期刊文献+
共找到48篇文章
< 1 2 3 >
每页显示 20 50 100
Modeling and Forecasting of Consumer Price Index of Foods and Non-Alcoholic Beverages in Kenya Using Autoregressive Integrated Moving Average Models
1
作者 Michael Mbaria Chege 《Open Journal of Statistics》 2024年第6期677-688,共12页
Food and non-alcoholic beverages are highly important for individuals to continue staying alive and living healthy lives. The increase in the prices of food and non-alcoholic beverages experienced across the world ove... Food and non-alcoholic beverages are highly important for individuals to continue staying alive and living healthy lives. The increase in the prices of food and non-alcoholic beverages experienced across the world over years has continued to make food and non-alcoholic beverages not to be accessible and affordable to individuals and families having a low income. The aim of this particular research study was to identify how Kenya’s CPI of food and non-alcoholic beverages could be modelled using Autoregressive Integrated Moving Average (ARIMA) models for forecasting future values for the next two years. The data used for the study was that of Kenya’s CPI of food and non-alcoholic beverages for the period starting from February 2009 to April 2024 obtained from the International Monetary Fund (IMF) database. The best specification for the ARIMA model was identified using Akaike Information Criterion (AIC), root mean square error (RMSE), mean absolute error (MAE), mean absolute percentage error (MAPE) and mean absolute scaled error (MASE) and assessing whether residuals of the model were independent and normally distributed with a variance that is constant an whether the model has most of its coefficients being significant statistically. ARIMA (3, 1, 0) (1, 0, 0) model was identified as the best ARIMA model for modeling Kenya’s CPI of food and non-beverages for forecasting future values among the ARIMA models considered. Using this particular model, Kenya’s CPI of food and non-alcoholic beverages was forecasted to increase only slightly with time to reach a value of about 165.70 by March 2026. 展开更多
关键词 Consumer Price Index Food and Non-Alcoholic Beverages Autoregressive Integrated Moving averages Modeling and Forecasting
在线阅读 下载PDF
Gender differences in the burden of near vision loss in China:An analysis based on GBD 2021 data
2
作者 LIU Yu ZHU Liping +4 位作者 LIN Yanhui WANG Yanbing XIONG Kun LI Xuhong YAN Wenguang 《中南大学学报(医学版)》 北大核心 2025年第6期1030-1041,共12页
Objective:Near vision loss(NVL)is one of the leading causes of visual impairment worldwide,exerting a profound impact on individual quality of life and socio-economic development.This study aims to analyze the burden ... Objective:Near vision loss(NVL)is one of the leading causes of visual impairment worldwide,exerting a profound impact on individual quality of life and socio-economic development.This study aims to analyze the burden of NVL in China by sex and age groups from 1990 to 2021 and to project trends over the next 15 years.Methods:Using data from the Global Burden of Disease(GBD)2021 database,we conducted descriptive analyses of NVL prevalence in China,calculated age-standardized prevalence rates(ASPR)and age-standardized disability-adjusted life years rates(ASDR)to compare burden differences between sexes and age groups,and applied an autoregressive integrated moving average(ARIMA)model to predict NVL trends for the next 15 years.The model selection was based on best-fit criteria to ensure reliable projections.Results:From 1990 to 2021,China’s ASPR of NVL rose from 10096.24/100000 to 15624.54/100000,and ASDR increased from 101.75/100000 to 158.75/100000.In 2021,ASPR(16551.70/100000)and ASDR(167.69/100000)were higher among females than males(14686.21/100000 and 149.76/100000,respectively).China ranked highest globally in both NVL cases and disability-adjusted life years(DALYs),with female burden significantly exceeding male burden.Projections indicated this trend and sex gap will persist until 2036.Compared with 1990,the prevalence cases and DALYs increased by 239.20%and 238.82%,respectively in 2021,with the highest burden among females and the 55−59 age group.The ARIMA model predicted continued increases in prevalence and DALYs by 2036,with females maintaining a higher burden than males.Conclusion:This study reveals a marked increase in the NVL burden in China and predicts continued growth in the coming years.Public health policies should prioritize NVL prevention and control,with special attention to women and middle-aged populations to mitigate long-term societal and health impacts. 展开更多
关键词 China near vision loss Global Burden of Disease database autoregressive integrated moving average model gender differences
暂未订购
Simulation of light environment in a serrated photovoltaic greenhouse and optimization of daylighting roofs based on Design Builder
3
作者 LIU Jian WU Xuyong +2 位作者 WANG Baolong WU Qingsen TIAN Libo 《农业工程学报》 北大核心 2025年第7期211-221,共11页
In the tropical regions represented by Hainan,there are abundant solar and thermal resources,and it is relatively suitable for the construction of photovoltaic greenhouse(PVG).However,the construction of PVG still rel... In the tropical regions represented by Hainan,there are abundant solar and thermal resources,and it is relatively suitable for the construction of photovoltaic greenhouse(PVG).However,the construction of PVG still relies mainly on experience and is incapable of quantifying the balance between the photovoltaic(PV)generation and the light requirements for agricultural production.As a result,actual PVGs are primarily PV-based,without carefully considering the needs of agricultural daylighting.To quantify the influence of the design parameters of PVGs and the layout of PV panels on the internal daylighting of serrated PVGs,and to optimize the daylighting design of the roof,this paper utilizes the Design Builder software to establish gradient models for a multi-span serrated-type PVG in tropical regions.Gradient models were established in terms of aspects,namely span,width of longitudinal/transverse daylighting strip,height,roof angle,and photovoltaic panel coverage rate(PCR).Daylighting in the greenhouse of each gradient model was simulated,and with the annual average daily light integral(A_(DLI))and distribution uniformity(DU)as evaluation indicators,the influence of various design parameters on the daylighting inside the greenhouse was quantified.The result reveals that:(1)PCR is the decisive indicator for daylighting in the PVG,and a function between PCR and the A_(DLI) is derived as A_(DLI)=-15.5 PCR+16.841;(2)Increasing the width of longitudinal daylighting strip significantly improves the A_(DLI) and enhances DU while increasing the span has a noticeable effect on improving A_(DLI) but does not significantly enhance DU;(3)Increasing the eave height without changing PCR does not enhance A_(DLI) but effectively improves DU;increasing the transverse daylighting strip and adjusting the roof angle hardly improves A_(DLI).In summary,it is recommended that the optimal span for PVGs in tropical regions be set within the range of 6.5-8.0m,and the eave height be set within the range of 2.5-3.5m.Preferably,the longitudinal daylighting strip with a width ranging from 0.5-0.8m should be installed.Based on the above relationship function,the PCR can be calculated according to the appropriate light demand for the cultivated crops.The daylighting design theory proposed in this paper can provide a theoretical basis and reference for the healthy development of the PV industry in tropical regions. 展开更多
关键词 photovoltaic greenhouse annual average daily light integral greenhouse design parameters DAYLIGHTING tropical regions
在线阅读 下载PDF
Research on Normal Pythagorean Neutrosophic Set Choquet Integral Operator and Its Application
4
作者 Changxing Fan Jihong Chen +2 位作者 Keli Hu En Fan Xiuqing Wang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2022年第4期477-491,共15页
We first propose the normal Pythagorean neutrosophic set(NPNS)in this paper,which synthesizes the distribution of the incompleteness,indeterminacy,and inconsistency of the Pythagorean neutrosophic set(PNS)and normal f... We first propose the normal Pythagorean neutrosophic set(NPNS)in this paper,which synthesizes the distribution of the incompleteness,indeterminacy,and inconsistency of the Pythagorean neutrosophic set(PNS)and normal fuzzy number.We also define some properties of NPNS.For solving the decision-making problem of the nonstrictly independent and interacting attributes,two kinds of NPNS Choquet integral operators are proposed.First,the NPNS Choquet integral average(NPNSCIA)operator and the NPNS Choquet integral geometric(NPNSCIG)operator are proposed.Then,their calculating formulas are derived,their properties are discussed,and an approach for solving the interacting multi-attribute decision making based on the NPNS is studied.Finally,the two kinds of operators are applied to validate the stability of the new method. 展开更多
关键词 Normal pythagorean neutrosophic set(NPNS) NPNS choquet integral average(NPNSCIA)operator NPNS choquet integral geometric(NPNSCIG)operator multi-attribute decision making(MADM)
在线阅读 下载PDF
Establishment and Effect Evaluation of Prediction Models of Ozone Concentration in Baoding City
5
作者 Xiangru KONG Jiajia ZHANG +2 位作者 Luntao YAO Tianning YANG Rongfang YANG 《Meteorological and Environmental Research》 2025年第3期44-50,共7页
Firstly,based on the data of air quality and the meteorological data in Baoding City from 2017 to 2021,the correlations of meteorological elements and pollutants with O_(3)concentration were explored to determine the ... Firstly,based on the data of air quality and the meteorological data in Baoding City from 2017 to 2021,the correlations of meteorological elements and pollutants with O_(3)concentration were explored to determine the forecast factors of forecast models.Secondly,the O_(3)-8h concentration in Baoding City in 2021 was predicted based on the constructed models of multiple linear regression(MLR),backward propagation neural network(BPNN),and auto regressive integrated moving average(ARIMA),and the predicted values were compared with the observed values to test their prediction effects.The results show that overall,the MLR,BPNN and ARIMA models were able to forecast the changing trend of O_(3)-8h concentration in Baoding in 2021,but the BPNN model gave better forecast results than the ARIMA and MLR models,especially for the prediction of the high values of O_(3)-8h concentration,and the correlation coefficients between the predicted values and the observed values were all higher than 0.9 during June-September.The mean error(ME),mean absolute error(MAE),and root mean square error(RMSE)of the predicted values and the observed values of daily O_(3)-8h concentration based on the BPNN model were 0.45,19.11 and 24.41μg/m 3,respectively,which were significantly better than those of the MLR and ARIMA models.The prediction effects of the MLR,BPNN and ARIMA models were the best at the pollution level,followed by the excellent level,and it was the worst at the good level.In comparison,the prediction effect of BPNN model was better than that of the MLR and ARIMA models as a whole,especially for the pollution and excellent levels.The TS scores of the BPNN model were all above 66%,and the PC values were above 86%.The BPNN model can forecast the changing trend of O_(3)concentration more accurately,and has a good practical application value,but at the same time,the predicted high values of O_(3)concentration should be appropriately increased according to error characteristics of the model. 展开更多
关键词 Ozone(O_(3)) Multiple linear regression model Back propagation neural network model Auto regressive integrated moving average model TS
在线阅读 下载PDF
AI for Cleaner Air:Predictive Modeling of PM2.5 Using Deep Learning and Traditional Time-Series Approaches
6
作者 Muhammad Salman Qamar Muhammad Fahad Munir Athar Waseem 《Computer Modeling in Engineering & Sciences》 2025年第9期3557-3584,共28页
Air pollution,specifically fine particulate matter(PM2.5),represents a critical environmental and public health concern due to its adverse effects on respiratory and cardiovascular systems.Accurate forecasting of PM2.... Air pollution,specifically fine particulate matter(PM2.5),represents a critical environmental and public health concern due to its adverse effects on respiratory and cardiovascular systems.Accurate forecasting of PM2.5 concentrations is essential for mitigating health risks;however,the inherent nonlinearity and dynamic variability of air quality data present significant challenges.This study conducts a systematic evaluation of deep learning algorithms including Convolutional Neural Network(CNN),Long Short-Term Memory(LSTM),and the hybrid CNN-LSTM as well as statistical models,AutoRegressive Integrated Moving Average(ARIMA)and Maximum Likelihood Estimation(MLE)for hourly PM2.5 forecasting.Model performance is quantified using Root Mean Squared Error(RMSE),Mean Absolute Error(MAE),Mean Absolute Percentage Error(MAPE),and the Coefficient of Determination(R^(2))metrics.The comparative analysis identifies optimal predictive approaches for air quality modeling,emphasizing computational efficiency and accuracy.Additionally,CNN classification performance is evaluated using a confusion matrix,accuracy,precision,and F1-score.The results demonstrate that the Hybrid CNN-LSTM model outperforms standalone models,exhibiting lower error rates and higher R^(2) values,thereby highlighting the efficacy of deep learning-based hybrid architectures in achieving robust and precise PM2.5 forecasting.This study underscores the potential of advanced computational techniques in enhancing air quality prediction systems for environmental and public health applications. 展开更多
关键词 PM2.5 prediction air pollution forecasting deep learning convolutional neural network(CNN) long short-term memory(LSTM) autoregressive integrated moving average(ARIMA) maximum likelihood estimation(MLE) time series analysis
在线阅读 下载PDF
Time series analysis-based seasonal autoregressive fractionally integrated moving average to estimate hepatitis B and C epidemics in China 被引量:3
7
作者 Yong-Bin Wang Si-Yu Qing +3 位作者 Zi-Yue Liang Chang Ma Yi-Chun Bai Chun-Jie Xu 《World Journal of Gastroenterology》 SCIE CAS 2023年第42期5716-5727,共12页
BACKGROUND Hepatitis B(HB)and hepatitis C(HC)place the largest burden in China,and a goal of eliminating them as a major public health threat by 2030 has been set.Making more informed and accurate forecasts of their s... BACKGROUND Hepatitis B(HB)and hepatitis C(HC)place the largest burden in China,and a goal of eliminating them as a major public health threat by 2030 has been set.Making more informed and accurate forecasts of their spread is essential for developing effective strategies,heightening the requirement for early warning to deal with such a major public health threat.AIM To monitor HB and HC epidemics by the design of a paradigmatic seasonal autoregressive fractionally integrated moving average(SARFIMA)for projections into 2030,and to compare the effectiveness with the seasonal autoregressive integrated moving average(SARIMA).METHODS Monthly HB and HC incidence cases in China were obtained from January 2004 to June 2023.Descriptive analysis and the Hodrick-Prescott method were employed to identify trends and seasonality.Two periods(from January 2004 to June 2022 and from January 2004 to December 2015,respectively)were used as the training sets to develop both models,while the remaining periods served as the test sets to evaluate the forecasting accuracy.RESULTS There were incidents of 23400874 HB cases and 3590867 HC cases from January 2004 to June 2023.Overall,HB remained steady[average annual percentage change(AAPC)=0.44,95%confidence interval(95%CI):-0.94-1.84]while HC was increasing(AAPC=8.91,95%CI:6.98-10.88),and both had a peak in March and a trough in February.In the 12-step-ahead HB forecast,the mean absolute deviation(15211.94),root mean square error(18762.94),mean absolute percentage error(0.17),mean error rate(0.15),and root mean square percentage error(0.25)under the best SARFIMA(3,0,0)(0,0.449,2)12 were smaller than those under the best SARIMA(3,0,0)(0,1,2)12(16867.71,20775.12,0.19,0.17,and 0.27,respectively).Similar results were also observed for the 90-step-ahead HB,12-step-ahead HC,and 90-step-ahead HC forecasts.The predicted HB incidents totaled 9865400(95%CI:7508093-12222709)cases and HC totaled 1659485(95%CI:856681-2462290)cases during 2023-2030.CONCLUSION Under current interventions,China faces enormous challenges to eliminate HB and HC epidemics by 2030,and effective strategies must be reinforced.The integration of SARFIMA into public health for the management of HB and HC epidemics can potentially result in more informed and efficient interventions,surpassing the capabilities of SARIMA. 展开更多
关键词 HEPATITIS Seasonal autoregressive fractionally integrated moving average Seasonal autoregressive integrated moving average Prediction EPIDEMIC Time series analysis
暂未订购
Application of Seasonal Auto-regressive Integrated Moving Average Model in Forecasting the Incidence of Hand-foot-mouth Disease in Wuhan,China 被引量:17
8
作者 彭颖 余滨 +3 位作者 汪鹏 孔德广 陈邦华 杨小兵 《Journal of Huazhong University of Science and Technology(Medical Sciences)》 SCIE CAS 2017年第6期842-848,共7页
Outbreaks of hand-foot-mouth disease(HFMD) have occurred many times and caused serious health burden in China since 2008. Application of modern information technology to prediction and early response can be helpful ... Outbreaks of hand-foot-mouth disease(HFMD) have occurred many times and caused serious health burden in China since 2008. Application of modern information technology to prediction and early response can be helpful for efficient HFMD prevention and control. A seasonal auto-regressive integrated moving average(ARIMA) model for time series analysis was designed in this study. Eighty-four-month(from January 2009 to December 2015) retrospective data obtained from the Chinese Information System for Disease Prevention and Control were subjected to ARIMA modeling. The coefficient of determination(R^2), normalized Bayesian Information Criterion(BIC) and Q-test P value were used to evaluate the goodness-of-fit of constructed models. Subsequently, the best-fitted ARIMA model was applied to predict the expected incidence of HFMD from January 2016 to December 2016. The best-fitted seasonal ARIMA model was identified as(1,0,1)(0,1,1)12, with the largest coefficient of determination(R^2=0.743) and lowest normalized BIC(BIC=3.645) value. The residuals of the model also showed non-significant autocorrelations(P_(Box-Ljung(Q))=0.299). The predictions by the optimum ARIMA model adequately captured the pattern in the data and exhibited two peaks of activity over the forecast interval, including a major peak during April to June, and again a light peak for September to November. The ARIMA model proposed in this study can forecast HFMD incidence trend effectively, which could provide useful support for future HFMD prevention and control in the study area. Besides, further observations should be added continually into the modeling data set, and parameters of the models should be adjusted accordingly. 展开更多
关键词 hand-foot-mouth disease forecast surveillance modeling auto-regressive integrated moving average(ARIMA)
暂未订购
Forecasting risk using auto regressive integrated moving average approach: an evidence from S&P BSE Sensex 被引量:2
9
作者 Madhavi Latha Challa Venkataramanaiah Malepati Siva Nageswara Rao Kolusu 《Financial Innovation》 2018年第1期344-360,共17页
The primary objective of the paper is to forecast the beta values of companies listed on Sensex,Bombay Stock Exchange(BSE).The BSE Sensex constitutes 30 top most companies listed which are popularly known as blue-chip... The primary objective of the paper is to forecast the beta values of companies listed on Sensex,Bombay Stock Exchange(BSE).The BSE Sensex constitutes 30 top most companies listed which are popularly known as blue-chip companies.To reach out the predefined objectives of the research,Auto Regressive Integrated Moving Average method is used to forecast the future risk and returns for 10 years of historical data from April 2007 to March 2017.Validation accomplished by comparison of forecasted and actual beta values for the hold back period of 2 years.Root-Mean-Square-Error and Mean-Absolute-Error both are used for accuracy measurement.The results revealed that out of 30 listed companies in the BSE Sensex,10 companies’exhibits high beta values,12 companies are with moderate and 8 companies are with low beta values.Further,it is to note that Housing Development Finance Corporation(HDFC)exhibits more inconsistency in terms of beta values though the average beta value is lowest among the companies under the study.A mixed trend is found in forecasted beta values of the BSE Sensex.In this analysis,all the p-values are less than the F-stat values except the case of Tata Steel and Wipro.Therefore,the null hypotheses were rejected leaving Tata Steel and Wipro.The values of actual and forecasted values are showing the almost same results with low error percentage.Therefore,it is concluded from the study that the estimation ARIMA could be acceptable,and forecasted beta values are accurate.So far,there are many studies on ARIMA model to forecast the returns of the stocks based on their historical data.But,hardly there are very few studies which attempt to forecast the returns on the basis of their beta values.Certainly,the attempt so made is a novel approach which has linked risk directly with return.On the basis of the present study,authors try to through light on investment decisions by linking it with beta values of respective stocks.Further,the outcomes of the present study undoubtedly useful to academicians,researchers,and policy makers in their respective area of studies. 展开更多
关键词 Akaike Information Criteria(AIC) Bombay Stock Exchange(BSE) Auto Regressive Integrated Moving average(ARIMA) Beta Time series
在线阅读 下载PDF
Influencing Factors and Prediction of Risk of Returning to Ecological Poverty in Liupan Mountain Region,China 被引量:2
10
作者 CUI Yunxia LIU Xiaopeng +2 位作者 JIANG Chunmei TIAN Rujun NIU Qingrui 《Chinese Geographical Science》 SCIE CSCD 2024年第3期420-435,共16页
China has resolved its overall regional poverty in 2020 by attaining moderate societal prosperity.The country has entered a new development stage designed to achieve its second centenary goal.However,ecological fragil... China has resolved its overall regional poverty in 2020 by attaining moderate societal prosperity.The country has entered a new development stage designed to achieve its second centenary goal.However,ecological fragility and risk susceptibility have increased the risk of returning to ecological poverty.In this paper,the Liupan Mountain Region of China was used as a case study,and the counties were used as the scale to reveal the spatiotempora differentiation and influcing factors of the risk of returning to poverty in study area.The indicator data for returning to ecological poverty from 2011-2020 were collected and summarized in three dimensions:ecological,economic and social.The autoregressive integrated moving average model(ARIMA)time series and exponential smoothing method(ES)were used to predict the multidimensional indicators of returning to ecological poverty for 61 counties(districts)in the Liupan Mountain Region for 2021-2030.The back propagation neural network(BPNN)and geographic information system(GIS)were used to generate the spatial distribution and time variation for the index of the risk of returning to ecological poverty(RREP index).The results show that 1)ecological factors were the main factors in the risk of returning to ecological poverty in Liupan Mountain Region.2)The RREP index for the 61 counties(districts)exhibited a downward trend from 2021-2030.The RREP index declined more in medium-and high-risk areas than in low-risk areas.From 2021 to 2025,the RREP index exhibited a slight downward trend.From 2026 to2030,the RREP index was expected to decline faster,especially from 2029-2030.3)Based on the RREP index,it can be roughly divided into three types,namely,the high-risk areas,the medium-risk areas,and the low-risk areas.The natural resource conditions in lowrisk areas of returning to ecological poverty,were better than those in medium-and high-risk areas. 展开更多
关键词 risk of returning to ecological poverty autoregressive integrated moving average model(ARIMA) exponential smoothing model back propagation neural network(BPNN) Liupan Mountain Region China
在线阅读 下载PDF
Deep Learning-Based Stock Price Prediction Using LSTM Model 被引量:1
11
作者 Jiayi Mao Zhiyong Wang 《Proceedings of Business and Economic Studies》 2024年第5期176-185,共10页
The stock market is a vital component of the broader financial system,with its dynamics closely linked to economic growth.The challenges associated with analyzing and forecasting stock prices have persisted since the ... The stock market is a vital component of the broader financial system,with its dynamics closely linked to economic growth.The challenges associated with analyzing and forecasting stock prices have persisted since the inception of financial markets.By examining historical transaction data,latent opportunities for profit can be uncovered,providing valuable insights for both institutional and individual investors to make more informed decisions.This study focuses on analyzing historical transaction data from four banks to predict closing price trends.Various models,including decision trees,random forests,and Long Short-Term Memory(LSTM)networks,are employed to forecast stock price movements.Historical stock transaction data serves as the input for training these models,which are then used to predict upward or downward stock price trends.The study’s empirical results indicate that these methods are effective to a degree in predicting stock price movements.The LSTM-based deep neural network model,in particular,demonstrates a commendable level of predictive accuracy.This conclusion is reached following a thorough evaluation of model performance,highlighting the potential of LSTM models in stock market forecasting.The findings offer significant implications for advancing financial forecasting approaches,thereby improving the decision-making capabilities of investors and financial institutions. 展开更多
关键词 Autoregressive integrated moving average(ARIMA)model Long Short-Term Memory(LSTM)network Forecasting Stock market
在线阅读 下载PDF
Automated Machine Learning Algorithm Using Recurrent Neural Network to Perform Long-Term Time Series Forecasting
12
作者 Ying Su Morgan C.Wang Shuai Liu 《Computers, Materials & Continua》 SCIE EI 2024年第3期3529-3549,共21页
Long-term time series forecasting stands as a crucial research domain within the realm of automated machine learning(AutoML).At present,forecasting,whether rooted in machine learning or statistical learning,typically ... Long-term time series forecasting stands as a crucial research domain within the realm of automated machine learning(AutoML).At present,forecasting,whether rooted in machine learning or statistical learning,typically relies on expert input and necessitates substantial manual involvement.This manual effort spans model development,feature engineering,hyper-parameter tuning,and the intricate construction of time series models.The complexity of these tasks renders complete automation unfeasible,as they inherently demand human intervention at multiple junctures.To surmount these challenges,this article proposes leveraging Long Short-Term Memory,which is the variant of Recurrent Neural Networks,harnessing memory cells and gating mechanisms to facilitate long-term time series prediction.However,forecasting accuracy by particular neural network and traditional models can degrade significantly,when addressing long-term time-series tasks.Therefore,our research demonstrates that this innovative approach outperforms the traditional Autoregressive Integrated Moving Average(ARIMA)method in forecasting long-term univariate time series.ARIMA is a high-quality and competitive model in time series prediction,and yet it requires significant preprocessing efforts.Using multiple accuracy metrics,we have evaluated both ARIMA and proposed method on the simulated time-series data and real data in both short and long term.Furthermore,our findings indicate its superiority over alternative network architectures,including Fully Connected Neural Networks,Convolutional Neural Networks,and Nonpooling Convolutional Neural Networks.Our AutoML approach enables non-professional to attain highly accurate and effective time series forecasting,and can be widely applied to various domains,particularly in business and finance. 展开更多
关键词 Automated machine learning autoregressive integrated moving average neural networks time series analysis
在线阅读 下载PDF
Effect of aggregation interval on vehicular traffic flow heteroscedasticity
13
作者 史国刚 项乔君 +1 位作者 郭建华 张宏新 《Journal of Southeast University(English Edition)》 EI CAS 2013年第4期445-449,共5页
The effect of the aggregation interval on vehicular traffic flow heteroscedasticity is investigated using real-world traffic flow data collected from the motorway system in the United Kingdom. 30 traffic flow series a... The effect of the aggregation interval on vehicular traffic flow heteroscedasticity is investigated using real-world traffic flow data collected from the motorway system in the United Kingdom. 30 traffic flow series are generated using 30 aggregation intervals ranging from 1 to 30 min at 1 min increment, and autoregressive integrated moving average (AR/MA) models are constructed and applied in these series, generating 30 residual series. Through applying the portmanteau Q-test and the Lagrange multiplier (LM) test in the residual series from the ARIMA models, the heteroscedasticity in traffic flow series is investigated. Empirical results show that traffic flow is heteroscedastJc across these selected aggregation intervals, and longer aggregation intervals tend to cancel out the noise in the traffic flow data and hence reduce the heteroscedasticity in traffic flow series. The above findings can be utilized in the development of reliable and robust traffic management and control systems. 展开更多
关键词 HETEROSCEDASTICITY traffic flow autoregressive integrated moving average (RIM) RESIDUAL
在线阅读 下载PDF
Time-varying confidence interval forecasting of travel time for urban arterials using ARIMA-GARCH model 被引量:6
14
作者 崔青华 夏井新 《Journal of Southeast University(English Edition)》 EI CAS 2014年第3期358-362,共5页
To improve the forecasting reliability of travel time, the time-varying confidence interval of travel time on arterials is forecasted using an autoregressive integrated moving average and generalized autoregressive co... To improve the forecasting reliability of travel time, the time-varying confidence interval of travel time on arterials is forecasted using an autoregressive integrated moving average and generalized autoregressive conditional heteroskedasticity (ARIMA-GARCH) model. In which, the ARIMA model is used as the mean equation of the GARCH model to model the travel time levels and the GARCH model is used to model the conditional variances of travel time. The proposed method is validated and evaluated using actual traffic flow data collected from the traffic monitoring system of Kunshan city. The evaluation results show that, compared with the conventional ARIMA model, the proposed model cannot significantly improve the forecasting performance of travel time levels but has advantage in travel time volatility forecasting. The proposed model can well capture the travel time heteroskedasticity and forecast the time-varying confidence intervals of travel time which can better reflect the volatility of observed travel times than the fixed confidence interval provided by the ARIMA model. 展开更多
关键词 confidence interval forecasting travel time autoregressive integrated moving average and generalized autoregressive conditional heteroskedasticity ARIMA-GARCH) conditional variance reliability
在线阅读 下载PDF
Gross errors identification and correction of in-vehicle MEMS gyroscope based on time series analysis 被引量:3
15
作者 陈伟 李旭 张为公 《Journal of Southeast University(English Edition)》 EI CAS 2013年第2期170-174,共5页
This paper presents a novel approach to identify and correct the gross errors in the microelectromechanical system (MEMS) gyroscope used in ground vehicles by means of time series analysis. According to the characte... This paper presents a novel approach to identify and correct the gross errors in the microelectromechanical system (MEMS) gyroscope used in ground vehicles by means of time series analysis. According to the characteristics of autocorrelation function (ACF) and partial autocorrelation function (PACF), an autoregressive integrated moving average (ARIMA) model is roughly constructed. The rough model is optimized by combining with Akaike's information criterion (A/C), and the parameters are estimated based on the least squares algorithm. After validation testing, the model is utilized to forecast the next output on the basis of the previous measurement. When the difference between the measurement and its prediction exceeds the defined threshold, the measurement is identified as a gross error and remedied by its prediction. A case study on the yaw rate is performed to illustrate the developed algorithm. Experimental results demonstrate that the proposed approach can effectively distinguish gross errors and make some reasonable remedies. 展开更多
关键词 microelectromechanical system (MEMS)gyroscope autoregressive integrated moving average(ARIMA) model time series analysis gross errors
在线阅读 下载PDF
天气衍生品气温预测模型对比研究 被引量:1
16
作者 张雪 罗志红 江婧 《计算机科学》 CSCD 北大核心 2021年第S01期169-177,共9页
气温衍生品是天气衍生品交易中最活跃的合约之一,确定合理预测气温动态变化的模型,是气温衍生品开发设计的基础。考虑到气温在时间变化上具有趋势性、季节性和周期性等特点,文中使用了以O-U均值回复过程为基础的Continuous Time Autoreg... 气温衍生品是天气衍生品交易中最活跃的合约之一,确定合理预测气温动态变化的模型,是气温衍生品开发设计的基础。考虑到气温在时间变化上具有趋势性、季节性和周期性等特点,文中使用了以O-U均值回复过程为基础的Continuous Time Autoregressive Model(CAR)模型、Seasonal Autoregressive Integrated Moving Average(SARIMA)模型和小波神经网络算法,并选择漠河、北京、乌鲁木齐、芜湖、昆明和海口具有地域性代表的城市气温进行拟合,使用无偏绝对百分比误差、绝对百分比误差和平均绝对比例误差检验指标检验了模型的预测精度。研究结果表明,小波神经网络算法在预测6个城市的无偏绝对百分比误差、绝对百分比误差和平均绝对比例误差的值最小;同时,相比CAR模型、SARIMA模型,其预测效果最优。因此,小波神经网络算法能够很好地拟合气温数据的变化,可以为我国气温天气衍生品的定价提供一定的指导。 展开更多
关键词 气温天气衍生品 预测气温 Continuous Time Autoregressive模型 Seasonal Autoregressive Integrated Moving average模型 小波神经网络算法
在线阅读 下载PDF
A Hybrid Time-delay Prediction Method for Networked Control System 被引量:8
17
作者 Zhong-Da Tian Xian-Wen Gao Kun Li 《International Journal of Automation and computing》 EI CSCD 2014年第1期19-24,共6页
This paper presents an Ethernet based hybrid method for predicting random time-delay in the networked control system.First,db3 wavelet is used to decompose and reconstruct time-delay sequence,and the approximation com... This paper presents an Ethernet based hybrid method for predicting random time-delay in the networked control system.First,db3 wavelet is used to decompose and reconstruct time-delay sequence,and the approximation component and detail components of time-delay sequences are fgured out.Next,one step prediction of time-delay is obtained through echo state network(ESN)model and auto-regressive integrated moving average model(ARIMA)according to the diferent characteristics of approximate component and detail components.Then,the fnal predictive value of time-delay is obtained by summation.Meanwhile,the parameters of echo state network is optimized by genetic algorithm.The simulation results indicate that higher accuracy can be achieved through this prediction method. 展开更多
关键词 Networked control system wavelet transform auto-regressive integrated moving average model echo state network genetic algorithm time-delay prediction
原文传递
Spatial-temporal Analysis and Prediction of Precipitation Extremes: A Case Study in the Weihe River Basin, China 被引量:4
18
作者 QIU Dexun WU Changxue +2 位作者 MU Xingmin ZHAO Guangju GAO Peng 《Chinese Geographical Science》 SCIE CSCD 2022年第2期358-372,共15页
Extreme precipitation events bring considerable risks to the natural ecosystem and human life.Investigating the spatial-temporal characteristics of extreme precipitation and predicting it quantitatively are critical f... Extreme precipitation events bring considerable risks to the natural ecosystem and human life.Investigating the spatial-temporal characteristics of extreme precipitation and predicting it quantitatively are critical for the flood prevention and water resources planning and management.In this study,daily precipitation data(1957–2019)were collected from 24 meteorological stations in the Weihe River Basin(WRB),Northwest China and its surrounding areas.We first analyzed the spatial-temporal change of precipitation extremes in the WRB based on space-time cube(STC),and then predicted precipitation extremes using long short-term memory(LSTM)network,auto-regressive integrated moving average(ARIMA),and hybrid ensemble empirical mode decomposition(EEMD)-LSTM-ARIMA models.The precipitation extremes increased as the spatial variation from northwest to southeast of the WRB.There were two clusters for each extreme precipitation index,which were distributed in the northwestern and southeastern or northern and southern of the WRB.The precipitation extremes in the WRB present a strong clustering pattern.Spatially,the pattern of only high-high cluster and only low-low cluster were primarily located in lower reaches and upper reaches of the WRB,respectively.Hot spots(25.00%–50.00%)were more than cold spots(4.17%–25.00%)in the WRB.Cold spots were mainly concentrated in the northwestern part,while hot spots were mostly located in the eastern and southern parts.For different extreme precipitation indices,the performances of the different models were different.The accuracy ranking was EEMD-LSTM-ARIMA>LSTM>ARIMA in predicting simple daily intensity index(SDII)and consecutive wet days(CWD),while the accuracy ranking was LSTM>EEMD-LSTM-ARIMA>ARIMA in predicting very wet days(R95 P).The hybrid EEMD-LSTM-ARIMA model proposed was generally superior to single models in the prediction of precipitation extremes. 展开更多
关键词 precipitation extremes space-time cube(STC) ensemble empirical mode decomposition(EEMD) long short-term memory(LSTM) auto-regressive integrated moving average(ARIMA) Weihe River Basin China
在线阅读 下载PDF
Performance evaluation of series and parallel strategies for financial time series forecasting 被引量:3
19
作者 Mehdi Khashei Zahra Hajirahimi 《Financial Innovation》 2017年第1期357-380,共24页
Background:Improving financial time series forecasting is one of the most challenging and vital issues facing numerous financial analysts and decision makers.Given its direct impact on related decisions,various attemp... Background:Improving financial time series forecasting is one of the most challenging and vital issues facing numerous financial analysts and decision makers.Given its direct impact on related decisions,various attempts have been made to achieve more accurate and reliable forecasting results,of which the combining of individual models remains a widely applied approach.In general,individual models are combined under two main strategies:series and parallel.While it has been proven that these strategies can improve overall forecasting accuracy,the literature on time series forecasting remains vague on the choice of an appropriate strategy to generate a more accurate hybrid model.Methods:Therefore,this study’s key aim is to evaluate the performance of series and parallel strategies to determine a more accurate one.Results:Accordingly,the predictive capabilities of five hybrid models are constructed on the basis of series and parallel strategies compared with each other and with their base models to forecast stock price.To do so,autoregressive integrated moving average(ARIMA)and multilayer perceptrons(MLPs)are used to construct two series hybrid models,ARIMA-MLP and MLP-ARIMA,and three parallel hybrid models,simple average,linear regression,and genetic algorithm models.Conclusion:The empirical forecasting results for two benchmark datasets,that is,the closing of the Shenzhen Integrated Index(SZII)and that of Standard and Poor’s 500(S&P 500),indicate that although all hybrid models perform better than at least one of their individual components,the series combination strategy produces more accurate hybrid models for financial time series forecasting. 展开更多
关键词 Series and parallel combination strategies Multilayer perceptrons Autoregressive integrated moving average Financial time series forecasting Stock markets
在线阅读 下载PDF
Time-series analysis of monthly rainfall data for the Mahanadi River Basin, India 被引量:2
20
作者 Janhabi Meher Ramakar Jha 《Research in Cold and Arid Regions》 CSCD 2013年第1期73-84,共12页
Time series analysis has two goals, modeling random mechanisms and predicting future series using historical data. In the present work, a uni-variate time series autoregressive integrated moving average (ARIMA) mode... Time series analysis has two goals, modeling random mechanisms and predicting future series using historical data. In the present work, a uni-variate time series autoregressive integrated moving average (ARIMA) model has been developed for (a) simulating and forecasting mean rainfall, obtained using Theissen weights; over the Mahanadi River Basin in India, and (b) simula^ag and forecasting mean rainfall at 38 rain-gauge stations in district towns across the basin. For the analysis, monthly rainfall data of each district town for the years 1901-2002 (102 years) were used. Theissen weights were obtained over the basin and mean monthly rainfall was estimated. The trend and seasonality observed in ACF and PACF plots of rainfall data were removed using power transformation (a=0.5) and first order seasonal differencing prior to the development of the ARIMA model. Interestingly, the AR1MA model (1,0,0)(0,1,1)12 developed here was found to be most suitable for simulating and forecasting mean rainfall over the Mahanadi River Basin and for all 38 district town rain-gauge stations, separately. The Akaike Information Criterion (AIC), good- ness of fit (Chi-square), R2 (coefficient of determination), MSE (mean square error) and MAE (mea absolute error) were used to test the validity and applicability of the developed ARIMA model at different stages. This model is considered appropriate to forecast the monthly rainfall for the upcoming 12 years in each district town to assist decision makers and policy makers establish priorities for water demand, storage, distribution, and disaster management. 展开更多
关键词 Akaike Information Criterion autoregressive integrated moving average model goodness of fit rainfall forecasting
在线阅读 下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部