In this paper, the general exact penalty functions in integer programming were studied. The conditions which ensure the exact penalty property for the general penalty function with one penalty parameter were given and...In this paper, the general exact penalty functions in integer programming were studied. The conditions which ensure the exact penalty property for the general penalty function with one penalty parameter were given and a general penalty function with two parameters was proposed.展开更多
In this paper, a logarithmic-exponential penalty function with two parameters for integer programming is discussed. We obtain the exact penalty properties and then establish the asymptotic strong nonlinear duality in ...In this paper, a logarithmic-exponential penalty function with two parameters for integer programming is discussed. We obtain the exact penalty properties and then establish the asymptotic strong nonlinear duality in the corresponding logarithmic-exponential dual formulation by using the obtained exact penalty properties. The discussion is based on the logarithmic-exponential nonlinear dual formulation proposed in [6].展开更多
The algorithm proposed by T. F. Colemen and A. R. Conn is improved in this paper, and the improved algorithm can solve nonlinear programming problem with quality constraints. It is shown that the improved algorithm po...The algorithm proposed by T. F. Colemen and A. R. Conn is improved in this paper, and the improved algorithm can solve nonlinear programming problem with quality constraints. It is shown that the improved algorithm possesses global convergence, and under some conditions, it possesses locally supperlinear convergence.展开更多
We present an approximation-exact penalty function method for solving the single stage stochastic programming problem with continuous random variable. The original problem is transformed into a determinate nonlinear p...We present an approximation-exact penalty function method for solving the single stage stochastic programming problem with continuous random variable. The original problem is transformed into a determinate nonlinear programming problem with a discrete random variable sequence, which is obtained by some discrete method. We construct an exact penalty function and obtain an unconstrained optimization. It avoids the difficulty in solution by the rapid growing of the number of constraints for discrete precision. Under lenient conditions, we prove the equivalence of the minimum solution of penalty function and the solution of the determinate programming, and prove that the solution sequences of the discrete problem converge to a solution to the original problem.展开更多
We propose an exact penalty approach for solving mixed integer nonlinear programming (MINLP) problems by converting a general MINLP problem to a finite sequence of nonlinear programming (NLP) problems with only contin...We propose an exact penalty approach for solving mixed integer nonlinear programming (MINLP) problems by converting a general MINLP problem to a finite sequence of nonlinear programming (NLP) problems with only continuous variables. We express conditions of exactness for MINLP problems and show how the exact penalty approach can be extended to constrained problems.展开更多
In this paper, we present an algorithm to solve the inequality constrained multi-objective programming (MP) by using a penalty function with objective parameters and constraint penalty parameter. First, the penalty fu...In this paper, we present an algorithm to solve the inequality constrained multi-objective programming (MP) by using a penalty function with objective parameters and constraint penalty parameter. First, the penalty function with objective parameters and constraint penalty parameter for MP and the corresponding unconstraint penalty optimization problem (UPOP) is defined. Under some conditions, a Pareto efficient solution (or a weakly-efficient solution) to UPOP is proved to be a Pareto efficient solution (or a weakly-efficient solution) to MP. The penalty function is proved to be exact under a stable condition. Then, we design an algorithm to solve MP and prove its convergence. Finally, numerical examples show that the algorithm may help decision makers to find a satisfactory solution to MP.展开更多
An exact augmented Lagrangian function for the nonlinear nonconvex programming problems with inequality constraints was discussed. Under suitable hypotheses, the relationship was established between the local unconstr...An exact augmented Lagrangian function for the nonlinear nonconvex programming problems with inequality constraints was discussed. Under suitable hypotheses, the relationship was established between the local unconstrained minimizers of the augmented Lagrangian function on the space of problem variables and the local minimizers of the original constrained problem. Furthermore, under some assumptions, the relationship was also established between the global solutions of the augmented Lagrangian function on some compact subset of the space of problem variables and the global solutions of the constrained problem. Therefore, f^om the theoretical point of view, a solution of the inequality constrained problem and the corresponding values of the Lagrange multipliers can be found by the well-known method of multipliers which resort to the unconstrained minimization of the augmented Lagrangian function presented.展开更多
In a mathematical program with generalized complementarity constraints(MPGCC),complementarity relation is imposed between each pair of variable blocks.MPGCC includes the traditional mathematical program with complemen...In a mathematical program with generalized complementarity constraints(MPGCC),complementarity relation is imposed between each pair of variable blocks.MPGCC includes the traditional mathematical program with complementarity constraints(MPCC)as a special case.On account of the disjunctive feasible region,MPCC and MPGCC are generally difficult to handle.The l_(1)penalty method,often adopted in computation,opens a way of circumventing the difficulty.Yet it remains unclear about the exactness of the l_(1)penalty function,namely,whether there exists a sufficiently large penalty parameter so that the penalty problem shares the optimal solution set with the original one.In this paper,we consider a class of MPGCCs that are of multi-affine objective functions.This problem class finds applications in various fields,e.g.,the multi-marginal optimal transport problems in many-body quantum physics and the pricing problems in network transportation.We first provide an instance from this class,the exactness of whose l_(1)penalty function cannot be derived by existing tools.We then establish the exactness results under rather mild conditions.Our results cover those existing ones for MPCC and apply to multi-block contexts.展开更多
In this paper,we improve the algorithm proposed by T.F.Colemen and A.R.Conn in paper [1]. It is shown that the improved algorithm is possessed of global convergence and under some conditions it can obtain locally supp...In this paper,we improve the algorithm proposed by T.F.Colemen and A.R.Conn in paper [1]. It is shown that the improved algorithm is possessed of global convergence and under some conditions it can obtain locally supperlinear convergence which is not possessed by the original algorithm.展开更多
文摘In this paper, the general exact penalty functions in integer programming were studied. The conditions which ensure the exact penalty property for the general penalty function with one penalty parameter were given and a general penalty function with two parameters was proposed.
基金Partially supported by the National Science Foundation of China (No.10271073)
文摘In this paper, a logarithmic-exponential penalty function with two parameters for integer programming is discussed. We obtain the exact penalty properties and then establish the asymptotic strong nonlinear duality in the corresponding logarithmic-exponential dual formulation by using the obtained exact penalty properties. The discussion is based on the logarithmic-exponential nonlinear dual formulation proposed in [6].
基金the National+4 种基金 Natural Science Foundation of China
文摘The algorithm proposed by T. F. Colemen and A. R. Conn is improved in this paper, and the improved algorithm can solve nonlinear programming problem with quality constraints. It is shown that the improved algorithm possesses global convergence, and under some conditions, it possesses locally supperlinear convergence.
文摘We present an approximation-exact penalty function method for solving the single stage stochastic programming problem with continuous random variable. The original problem is transformed into a determinate nonlinear programming problem with a discrete random variable sequence, which is obtained by some discrete method. We construct an exact penalty function and obtain an unconstrained optimization. It avoids the difficulty in solution by the rapid growing of the number of constraints for discrete precision. Under lenient conditions, we prove the equivalence of the minimum solution of penalty function and the solution of the determinate programming, and prove that the solution sequences of the discrete problem converge to a solution to the original problem.
文摘We propose an exact penalty approach for solving mixed integer nonlinear programming (MINLP) problems by converting a general MINLP problem to a finite sequence of nonlinear programming (NLP) problems with only continuous variables. We express conditions of exactness for MINLP problems and show how the exact penalty approach can be extended to constrained problems.
文摘In this paper, we present an algorithm to solve the inequality constrained multi-objective programming (MP) by using a penalty function with objective parameters and constraint penalty parameter. First, the penalty function with objective parameters and constraint penalty parameter for MP and the corresponding unconstraint penalty optimization problem (UPOP) is defined. Under some conditions, a Pareto efficient solution (or a weakly-efficient solution) to UPOP is proved to be a Pareto efficient solution (or a weakly-efficient solution) to MP. The penalty function is proved to be exact under a stable condition. Then, we design an algorithm to solve MP and prove its convergence. Finally, numerical examples show that the algorithm may help decision makers to find a satisfactory solution to MP.
文摘An exact augmented Lagrangian function for the nonlinear nonconvex programming problems with inequality constraints was discussed. Under suitable hypotheses, the relationship was established between the local unconstrained minimizers of the augmented Lagrangian function on the space of problem variables and the local minimizers of the original constrained problem. Furthermore, under some assumptions, the relationship was also established between the global solutions of the augmented Lagrangian function on some compact subset of the space of problem variables and the global solutions of the constrained problem. Therefore, f^om the theoretical point of view, a solution of the inequality constrained problem and the corresponding values of the Lagrange multipliers can be found by the well-known method of multipliers which resort to the unconstrained minimization of the augmented Lagrangian function presented.
基金supported by the National Natural Science Foundation of China(12125108,11971466,11991021,11991020,12021001,and 12288201)Key Research Program of Frontier Sciences,Chinese Academy of Sciences(ZDBS-LY-7022)the CAS-Croucher Funding Scheme for Joint Laboratories“CAS AMSS-PolyU Joint Laboratory of Applied Mathematics:Nonlinear Optimization Theory,Algorithms and Applications”.
文摘In a mathematical program with generalized complementarity constraints(MPGCC),complementarity relation is imposed between each pair of variable blocks.MPGCC includes the traditional mathematical program with complementarity constraints(MPCC)as a special case.On account of the disjunctive feasible region,MPCC and MPGCC are generally difficult to handle.The l_(1)penalty method,often adopted in computation,opens a way of circumventing the difficulty.Yet it remains unclear about the exactness of the l_(1)penalty function,namely,whether there exists a sufficiently large penalty parameter so that the penalty problem shares the optimal solution set with the original one.In this paper,we consider a class of MPGCCs that are of multi-affine objective functions.This problem class finds applications in various fields,e.g.,the multi-marginal optimal transport problems in many-body quantum physics and the pricing problems in network transportation.We first provide an instance from this class,the exactness of whose l_(1)penalty function cannot be derived by existing tools.We then establish the exactness results under rather mild conditions.Our results cover those existing ones for MPCC and apply to multi-block contexts.
文摘In this paper,we improve the algorithm proposed by T.F.Colemen and A.R.Conn in paper [1]. It is shown that the improved algorithm is possessed of global convergence and under some conditions it can obtain locally supperlinear convergence which is not possessed by the original algorithm.
基金partially supported by The National Natural Science Foundation of China(No10971053, 10771162)The National Natural Science Foundation of Henan(No094300510050)