted for discretization.Additionally,König’s theory is used to deal with time integration by treating the generalized plastic strain increment at each load vertex.A direct iterative method is developed to linearize and solve this formulation by modifying the relevant objective function and equality constraints at each iteration.Kinematic shakedown load factors are directly calculated in a monotonically converging manner.Numerical examples validate the accuracy and convergence of the developed method and illustrate the influences of limited and unlimited strain-hardening models on the kinematic shakedown load factors of thin square and circular plates.