A new type of symmetry,ren-symmetry,describing anyon physics and corresponding topological physics,is proposed.Ren-symmetry is a generalization of super-symmetry which is widely applied in super-symmetric physics such...A new type of symmetry,ren-symmetry,describing anyon physics and corresponding topological physics,is proposed.Ren-symmetry is a generalization of super-symmetry which is widely applied in super-symmetric physics such as super-symmetric quantum mechanics,super-symmetric gravity,super-symmetric string theory,super-symmetric integrable systems and so on.Supersymmetry and Grassmann numbers are,in some sense,dual conceptions,and it turns out that these conceptions coincide for the ren situation,that is,a similar conception of ren-number(R-number)is devised for ren-symmetry.In particular,some basic results of the R-number and ren-symmetry are exposed which allow one to derive,in principle,some new types of integrable systems including ren-integrable models and ren-symmetric integrable systems.Training examples of ren-integrable KdV-type systems and ren-symmetric KdV equations are explicitly given.展开更多
After introducing dark parameters into the traditional physical models, some types of new phenomena may be found. An important difficult problem is how to directly observe this kind of physical phenomena. An alternati...After introducing dark parameters into the traditional physical models, some types of new phenomena may be found. An important difficult problem is how to directly observe this kind of physical phenomena. An alternative treatment is to introduce equivalent multiple partner fields. If use this ideal to integrable systems, one may obtain infinitely many new coupled integrable systems constituted by the original usuM field and partner fields. The idea is illustrated via the celebrate KdV equation. From the procedure, some byproducts can be obtained: A new method to find exact solutions of some types of coupled nonlinear physical problems, say, the perturbation KdV systems, is provided; Some new localized modes such as the staggered modes can be found and some new interaction phenomena like the ghost interaction are discovered.展开更多
Symmetry plays key roles in modern physics especially in the study of integrable systems because of the existence of infinitely many local and nonlocal generalized symmetries.In addition to the fundamental role to fin...Symmetry plays key roles in modern physics especially in the study of integrable systems because of the existence of infinitely many local and nonlocal generalized symmetries.In addition to the fundamental role to find exact group invariant solutions via Lie point symmetries,some important new developments on symmetries and conservation laws are reviewed.The recursion operator method is important to find infinitely many local and nonlocal symmetries of(1+1)-dimensional integrable systems.In this paper,it is pointed out that a recursion operator may be obtained from one key symmetry,say,a residual symmetry.For(2+1)-dimensional integrable systems,the master-symmetry approach and the formal series symmetry method are reviewed.For the discrete systems,the symmetry related discrete KP hierarchy and the BKP hierarchy are also discussed.One believes that all the solutions of integrable models may be obtained by means of symmetry approach because the Darboux trans-formations and algebro-geometric solutions can be obtained from the localization of nonlocal symmetries and the symmetry constraint approach.The conservation laws are used to find higher dimensional integrable system from lower dimensional ones via a deformation algorithm.The ren variable,an extension of the Grassmann variable,are introduced to find novel aspect on integrable theory.The super-integrable theory and super-symmetric integrable theory are extended to ren integrable and ren-symmetric integrable theories.展开更多
Background:Diabetic cardiomyopathy(DCM)is a type of cardiomyopathy caused by long-term diabetes,characterized by abnormal myocardial structure and function,which can lead to heart failure.Berberine(BBR),a quaternary a...Background:Diabetic cardiomyopathy(DCM)is a type of cardiomyopathy caused by long-term diabetes,characterized by abnormal myocardial structure and function,which can lead to heart failure.Berberine(BBR),a quaternary ammonium alkaloid isolated from Coptidis Rhizoma,a traditional Chinese medicine,has superior anti-diabetic and heart-protective properties.The purpose of this study is to assess the impact of BBR on DCM.Methods:This study used a systems pharmacology approach to evaluate the related proteins and signalling pathways between BBR and DCM targets,combined with experimental validation using diabetic mouse heart sections.Microstructural and pathological changes were observed using Hematoxylin-eosin,Masson’s trichrome stain and wheat germ agglutinin staining.Immunofluorescence and western blot were used to determine protein expression.Results:The results indicate that BBR and DCM share 21 core relevant targets,with cross-targets predominantly located in mitochondrial,endoplasmic reticulum,and plasma membrane components.BBR exerts its main effects in improving DCM by maintaining mitochondrial integrity,particularly involving the PI3K-AKT-GSK3βand apoptosis signalling pathways.In addition,post-treatment changes in the key targets of BBR,including cysteine aspartate specific protease(Caspase)-3,phosphoinositide 3-kinase(PI3K)and mitochondria-related proteins,are suggestive of its efficacy.Conclusion:BBR crucially improves DCM by maintaining mitochondrial integrity,inhibiting apoptosis,and modulating PI3K-AKT-GSK3βsignaling.Further studies must address animal model limitations and validate clinical efficacy to understand BBR’s mechanisms fully and its potential clinical use.展开更多
With the development of integrated power and gas distribution systems(IPGS)incorporating renewable energy sources(RESs),coordinating the restoration processes of the power distribution system(PS)and the gas distributi...With the development of integrated power and gas distribution systems(IPGS)incorporating renewable energy sources(RESs),coordinating the restoration processes of the power distribution system(PS)and the gas distribution system(GS)by utilizing the benefits of RESs enhances service restoration.In this context,this paper proposes a coordinated service restoration framework that considers the uncertainty in RESs and the bi-directional restoration interactions between the PS and GS.Additionally,a coordinated service restoration model is developed considering the two systems’interdependency and the GS’s dynamic characteristics.The objective is to maximize the system resilience index while adhering to operational,dynamic,restoration logic,and interdependency constraints.A method for managing uncertainties in RES output is employed,and convexification techniques are applied to address the nonlinear constraints arising from the physical laws of the IPGS,thereby reducing solution complexity.As a result,the service restoration optimization problem of the IPGS can be formulated as a computationally tractable mixed-integer second-order cone programming problem.The effectiveness and superiority of the proposed framework are demonstrated through numerical simulations conducted on the interdependent IEEE 13-bus PS and 9-node GS.The comparative results show that the proposed framework improves the system resilience index by at least 65.07%compared to traditional methods.展开更多
With the intensification of the energy crisis and the worsening greenhouse effect,the development of sustainable integrated energy systems(IES)has become a crucial direction for energy transition.In this context,this ...With the intensification of the energy crisis and the worsening greenhouse effect,the development of sustainable integrated energy systems(IES)has become a crucial direction for energy transition.In this context,this paper proposes a low-carbon economic dispatch strategy under the green hydrogen certificate trading(GHCT)and the ladder-type carbon emission trading(CET)mechanism,enabling the coordinated utilization of green and blue hydrogen.Specifically,a proton exchange membrane electrolyzer(PEME)model that accounts for dynamic efficiency characteristics,and a steam methane reforming(SMR)model incorporating waste heat recovery,are developed.Based on these models,a hydrogen production–storage–utilization framework is established to enable the coordinated deployment of green and blue hydrogen.Furthermore,the gas turbine(GT)unit are retrofitted using oxygenenriched combustion carbon capture(OCC)technology,wherein the oxygen produced by PEME is employed to create an oxygen-enriched combustion environment.This approach reduces energy waste and facilitates low-carbon power generation.In addition,the GHCT mechanism is integrated into the system alongside the ladder-type CET mechanism,and their complementary effects are investigated.A comprehensive optimization model is then formulated to simultaneously achieve carbon reduction and economic efficiency across the system.Case study results show that the proposed strategy reduces wind curtailment by 7.77%,carbon emissions by 65.98%,and total cost by 12.57%.This study offers theoretical reference for the low-carbon,economic,and efficient operation of future energy systems.展开更多
Schizophrenia is characterized by psychotic symptoms,negative symptoms,and cognitive deficits,profoundly affecting individuals and their families.The etiology is multifactorial,involving genetic,endocrine,and immunolo...Schizophrenia is characterized by psychotic symptoms,negative symptoms,and cognitive deficits,profoundly affecting individuals and their families.The etiology is multifactorial,involving genetic,endocrine,and immunological risk factors.It is thought that schizophrenia is exclusively linked to alterations in brain structure and function,while the relationship between the brain and many organs may lack sufficient attention.Increasing evidence indicates abnormalities of the interactions between the brain and many organs in patients with schizophrenia.Inter-organ crosstalk affects the onset,course,and management of schizophrenia.Besides,the complex relationship between autonomic nervous system,endocrine system,and immune system further facilitates the development of schizophrenia.The present review summarizes the relationships between the brain and multiple organ systems in schizophrenia,providing new perspectives on the underlying pathophysiological mechanisms of schizophrenia.展开更多
An isospectral problem with four potentials is discussed. The corresponding hierarchy of nonlinearevolution equations is derived. It is shown that the AKNS, Levi, D-AKNS hierarchies and a new oneare reductions of the ...An isospectral problem with four potentials is discussed. The corresponding hierarchy of nonlinearevolution equations is derived. It is shown that the AKNS, Levi, D-AKNS hierarchies and a new oneare reductions of the above hierarchy. In each case the relevant Hamiltonian form is established bymaking use of the trase identity.展开更多
The reliability of quasi integrable and non-resonant Hamiltonian system under fractional Gaussian noise(fGn)excitation is studied.Noting rather flat fGn power spectral density(PSD)in most part of frequency band,the fG...The reliability of quasi integrable and non-resonant Hamiltonian system under fractional Gaussian noise(fGn)excitation is studied.Noting rather flat fGn power spectral density(PSD)in most part of frequency band,the fGn is innovatively regarded as a wide-band process.Then,the stochastic averaging method for quasi integrable Hamiltonian systems under wide-band noise excitation is applied to reduce 2n-dimensional original system into n-dimensional averaged ltd stochastic differential equations(SDEs).Reliability function and mean first passage time are obtained by solving the associated backward Kolmogorov equation and Pontryagin equation.The validity of the proposed procedure is tested by applying it to an example and comparing the numerical results with those from Monte Carlo simulation.展开更多
The economic operation of integrated energy system(IES)faces new challenges such as multi-timescale characteristics of heterogeneous energy sources,and cooperative operation of hybrid energy storage system(HESS).To th...The economic operation of integrated energy system(IES)faces new challenges such as multi-timescale characteristics of heterogeneous energy sources,and cooperative operation of hybrid energy storage system(HESS).To this end,this paper investigates the multi-timescale rolling opti-mization problem for IES integrated with HESS.Firstly,the architecture of IES with HESS is established,a comparative analysis is conducted to evaluate the advantages of the HESS over a single energy storage system(SESS)in stabilizing power fluctuations.Secondly,the dayahead and real-time scheduling cost functions of IES are established,the day-ahead scheduling mainly depends on operation costs of the components in IES,the real-time optimal scheduling adopts the Lya-punov optimization method to schedule the battery and hydrogen energy storage in each time slot,so as to minimize the real-time average scheduling operation cost,and the problem of day-ahead and real-time scheduling error,which caused by the uncertainty of the energy storage is solved by online optimization.Finally,the proposed model is verified to reduce the scheduling operation cost and the dispatching error by performing an arithmetic example analysis of the IES in Shanghai,which provides a reference for the safe and stable operation of the IES.展开更多
Hot dry rock(HDR)is rich in reserve,widely distributed,green,low-carbon,and has broad development potential and prospects.In this paper,a distributionally robust optimization(DRO)scheduling model for a regionally inte...Hot dry rock(HDR)is rich in reserve,widely distributed,green,low-carbon,and has broad development potential and prospects.In this paper,a distributionally robust optimization(DRO)scheduling model for a regionally integrated energy system(RIES)considering HDR co-generation is proposed.First,the HDR-enhanced geothermal system(HDR-EGS)is introduced into the RIES.HDR-EGS realizes the thermoelectric decoupling of combined heat and power(CHP)through coordinated operation with the regional power grid and the regional heat grid,which enhances the system wind power(WP)feed-in space.Secondly,peak-hour loads are shifted using price demand response guidance in the context of time-of-day pricing.Finally,the optimization objective is established to minimize the total cost in the RIES scheduling cycle and construct a DRO scheduling model for RIES with HDR-EGS.By simulating a real small-scale RIES,the results show that HDR-EGS can effectively promote WP consumption and reduce the operating cost of the system.展开更多
This study presents a(2+1)-dimensional complex coupled dispersionless system.A Lax pair is proposed,and the Darboux transformation is employed to construct multisoliton solutions.These solutions exhibit a range of wav...This study presents a(2+1)-dimensional complex coupled dispersionless system.A Lax pair is proposed,and the Darboux transformation is employed to construct multisoliton solutions.These solutions exhibit a range of wave phenomena,including bright and dark solitons,S-shaped formations,parabolic profiles,and periodic wave patterns.Additionally,it is shown that the system is equivalent to the sine-Gordon equation and the negative flow of the modified Korteweg-de Vries hierarchy through appropriate transformations.展开更多
By using a reconstruction procedure of conservation laws of different models,the deformation algorithm proposed by Lou,Hao and Jia has been used to a new application such that a decoupled system becomes a coupled one....By using a reconstruction procedure of conservation laws of different models,the deformation algorithm proposed by Lou,Hao and Jia has been used to a new application such that a decoupled system becomes a coupled one.Using the new application to some decoupled systems such as the decoupled dispersionless Korteweg–de Vries(Kd V)systems related to dispersionless waves,the decoupled KdV systems related to dispersion waves,the decoupled KdV and Burgers systems related to the linear dispersion and diffusion effects,and the decoupled KdV and Harry–Dym(HD)systems related to the linear and nonlinear dispersion effects,we have obtained various new types of higher dimensional integrable coupled systems.The new models can be used to describe the interactions among different nonlinear waves and/or different effects including the dispersionless waves(dispersionless KdV waves),the linear dispersion waves(KdV waves),the nonlinear dispersion waves(HD waves)and the diffusion effect.The method can be applied to couple all different separated integrable models.展开更多
Multi-place nonlocal systems have attracted attention from many scientists.In this paper,we mainly review the recent progresses on two-place nonlocal systems(Alice-Bob systems)and four-place nonlocal models.Multi-plac...Multi-place nonlocal systems have attracted attention from many scientists.In this paper,we mainly review the recent progresses on two-place nonlocal systems(Alice-Bob systems)and four-place nonlocal models.Multi-place systems can firstly be derived from many physical problems by using a multiple scaling method with a discrete symmetry group including parity,time reversal,charge conjugates,rotations,field reversal and exchange transformations.Multiplace nonlocal systems can also be derived from the symmetry reductions of coupled nonlinear systems via discrete symmetry reductions.On the other hand,to solve multi-place nonlocal systems,one can use the symmetry-antisymmetry separation approach related to a suitable discrete symmetry group,such that the separated systems are coupled local ones.By using the separation method,all the known powerful methods used in local systems can be applied to nonlocal cases.In this review article,we take two-place and four-place nonlocal nonlinear Schr?dinger(NLS)systems and Kadomtsev-Petviashvili(KP)equations as simple examples to explain how to derive and solve them.Some types of novel physical and mathematical points related to the nonlocal systems are especially emphasized.展开更多
We classify all positive solutions for the following integral system:{ui(x)=∫Rn1/│x-y│^n-α fi(u(y))dy,x∈R^n,i=1,…,m,0〈α〈n,and u(x)=(u1(x),u2(x)…,um(x)).Here fi(u), 1 ≤ i ≤m, monotone non...We classify all positive solutions for the following integral system:{ui(x)=∫Rn1/│x-y│^n-α fi(u(y))dy,x∈R^n,i=1,…,m,0〈α〈n,and u(x)=(u1(x),u2(x)…,um(x)).Here fi(u), 1 ≤ i ≤m, monotone nondecreasing are real-valued functions of homogeneous degree n+α/n-α and are monotone nondecreasing with respect to all the independent variables U1, u2, ..., urn.In the special case n ≥ 3 and α = 2. we show that the above system is equivalent to thefollowing elliptic PDE system:This system is closely related to the stationary SchrSdinger system with critical exponents for Bose-Einstein condensate展开更多
In this paper,we study the N=2a=1 supersymmetric KdV equation.We construct its Darboux transformation and the associated B?cklund transformation.Furthermore,we derive a nonlinear superposition formula,and as applicati...In this paper,we study the N=2a=1 supersymmetric KdV equation.We construct its Darboux transformation and the associated B?cklund transformation.Furthermore,we derive a nonlinear superposition formula,and as applications we calculate some solutions for this supersymmetric KdV equation and recover the related results for the Kersten-Krasil'shchik coupled KdV-mKdV system.展开更多
In this paper, a distributed control scheme has been developed for consensus of single integrator multi-agent systems with directed fixed communication topology for arbitrarily large constant, time-varying or distribu...In this paper, a distributed control scheme has been developed for consensus of single integrator multi-agent systems with directed fixed communication topology for arbitrarily large constant, time-varying or distributed communication delays. It is proved that the closed loop control system can reach consensus with an exponential convergence rate if and only if the topology is quasi-strongly connected. Simulation results are also provided to demonstrate the effectiveness of the proposed controller.展开更多
A linear matrix inequality (LMI)-based sliding surface design method for integral sliding mode control of uncertain time- delay systems with mismatching uncertainties is proposed. The uncertain time-delay system und...A linear matrix inequality (LMI)-based sliding surface design method for integral sliding mode control of uncertain time- delay systems with mismatching uncertainties is proposed. The uncertain time-delay system under consideration may have mis- matching norm bounded uncertainties in the state matrix as well as the input matrix, A sufficient condition for the existence of a sliding surface is given to guarantee asymptotic stability of the full order slJdJng mode dynamics. An LMI characterization of the slid- ing surface is given, together with an integral sliding mode control law guaranteeing the existence of a sliding mode from the initial time. Finally, a simulation is given to show the effectiveness of the proposed method.展开更多
Various application domains require the integration of distributed real-time or near-real-time systems with non-real-time systems.Smart cities,smart homes,ambient intelligent systems,or network-centric defense systems...Various application domains require the integration of distributed real-time or near-real-time systems with non-real-time systems.Smart cities,smart homes,ambient intelligent systems,or network-centric defense systems are among these application domains.Data Distribution Service(DDS)is a communication mechanism based on Data-Centric Publish-Subscribe(DCPS)model.It is used for distributed systems with real-time operational constraints.Java Message Service(JMS)is a messaging standard for enterprise systems using Service Oriented Architecture(SOA)for non-real-time operations.JMS allows Java programs to exchange messages in a loosely coupled fashion.JMS also supports sending and receiving messages using a messaging queue and a publish-subscribe interface.In this article,we propose an architecture enabling the automated integration of distributed real-time and non-real-time systems.We test our proposed architecture using a distributed Command,Control,Communications,Computers,and Intelligence(C4I)system.The system has DDS-based real-time Combat Management System components deployed to naval warships,and SOA-based non-real-time Command and Control components used at headquarters.The proposed solution enables the exchange of data between these two systems efficiently.We compare the proposed solution with a similar study.Our solution is superior in terms of automation support,ease of implementation,scalability,and performance.展开更多
基金sponsored by the National Natural Science Foundation of China(Nos.12235007,11975131)。
文摘A new type of symmetry,ren-symmetry,describing anyon physics and corresponding topological physics,is proposed.Ren-symmetry is a generalization of super-symmetry which is widely applied in super-symmetric physics such as super-symmetric quantum mechanics,super-symmetric gravity,super-symmetric string theory,super-symmetric integrable systems and so on.Supersymmetry and Grassmann numbers are,in some sense,dual conceptions,and it turns out that these conceptions coincide for the ren situation,that is,a similar conception of ren-number(R-number)is devised for ren-symmetry.In particular,some basic results of the R-number and ren-symmetry are exposed which allow one to derive,in principle,some new types of integrable systems including ren-integrable models and ren-symmetric integrable systems.Training examples of ren-integrable KdV-type systems and ren-symmetric KdV equations are explicitly given.
基金Sponsored by the National Natural Science Foundation of China under Grang No.10735030the National Basic Research Programs of China(973 Programs 2007CB814800 and 2005CB422301)K.C.Wong Magna Fund in Ningbo University
文摘After introducing dark parameters into the traditional physical models, some types of new phenomena may be found. An important difficult problem is how to directly observe this kind of physical phenomena. An alternative treatment is to introduce equivalent multiple partner fields. If use this ideal to integrable systems, one may obtain infinitely many new coupled integrable systems constituted by the original usuM field and partner fields. The idea is illustrated via the celebrate KdV equation. From the procedure, some byproducts can be obtained: A new method to find exact solutions of some types of coupled nonlinear physical problems, say, the perturbation KdV systems, is provided; Some new localized modes such as the staggered modes can be found and some new interaction phenomena like the ghost interaction are discovered.
基金supported by grants from the National Natural Science Foundation of China(12235007,11975131)K C Wong Magna Fund in Ningbo University.
文摘Symmetry plays key roles in modern physics especially in the study of integrable systems because of the existence of infinitely many local and nonlocal generalized symmetries.In addition to the fundamental role to find exact group invariant solutions via Lie point symmetries,some important new developments on symmetries and conservation laws are reviewed.The recursion operator method is important to find infinitely many local and nonlocal symmetries of(1+1)-dimensional integrable systems.In this paper,it is pointed out that a recursion operator may be obtained from one key symmetry,say,a residual symmetry.For(2+1)-dimensional integrable systems,the master-symmetry approach and the formal series symmetry method are reviewed.For the discrete systems,the symmetry related discrete KP hierarchy and the BKP hierarchy are also discussed.One believes that all the solutions of integrable models may be obtained by means of symmetry approach because the Darboux trans-formations and algebro-geometric solutions can be obtained from the localization of nonlocal symmetries and the symmetry constraint approach.The conservation laws are used to find higher dimensional integrable system from lower dimensional ones via a deformation algorithm.The ren variable,an extension of the Grassmann variable,are introduced to find novel aspect on integrable theory.The super-integrable theory and super-symmetric integrable theory are extended to ren integrable and ren-symmetric integrable theories.
基金supported by the National Natural Science Foundation of China(Grant No.82270892)Natural Science Foundation of Hubei Province(Grant No.2022CFB287)+2 种基金Xianning City Science and Technology Plan Project(Grant No.2022ZRKX052)School projects of Hubei University of Science and Technology(Grant No.2022T01,2021WG05,2021TNB01)Hubei University of Science and Technology School-level Fund(Grant No.BK202122).
文摘Background:Diabetic cardiomyopathy(DCM)is a type of cardiomyopathy caused by long-term diabetes,characterized by abnormal myocardial structure and function,which can lead to heart failure.Berberine(BBR),a quaternary ammonium alkaloid isolated from Coptidis Rhizoma,a traditional Chinese medicine,has superior anti-diabetic and heart-protective properties.The purpose of this study is to assess the impact of BBR on DCM.Methods:This study used a systems pharmacology approach to evaluate the related proteins and signalling pathways between BBR and DCM targets,combined with experimental validation using diabetic mouse heart sections.Microstructural and pathological changes were observed using Hematoxylin-eosin,Masson’s trichrome stain and wheat germ agglutinin staining.Immunofluorescence and western blot were used to determine protein expression.Results:The results indicate that BBR and DCM share 21 core relevant targets,with cross-targets predominantly located in mitochondrial,endoplasmic reticulum,and plasma membrane components.BBR exerts its main effects in improving DCM by maintaining mitochondrial integrity,particularly involving the PI3K-AKT-GSK3βand apoptosis signalling pathways.In addition,post-treatment changes in the key targets of BBR,including cysteine aspartate specific protease(Caspase)-3,phosphoinositide 3-kinase(PI3K)and mitochondria-related proteins,are suggestive of its efficacy.Conclusion:BBR crucially improves DCM by maintaining mitochondrial integrity,inhibiting apoptosis,and modulating PI3K-AKT-GSK3βsignaling.Further studies must address animal model limitations and validate clinical efficacy to understand BBR’s mechanisms fully and its potential clinical use.
基金funded by the Science and Technology Project of State Grid Shanxi Electric Power Company(5205E0230001).
文摘With the development of integrated power and gas distribution systems(IPGS)incorporating renewable energy sources(RESs),coordinating the restoration processes of the power distribution system(PS)and the gas distribution system(GS)by utilizing the benefits of RESs enhances service restoration.In this context,this paper proposes a coordinated service restoration framework that considers the uncertainty in RESs and the bi-directional restoration interactions between the PS and GS.Additionally,a coordinated service restoration model is developed considering the two systems’interdependency and the GS’s dynamic characteristics.The objective is to maximize the system resilience index while adhering to operational,dynamic,restoration logic,and interdependency constraints.A method for managing uncertainties in RES output is employed,and convexification techniques are applied to address the nonlinear constraints arising from the physical laws of the IPGS,thereby reducing solution complexity.As a result,the service restoration optimization problem of the IPGS can be formulated as a computationally tractable mixed-integer second-order cone programming problem.The effectiveness and superiority of the proposed framework are demonstrated through numerical simulations conducted on the interdependent IEEE 13-bus PS and 9-node GS.The comparative results show that the proposed framework improves the system resilience index by at least 65.07%compared to traditional methods.
基金supported by National Natural Science Foundation of China(52477101)Natural Science Foundation of Jiangsu Province(BK20210932).
文摘With the intensification of the energy crisis and the worsening greenhouse effect,the development of sustainable integrated energy systems(IES)has become a crucial direction for energy transition.In this context,this paper proposes a low-carbon economic dispatch strategy under the green hydrogen certificate trading(GHCT)and the ladder-type carbon emission trading(CET)mechanism,enabling the coordinated utilization of green and blue hydrogen.Specifically,a proton exchange membrane electrolyzer(PEME)model that accounts for dynamic efficiency characteristics,and a steam methane reforming(SMR)model incorporating waste heat recovery,are developed.Based on these models,a hydrogen production–storage–utilization framework is established to enable the coordinated deployment of green and blue hydrogen.Furthermore,the gas turbine(GT)unit are retrofitted using oxygenenriched combustion carbon capture(OCC)technology,wherein the oxygen produced by PEME is employed to create an oxygen-enriched combustion environment.This approach reduces energy waste and facilitates low-carbon power generation.In addition,the GHCT mechanism is integrated into the system alongside the ladder-type CET mechanism,and their complementary effects are investigated.A comprehensive optimization model is then formulated to simultaneously achieve carbon reduction and economic efficiency across the system.Case study results show that the proposed strategy reduces wind curtailment by 7.77%,carbon emissions by 65.98%,and total cost by 12.57%.This study offers theoretical reference for the low-carbon,economic,and efficient operation of future energy systems.
基金Supported by Beijing Traditional Chinese Medicine Scientific and Technological Development Fund Project,No.BJZYYB-2023-66Beijing Natural Science Foundation,No.7212050the Capital’s Funds for Health Improvement and Research,No.2020-4-2126.
文摘Schizophrenia is characterized by psychotic symptoms,negative symptoms,and cognitive deficits,profoundly affecting individuals and their families.The etiology is multifactorial,involving genetic,endocrine,and immunological risk factors.It is thought that schizophrenia is exclusively linked to alterations in brain structure and function,while the relationship between the brain and many organs may lack sufficient attention.Increasing evidence indicates abnormalities of the interactions between the brain and many organs in patients with schizophrenia.Inter-organ crosstalk affects the onset,course,and management of schizophrenia.Besides,the complex relationship between autonomic nervous system,endocrine system,and immune system further facilitates the development of schizophrenia.The present review summarizes the relationships between the brain and multiple organ systems in schizophrenia,providing new perspectives on the underlying pathophysiological mechanisms of schizophrenia.
基金The project supported by National Natural Science Foundation Committeethrough Nankai Institute of Mathematics
文摘An isospectral problem with four potentials is discussed. The corresponding hierarchy of nonlinearevolution equations is derived. It is shown that the AKNS, Levi, D-AKNS hierarchies and a new oneare reductions of the above hierarchy. In each case the relevant Hamiltonian form is established bymaking use of the trase identity.
基金supported by National Key R&D Program of China(Grant No.2018 YFC0809400)Zhejiang Provincial Natural Science Foundation of China(Grant No.LY16A020001)National Natural Science Foundation of China(Grant No.11802267).
文摘The reliability of quasi integrable and non-resonant Hamiltonian system under fractional Gaussian noise(fGn)excitation is studied.Noting rather flat fGn power spectral density(PSD)in most part of frequency band,the fGn is innovatively regarded as a wide-band process.Then,the stochastic averaging method for quasi integrable Hamiltonian systems under wide-band noise excitation is applied to reduce 2n-dimensional original system into n-dimensional averaged ltd stochastic differential equations(SDEs).Reliability function and mean first passage time are obtained by solving the associated backward Kolmogorov equation and Pontryagin equation.The validity of the proposed procedure is tested by applying it to an example and comparing the numerical results with those from Monte Carlo simulation.
基金supported by the National Natural Science Foundation of China(No.12171145)。
文摘The economic operation of integrated energy system(IES)faces new challenges such as multi-timescale characteristics of heterogeneous energy sources,and cooperative operation of hybrid energy storage system(HESS).To this end,this paper investigates the multi-timescale rolling opti-mization problem for IES integrated with HESS.Firstly,the architecture of IES with HESS is established,a comparative analysis is conducted to evaluate the advantages of the HESS over a single energy storage system(SESS)in stabilizing power fluctuations.Secondly,the dayahead and real-time scheduling cost functions of IES are established,the day-ahead scheduling mainly depends on operation costs of the components in IES,the real-time optimal scheduling adopts the Lya-punov optimization method to schedule the battery and hydrogen energy storage in each time slot,so as to minimize the real-time average scheduling operation cost,and the problem of day-ahead and real-time scheduling error,which caused by the uncertainty of the energy storage is solved by online optimization.Finally,the proposed model is verified to reduce the scheduling operation cost and the dispatching error by performing an arithmetic example analysis of the IES in Shanghai,which provides a reference for the safe and stable operation of the IES.
基金King Saud University for funding this research through the Researchers Supporting Program Number(RSPD2024R704),King Saud University,Riyadh,Saudi Arabia.
文摘Hot dry rock(HDR)is rich in reserve,widely distributed,green,low-carbon,and has broad development potential and prospects.In this paper,a distributionally robust optimization(DRO)scheduling model for a regionally integrated energy system(RIES)considering HDR co-generation is proposed.First,the HDR-enhanced geothermal system(HDR-EGS)is introduced into the RIES.HDR-EGS realizes the thermoelectric decoupling of combined heat and power(CHP)through coordinated operation with the regional power grid and the regional heat grid,which enhances the system wind power(WP)feed-in space.Secondly,peak-hour loads are shifted using price demand response guidance in the context of time-of-day pricing.Finally,the optimization objective is established to minimize the total cost in the RIES scheduling cycle and construct a DRO scheduling model for RIES with HDR-EGS.By simulating a real small-scale RIES,the results show that HDR-EGS can effectively promote WP consumption and reduce the operating cost of the system.
文摘This study presents a(2+1)-dimensional complex coupled dispersionless system.A Lax pair is proposed,and the Darboux transformation is employed to construct multisoliton solutions.These solutions exhibit a range of wave phenomena,including bright and dark solitons,S-shaped formations,parabolic profiles,and periodic wave patterns.Additionally,it is shown that the system is equivalent to the sine-Gordon equation and the negative flow of the modified Korteweg-de Vries hierarchy through appropriate transformations.
基金The National Natural Science Foundation(Nos.12235007,12090020,11975131,12090025)。
文摘By using a reconstruction procedure of conservation laws of different models,the deformation algorithm proposed by Lou,Hao and Jia has been used to a new application such that a decoupled system becomes a coupled one.Using the new application to some decoupled systems such as the decoupled dispersionless Korteweg–de Vries(Kd V)systems related to dispersionless waves,the decoupled KdV systems related to dispersion waves,the decoupled KdV and Burgers systems related to the linear dispersion and diffusion effects,and the decoupled KdV and Harry–Dym(HD)systems related to the linear and nonlinear dispersion effects,we have obtained various new types of higher dimensional integrable coupled systems.The new models can be used to describe the interactions among different nonlinear waves and/or different effects including the dispersionless waves(dispersionless KdV waves),the linear dispersion waves(KdV waves),the nonlinear dispersion waves(HD waves)and the diffusion effect.The method can be applied to couple all different separated integrable models.
基金sponsored by the National Natural Science Foundations of China(No.11975131,11435005)K C Wong Magna Fund in Ningbo University。
文摘Multi-place nonlocal systems have attracted attention from many scientists.In this paper,we mainly review the recent progresses on two-place nonlocal systems(Alice-Bob systems)and four-place nonlocal models.Multi-place systems can firstly be derived from many physical problems by using a multiple scaling method with a discrete symmetry group including parity,time reversal,charge conjugates,rotations,field reversal and exchange transformations.Multiplace nonlocal systems can also be derived from the symmetry reductions of coupled nonlinear systems via discrete symmetry reductions.On the other hand,to solve multi-place nonlocal systems,one can use the symmetry-antisymmetry separation approach related to a suitable discrete symmetry group,such that the separated systems are coupled local ones.By using the separation method,all the known powerful methods used in local systems can be applied to nonlocal cases.In this review article,we take two-place and four-place nonlocal nonlinear Schr?dinger(NLS)systems and Kadomtsev-Petviashvili(KP)equations as simple examples to explain how to derive and solve them.Some types of novel physical and mathematical points related to the nonlocal systems are especially emphasized.
基金supported by NSF Grant DMS-0604638Li partially supported by NSF Grant DMS-0401174
文摘We classify all positive solutions for the following integral system:{ui(x)=∫Rn1/│x-y│^n-α fi(u(y))dy,x∈R^n,i=1,…,m,0〈α〈n,and u(x)=(u1(x),u2(x)…,um(x)).Here fi(u), 1 ≤ i ≤m, monotone nondecreasing are real-valued functions of homogeneous degree n+α/n-α and are monotone nondecreasing with respect to all the independent variables U1, u2, ..., urn.In the special case n ≥ 3 and α = 2. we show that the above system is equivalent to thefollowing elliptic PDE system:This system is closely related to the stationary SchrSdinger system with critical exponents for Bose-Einstein condensate
基金supported by the National Natural Science Foundation of China (Grant Nos.12175111,11931107 and 12171474)NSFC-RFBR (Grant No.12111530003)。
文摘In this paper,we study the N=2a=1 supersymmetric KdV equation.We construct its Darboux transformation and the associated B?cklund transformation.Furthermore,we derive a nonlinear superposition formula,and as applications we calculate some solutions for this supersymmetric KdV equation and recover the related results for the Kersten-Krasil'shchik coupled KdV-mKdV system.
文摘In this paper, a distributed control scheme has been developed for consensus of single integrator multi-agent systems with directed fixed communication topology for arbitrarily large constant, time-varying or distributed communication delays. It is proved that the closed loop control system can reach consensus with an exponential convergence rate if and only if the topology is quasi-strongly connected. Simulation results are also provided to demonstrate the effectiveness of the proposed controller.
基金supported in part by the National Basic Research Program of China(973 Program)(61334)
文摘A linear matrix inequality (LMI)-based sliding surface design method for integral sliding mode control of uncertain time- delay systems with mismatching uncertainties is proposed. The uncertain time-delay system under consideration may have mis- matching norm bounded uncertainties in the state matrix as well as the input matrix, A sufficient condition for the existence of a sliding surface is given to guarantee asymptotic stability of the full order slJdJng mode dynamics. An LMI characterization of the slid- ing surface is given, together with an integral sliding mode control law guaranteeing the existence of a sliding mode from the initial time. Finally, a simulation is given to show the effectiveness of the proposed method.
文摘Various application domains require the integration of distributed real-time or near-real-time systems with non-real-time systems.Smart cities,smart homes,ambient intelligent systems,or network-centric defense systems are among these application domains.Data Distribution Service(DDS)is a communication mechanism based on Data-Centric Publish-Subscribe(DCPS)model.It is used for distributed systems with real-time operational constraints.Java Message Service(JMS)is a messaging standard for enterprise systems using Service Oriented Architecture(SOA)for non-real-time operations.JMS allows Java programs to exchange messages in a loosely coupled fashion.JMS also supports sending and receiving messages using a messaging queue and a publish-subscribe interface.In this article,we propose an architecture enabling the automated integration of distributed real-time and non-real-time systems.We test our proposed architecture using a distributed Command,Control,Communications,Computers,and Intelligence(C4I)system.The system has DDS-based real-time Combat Management System components deployed to naval warships,and SOA-based non-real-time Command and Control components used at headquarters.The proposed solution enables the exchange of data between these two systems efficiently.We compare the proposed solution with a similar study.Our solution is superior in terms of automation support,ease of implementation,scalability,and performance.