The different conditions of use of a component result in a variety of damage levels.Therefore,excluding differences in shape and size,used parts show a high degree of uncertainty regarding failure characteristics,qual...The different conditions of use of a component result in a variety of damage levels.Therefore,excluding differences in shape and size,used parts show a high degree of uncertainty regarding failure characteristics,quality conditions,and remaining life,which seriously affects the efficiency of a remanufacturing scheme design.Aiming to address this problem,a remanufacturing scheme design method based on the reconstruction of incomplete information of used parts is proposed.First,the remaining life of the reconstructed model is predicted by finite element analysis,and the demand for the next life cycle is determined.Second,the scanned 3D damage point cloud data are registered with the original point cloud data using the integral iterative method to construct a missing point cloud model to achieve the restoration of geometric information.Then,according to reverse engineering and laser cladding remanufacturing,the tool remanufacturing process path can be generated by the tool contact point path section line method.Finally,the proposed method is adopted for turbine blades to evaluate the effectiveness and feasibility of the proposed scheme.This study proposes a remanufacturing scheme design method based on the incomplete reconstruction of used part information to solve the uncertain and highly personalized problems in remanufacturing.展开更多
The formulation of optimal control problems governed by Fredholm integral equations of second kind and an efficient computational framework for solving these control problems is presented. Existence and uniqueness of ...The formulation of optimal control problems governed by Fredholm integral equations of second kind and an efficient computational framework for solving these control problems is presented. Existence and uniqueness of optimal solutions is proved.A collective Gauss-Seidel scheme and a multigrid scheme are discussed. Optimal computational performance of these iterative schemes is proved by local Fourier analysis and demonstrated by results of numerical experiments.展开更多
Abstract The reconstruction of cylindrically layered media is investigated in this article. The inverse problem is modeled using a source-type integral equation with a series of cylindrical waves as incidences, and a ...Abstract The reconstruction of cylindrically layered media is investigated in this article. The inverse problem is modeled using a source-type integral equation with a series of cylindrical waves as incidences, and a conventional Born iterative procedure is modified for solving the integral equation. In the modified iterative procedure, a conventional single-point approximation for the calculation of the field inside media is replaced by a multi-points approximation to improve the numerical stability of its solution. Numerical simulations for different permittivity distributions are demonstrated in terms of artificial scattering data with the procedure. The result shows that the procedure enjoys both accuracy and stability in the numerical computation.展开更多
基金Supported by Plateau Disciplines in ShanghaiNational Natural Science Foundation of China (Grant No. 51675388)Hubei Provincial Department of Education of China (Grant No. D20181102)
文摘The different conditions of use of a component result in a variety of damage levels.Therefore,excluding differences in shape and size,used parts show a high degree of uncertainty regarding failure characteristics,quality conditions,and remaining life,which seriously affects the efficiency of a remanufacturing scheme design.Aiming to address this problem,a remanufacturing scheme design method based on the reconstruction of incomplete information of used parts is proposed.First,the remaining life of the reconstructed model is predicted by finite element analysis,and the demand for the next life cycle is determined.Second,the scanned 3D damage point cloud data are registered with the original point cloud data using the integral iterative method to construct a missing point cloud model to achieve the restoration of geometric information.Then,according to reverse engineering and laser cladding remanufacturing,the tool remanufacturing process path can be generated by the tool contact point path section line method.Finally,the proposed method is adopted for turbine blades to evaluate the effectiveness and feasibility of the proposed scheme.This study proposes a remanufacturing scheme design method based on the incomplete reconstruction of used part information to solve the uncertain and highly personalized problems in remanufacturing.
文摘The formulation of optimal control problems governed by Fredholm integral equations of second kind and an efficient computational framework for solving these control problems is presented. Existence and uniqueness of optimal solutions is proved.A collective Gauss-Seidel scheme and a multigrid scheme are discussed. Optimal computational performance of these iterative schemes is proved by local Fourier analysis and demonstrated by results of numerical experiments.
基金the National Natural Science Foundation of China(60671065).
文摘Abstract The reconstruction of cylindrically layered media is investigated in this article. The inverse problem is modeled using a source-type integral equation with a series of cylindrical waves as incidences, and a conventional Born iterative procedure is modified for solving the integral equation. In the modified iterative procedure, a conventional single-point approximation for the calculation of the field inside media is replaced by a multi-points approximation to improve the numerical stability of its solution. Numerical simulations for different permittivity distributions are demonstrated in terms of artificial scattering data with the procedure. The result shows that the procedure enjoys both accuracy and stability in the numerical computation.