Background:Pistacia integerrima,a cornerstone of traditional medicine,is renowned for its therapeutic applications against various health conditions,including cancer and hepatitis.This study investigates the pharmacol...Background:Pistacia integerrima,a cornerstone of traditional medicine,is renowned for its therapeutic applications against various health conditions,including cancer and hepatitis.This study investigates the pharmacological potential of bioactive compounds derived from Pistacia integerrima in inhibiting 5-lipoxygenase(5-LOX),a key enzyme implicated in inflammation and cancer progression.The current study aimed to evaluate the lipoxygenase inhibitory activity of bioactive compounds from Pistacia integerrima and assess their potential for therapeutic development in the context of inflammation and cancer treatment.Methods:Three major compounds-spinacetin(1),patuletin(2),and pistagremic acid(3)-were isolated from Pistacia integerrima and analyzed for their lipoxygenase inhibitory activity.Biochemical assays and molecular docking studies were performed to assess their effectiveness in inhibiting 5-LOX.Results:All three compounds demonstrated significant inhibition of lipoxygenase activity.Spinacetin(1)and patuletin(2)exhibited the most potent inhibitory effects,with IC_(50)values of 40.34μM and 45.04μM,respectively.Molecular docking studies revealed that patuletin(2)had the highest binding affinity(−7.717 kcal/mol)against 5-LOX,followed by spinacetin(1)with a binding affinity of−6.074 kcal/mol.In-depth in silico analysis highlighted the drug-likeness of spinacetin(1)and its favorable toxicological profile,suggesting its suitability for therapeutic development.Conclusion:The study demonstrates that compounds from Pistacia integerrima,particularly spinacetin and patuletin,have significant lipoxygenase inhibitory activity,with spinacetin showing promise as a lead candidate for lipoxygenase-targeted therapies.The findings reinforce the therapeutic relevance of Pistacia integerrima and suggest that its bioactive compounds may serve as safer,plant-based alternatives to conventional anti-inflammatory and anticancer treatments.展开更多
文摘Background:Pistacia integerrima,a cornerstone of traditional medicine,is renowned for its therapeutic applications against various health conditions,including cancer and hepatitis.This study investigates the pharmacological potential of bioactive compounds derived from Pistacia integerrima in inhibiting 5-lipoxygenase(5-LOX),a key enzyme implicated in inflammation and cancer progression.The current study aimed to evaluate the lipoxygenase inhibitory activity of bioactive compounds from Pistacia integerrima and assess their potential for therapeutic development in the context of inflammation and cancer treatment.Methods:Three major compounds-spinacetin(1),patuletin(2),and pistagremic acid(3)-were isolated from Pistacia integerrima and analyzed for their lipoxygenase inhibitory activity.Biochemical assays and molecular docking studies were performed to assess their effectiveness in inhibiting 5-LOX.Results:All three compounds demonstrated significant inhibition of lipoxygenase activity.Spinacetin(1)and patuletin(2)exhibited the most potent inhibitory effects,with IC_(50)values of 40.34μM and 45.04μM,respectively.Molecular docking studies revealed that patuletin(2)had the highest binding affinity(−7.717 kcal/mol)against 5-LOX,followed by spinacetin(1)with a binding affinity of−6.074 kcal/mol.In-depth in silico analysis highlighted the drug-likeness of spinacetin(1)and its favorable toxicological profile,suggesting its suitability for therapeutic development.Conclusion:The study demonstrates that compounds from Pistacia integerrima,particularly spinacetin and patuletin,have significant lipoxygenase inhibitory activity,with spinacetin showing promise as a lead candidate for lipoxygenase-targeted therapies.The findings reinforce the therapeutic relevance of Pistacia integerrima and suggest that its bioactive compounds may serve as safer,plant-based alternatives to conventional anti-inflammatory and anticancer treatments.