1.Colors of chemical reaction engineering models Kinetic models of chemical reactions are a crucial asset for understanding and optimizing chemical processes[1].These models are critical for reactor design,process opt...1.Colors of chemical reaction engineering models Kinetic models of chemical reactions are a crucial asset for understanding and optimizing chemical processes[1].These models are critical for reactor design,process optimization,catalyst design,scale-up,and process control,making them indispensable in the chemical industry.Kinetic models predict the change in temperature and concentration of the relevant species,given an actual concentration and temperature.Reaction predictions are made by integrating the kinetic model with a reactor model,which accounts for external constraints,such as flow,inlet concentration。展开更多
Inferior crude oil and fuel oil upgrading lead to escalating increase of hydrogen consumption in refineries.It is imperative to reduce the hydrogen consumption for energy-saving operations of refineries.An integration...Inferior crude oil and fuel oil upgrading lead to escalating increase of hydrogen consumption in refineries.It is imperative to reduce the hydrogen consumption for energy-saving operations of refineries.An integration strategy of hydrogen network and an operational optimization model of hydrotreating(HDT)units are proposed based on the characteristics of reaction kinetics of HDT units.By solving the proposed model,the operating conditions of HDT units are optimized,and the parameters of hydrogen sinks are determined by coupling hydrodesulfurization(HDS),hydrodenitrification(HDN)and aromatic hydrogenation(HDA)kinetics.An example case of a refinery with annual processing capacity of eight million tons is adopted to demonstrate the feasibility of the proposed optimization strategies and the model.Results show that HDS,HDN and HDA reactions are the major source of hydrogen consumption in the refinery.The total hydrogen consumption can be reduced by 18.9%by applying conventional hydrogen network optimization model.When the hydrogen network is optimized after the operational optimization of HDT units is performed,the hydrogen consumption is reduced by28.2%.When the benefit of the fuel gas recovery is further considered,the total annual cost of hydrogen network can be reduced by 3.21×10~7CNY·a^(-1),decreased by 11.9%.Therefore,the operational optimization of the HDT units in refineries should be imposed to determine the parameters of hydrogen sinks base on the characteristics of reaction kinetics of the hydrogenation processes before the optimization of the hydrogen network is performed through the source-sink matching methods.展开更多
基金Yannick Ureel and Maarten Dobbelaere acknowledge financial support from the Fund for Scientific Research Flanders(FWO Flanders)respectively through doctoral fellowship grants(1185822N and 1S45522N)The authors acknowledge funding from the European Research Council under the European Union’s Horizon 2020 research and innovation programme/ERC(818607).
文摘1.Colors of chemical reaction engineering models Kinetic models of chemical reactions are a crucial asset for understanding and optimizing chemical processes[1].These models are critical for reactor design,process optimization,catalyst design,scale-up,and process control,making them indispensable in the chemical industry.Kinetic models predict the change in temperature and concentration of the relevant species,given an actual concentration and temperature.Reaction predictions are made by integrating the kinetic model with a reactor model,which accounts for external constraints,such as flow,inlet concentration。
基金Supported by the National Natural Science Foundation of China(21376188,21676211)the Key Project of Industrial Science and Technology of Shaanxi Province(2015GY095)
文摘Inferior crude oil and fuel oil upgrading lead to escalating increase of hydrogen consumption in refineries.It is imperative to reduce the hydrogen consumption for energy-saving operations of refineries.An integration strategy of hydrogen network and an operational optimization model of hydrotreating(HDT)units are proposed based on the characteristics of reaction kinetics of HDT units.By solving the proposed model,the operating conditions of HDT units are optimized,and the parameters of hydrogen sinks are determined by coupling hydrodesulfurization(HDS),hydrodenitrification(HDN)and aromatic hydrogenation(HDA)kinetics.An example case of a refinery with annual processing capacity of eight million tons is adopted to demonstrate the feasibility of the proposed optimization strategies and the model.Results show that HDS,HDN and HDA reactions are the major source of hydrogen consumption in the refinery.The total hydrogen consumption can be reduced by 18.9%by applying conventional hydrogen network optimization model.When the hydrogen network is optimized after the operational optimization of HDT units is performed,the hydrogen consumption is reduced by28.2%.When the benefit of the fuel gas recovery is further considered,the total annual cost of hydrogen network can be reduced by 3.21×10~7CNY·a^(-1),decreased by 11.9%.Therefore,the operational optimization of the HDT units in refineries should be imposed to determine the parameters of hydrogen sinks base on the characteristics of reaction kinetics of the hydrogenation processes before the optimization of the hydrogen network is performed through the source-sink matching methods.