The rapid development of data communication in modern era demands secure exchange of information. Steganography is an established method for hiding secret data from an unauthorized access into a cover object in such a...The rapid development of data communication in modern era demands secure exchange of information. Steganography is an established method for hiding secret data from an unauthorized access into a cover object in such a way that it is invisible to human eyes. The cover object can be image, text, audio,or video. This paper proposes a secure steganography algorithm that hides a bitstream of the secret text into the least significant bits(LSBs) of the approximation coefficients of the integer wavelet transform(IWT) of grayscale images as well as each component of color images to form stego-images. The embedding and extracting phases of the proposed steganography algorithms are performed using the MATLAB software. Invisibility, payload capacity, and security in terms of peak signal to noise ratio(PSNR) and robustness are the key challenges to steganography. The statistical distortion between the cover images and the stego-images is measured by using the mean square error(MSE) and the PSNR, while the degree of closeness between them is evaluated using the normalized cross correlation(NCC). The experimental results show that, the proposed algorithms can hide the secret text with a large payload capacity with a high level of security and a higher invisibility. Furthermore, the proposed technique is computationally efficient and better results for both PSNR and NCC are achieved compared with the previous algorithms.展开更多
A new all-zero block determination rule was used to reduce the complexity of the AVS-M encoder. It reuses the sum of absolute difference of 4x4 block obtained from motion estimation or intra prediction as parameters s...A new all-zero block determination rule was used to reduce the complexity of the AVS-M encoder. It reuses the sum of absolute difference of 4x4 block obtained from motion estimation or intra prediction as parameters so that the determination threshold need to be computed only once when quantization parameter (QP) is invariable for given video sequence. This method avoids a lot of computation for transform, quantization, inverse transform, inverse quantization and block reconstruction. Simulation results showed that it can save about 20%~50% computation without any video quality degradation.展开更多
Due to the particularity of the seismic data, they must be treated by lossless compression algorithm in some cases. In the paper, based on the integer wavelet transform, the lossless compression algorithm is studied....Due to the particularity of the seismic data, they must be treated by lossless compression algorithm in some cases. In the paper, based on the integer wavelet transform, the lossless compression algorithm is studied. Comparing with the traditional algorithm, it can better improve the compression rate. CDF (2, n) biorthogonal wavelet family can lead to better compression ratio than other CDF family, SWE and CRF, which is owe to its capability in can- celing data redundancies and focusing data characteristics. CDF (2, n) family is suitable as the wavelet function of the lossless compression seismic data.展开更多
We study an approach to integer wavelet transform for lossless compression of medical image in medical picture archiving and communication system (PACS). By lifting scheme a reversible integer wavelet transform is gen...We study an approach to integer wavelet transform for lossless compression of medical image in medical picture archiving and communication system (PACS). By lifting scheme a reversible integer wavelet transform is generated, which has the similar features with the corresponding biorthogonal wavelet transform. Experimental results of the method based on integer wavelet transform are given to show better performance and great applicable potentiality in medical image compression.展开更多
Reversible data hiding is an information hiding technique that requires the retrieval of the error free cover image after the extraction of the secret image.We suggested a technique in this research that uses a recurs...Reversible data hiding is an information hiding technique that requires the retrieval of the error free cover image after the extraction of the secret image.We suggested a technique in this research that uses a recursive embedding method to increase capacity substantially using the Integer wavelet transform and the Arnold transform.The notion of Integer wavelet transforms is to ensure that all coefficients of the cover images are used during embedding with an increase in payload.By scrambling the cover image,Arnold transform adds security to the information that gets embedded and also allows embedding more information in each iteration.The hybrid combination of Integer wavelet transform and Arnold transform results to build a more efficient and secure system.The proposed method employs a set of keys to ensure that information cannot be decoded by an attacker.The experimental results show that it aids in the development of a more secure storage system and withstand few tampering attacks The suggested technique is tested on many image formats,including medical images.Various performance metrics proves that the retrieved cover image and hidden image are both intact.This System is proven to withstand rotation attack as well.展开更多
We propose a novel audio watermarking scheme which can recover the original audio carrier perfectly if the watermarked audio is modified. Besides, we can adjust the maximum tampered rate allowed and the quality of wat...We propose a novel audio watermarking scheme which can recover the original audio carrier perfectly if the watermarked audio is modified. Besides, we can adjust the maximum tampered rate allowed and the quality of watermarked audio flexibly as required. In the scheme, an efficient generalized integer transform is improved to embed watermark data which are composed of least significant bits(LSBs) of averages in each patch, reference-bits and check-bits. LSBs are needed in the inverse transform. Then, by comparing the extracted check-bits and calculated ones, the modified area can be localized. Finally, reliable reference-bits and samples data help us reconstruct the original audio without errors. The efficiency of the proposed method is theoretically and experimentally verified.展开更多
A high-performance, low cost inverse integer transform architecture for advanced video standard (AVS) video coding standard was presented. An 8 × 8 inverse integer transform is required in AVS video system whic...A high-performance, low cost inverse integer transform architecture for advanced video standard (AVS) video coding standard was presented. An 8 × 8 inverse integer transform is required in AVS video system which is compute-intensive. A hardware transform is inevitable to compute the transform for the real-time application. Compared with the 4 × 4 transform for H.264/AVC, the 8 × 8 integer transform is much more complex and the coefficient in the inverse transform matrix Ts is not inerratic as that in H.264/AVC. Dividing the Ts into matrix Ss and Rs, the proposed architecture is implemented with the adders and the specific CSA-trees instead of multipliers, which are area and time consuming. The architecture obtains the data processing rate up to 8 pixels per-cycle at a low cost of area. Synthesized to TSMC 0.18 μm COMS process, the architecture attains the operating frequency of 300 MHz at cost of 34 252 gates with a 2-stage pipeline scheme. A reusable scheme is also introduced for the area optimization, which results in the operating frequency of 143 MHz at cost of only 19 758 gates.展开更多
In view of the shortcomes of conventional ElectroCardioGram (ECG) compression algo- rithms,such as high complexity of operation and distortion of reconstructed signal,a new ECG compression encoding algorithm based on ...In view of the shortcomes of conventional ElectroCardioGram (ECG) compression algo- rithms,such as high complexity of operation and distortion of reconstructed signal,a new ECG compression encoding algorithm based on Set Partitioning In Hierarchical Trees (SPIHT) is brought out after studying the integer lifting scheme wavelet transform in detail.The proposed algorithm modifies zero-tree structure of SPIHT,establishes single dimensional wavelet coefficient tree of ECG signals and enhances the efficiency of SPIHT-encoding by distributing bits rationally,improving zero-tree set and ameliorating classifying method.For this improved algorithm,floating-point com- putation and storage are left out of consideration and it is easy to be implemented by hardware and software.Experimental results prove that the new algorithm has admirable features of low complexity, high speed and good performance in signal reconstruction.High compression ratio is obtained with high signal fidelity as well.展开更多
In this document, we present new techniques for near-lossless and lossy compression of SAR imagery saved in PNG and binary formats of magnitude and phase data based on the application of transforms, dimensionality red...In this document, we present new techniques for near-lossless and lossy compression of SAR imagery saved in PNG and binary formats of magnitude and phase data based on the application of transforms, dimensionality reduction methods, and lossless compression. In particular, we discuss the use of blockwise integer to integer transforms, subsequent application of a dimensionality reduction method, and Burrows-Wheeler based lossless compression for the PNG data and the use of high correlation based modeling of sorted transform coefficients for the raw floating point magnitude and phase data. The gains exhibited are substantial over the application of different lossless methods directly on the data and competitive with existing lossy approaches. The methods presented are effective for large scale processing of similar data formats as they are heavily based on techniques which scale well on parallel architectures.展开更多
A floating-point wavelet-based and an integer wavelet-based image interpolations in lifting structures and polynomial curve fitting for image resolution enhancement are proposed in this paper. The proposed prediction ...A floating-point wavelet-based and an integer wavelet-based image interpolations in lifting structures and polynomial curve fitting for image resolution enhancement are proposed in this paper. The proposed prediction methods estimate high-frequency wavelet coefficients of the original image based on the available low-frequency wavelet coefficients, so that the original image can be reconstructed by using the proposed prediction method. To further improve the reconstruction performance, we use polynomial curve fitting to build relationships between actual high-frequency wavelet coefficients and estimated high-frequency wavelet coefficients. Results of the proposed prediction algorithm for different wavelet transforms are compared to show the proposed prediction algorithm outperforms other methods.展开更多
In order to increase the hardware utilization and minimize the chip area a multi-transform coding architecture which includes 4 ×4 forward integer transform 4 ×4 inverse integer transform 4 ×4 Hadamard ...In order to increase the hardware utilization and minimize the chip area a multi-transform coding architecture which includes 4 ×4 forward integer transform 4 ×4 inverse integer transform 4 ×4 Hadamard transform and 2 ×2 Hadamard transform is proposed. By simplifying these transforms and exploring their similarities the proposed design merges the architectures processing individual transforms into a high-performance multi-transform coding architecture.Using a semiconductor manufacturing international corporation SMIC 0.18 μm complementary metal oxide semiconductor CMOS technology the proposed architecture achieves the maximum operating clock frequency of 200 MHz and the throughput rate of 800 ×106 pixel/s with the hardware cost of 3 704 gates.The results demonstrate that the data throughput rate per unit area DTUA of this design is at least 40.28%higher than that of the reference design.This design can meet the requirements of real-time decoding digital cinema video 4 096 ×2 048@30 Hz at 62.9 MHz which helps to reduce the power consumption.展开更多
The general,explicit and formally closed expression of arbitrary n-times Foldy-Wouthuysen transformations is clearly and strictly derived out.It is proved that if transformed Hamiltonian needs to be approximated to th...The general,explicit and formally closed expression of arbitrary n-times Foldy-Wouthuysen transformations is clearly and strictly derived out.It is proved that if transformed Hamiltonian needs to be approximated to the order 1/m^(K) or mv^(2K) when to involve the orders of the operators,then to make N=[(K+1)/2]-times Foldy-Wouthuysen transformations is just enough(“[...]”means to take the part of integer).An example in non-relativistic quantum chromodynamics is given.展开更多
文摘The rapid development of data communication in modern era demands secure exchange of information. Steganography is an established method for hiding secret data from an unauthorized access into a cover object in such a way that it is invisible to human eyes. The cover object can be image, text, audio,or video. This paper proposes a secure steganography algorithm that hides a bitstream of the secret text into the least significant bits(LSBs) of the approximation coefficients of the integer wavelet transform(IWT) of grayscale images as well as each component of color images to form stego-images. The embedding and extracting phases of the proposed steganography algorithms are performed using the MATLAB software. Invisibility, payload capacity, and security in terms of peak signal to noise ratio(PSNR) and robustness are the key challenges to steganography. The statistical distortion between the cover images and the stego-images is measured by using the mean square error(MSE) and the PSNR, while the degree of closeness between them is evaluated using the normalized cross correlation(NCC). The experimental results show that, the proposed algorithms can hide the secret text with a large payload capacity with a high level of security and a higher invisibility. Furthermore, the proposed technique is computationally efficient and better results for both PSNR and NCC are achieved compared with the previous algorithms.
基金Project (No. 05R214207) supported by the Sustentation Fund Plan for Post Doctor of Shanghai, China
文摘A new all-zero block determination rule was used to reduce the complexity of the AVS-M encoder. It reuses the sum of absolute difference of 4x4 block obtained from motion estimation or intra prediction as parameters so that the determination threshold need to be computed only once when quantization parameter (QP) is invariable for given video sequence. This method avoids a lot of computation for transform, quantization, inverse transform, inverse quantization and block reconstruction. Simulation results showed that it can save about 20%~50% computation without any video quality degradation.
文摘Due to the particularity of the seismic data, they must be treated by lossless compression algorithm in some cases. In the paper, based on the integer wavelet transform, the lossless compression algorithm is studied. Comparing with the traditional algorithm, it can better improve the compression rate. CDF (2, n) biorthogonal wavelet family can lead to better compression ratio than other CDF family, SWE and CRF, which is owe to its capability in can- celing data redundancies and focusing data characteristics. CDF (2, n) family is suitable as the wavelet function of the lossless compression seismic data.
文摘We study an approach to integer wavelet transform for lossless compression of medical image in medical picture archiving and communication system (PACS). By lifting scheme a reversible integer wavelet transform is generated, which has the similar features with the corresponding biorthogonal wavelet transform. Experimental results of the method based on integer wavelet transform are given to show better performance and great applicable potentiality in medical image compression.
文摘Reversible data hiding is an information hiding technique that requires the retrieval of the error free cover image after the extraction of the secret image.We suggested a technique in this research that uses a recursive embedding method to increase capacity substantially using the Integer wavelet transform and the Arnold transform.The notion of Integer wavelet transforms is to ensure that all coefficients of the cover images are used during embedding with an increase in payload.By scrambling the cover image,Arnold transform adds security to the information that gets embedded and also allows embedding more information in each iteration.The hybrid combination of Integer wavelet transform and Arnold transform results to build a more efficient and secure system.The proposed method employs a set of keys to ensure that information cannot be decoded by an attacker.The experimental results show that it aids in the development of a more secure storage system and withstand few tampering attacks The suggested technique is tested on many image formats,including medical images.Various performance metrics proves that the retrieved cover image and hidden image are both intact.This System is proven to withstand rotation attack as well.
基金Supported by the National Natural Science Foundation of China(61272414)the Science and Technology Project of Guangzhou of China(2012J4100108)the Jinan University’s Scientific Research Creativeness Cultivation Project for Outstanding Undergraduates Recommended for Postgraduate Study
文摘We propose a novel audio watermarking scheme which can recover the original audio carrier perfectly if the watermarked audio is modified. Besides, we can adjust the maximum tampered rate allowed and the quality of watermarked audio flexibly as required. In the scheme, an efficient generalized integer transform is improved to embed watermark data which are composed of least significant bits(LSBs) of averages in each patch, reference-bits and check-bits. LSBs are needed in the inverse transform. Then, by comparing the extracted check-bits and calculated ones, the modified area can be localized. Finally, reliable reference-bits and samples data help us reconstruct the original audio without errors. The efficiency of the proposed method is theoretically and experimentally verified.
文摘A high-performance, low cost inverse integer transform architecture for advanced video standard (AVS) video coding standard was presented. An 8 × 8 inverse integer transform is required in AVS video system which is compute-intensive. A hardware transform is inevitable to compute the transform for the real-time application. Compared with the 4 × 4 transform for H.264/AVC, the 8 × 8 integer transform is much more complex and the coefficient in the inverse transform matrix Ts is not inerratic as that in H.264/AVC. Dividing the Ts into matrix Ss and Rs, the proposed architecture is implemented with the adders and the specific CSA-trees instead of multipliers, which are area and time consuming. The architecture obtains the data processing rate up to 8 pixels per-cycle at a low cost of area. Synthesized to TSMC 0.18 μm COMS process, the architecture attains the operating frequency of 300 MHz at cost of 34 252 gates with a 2-stage pipeline scheme. A reusable scheme is also introduced for the area optimization, which results in the operating frequency of 143 MHz at cost of only 19 758 gates.
文摘In view of the shortcomes of conventional ElectroCardioGram (ECG) compression algo- rithms,such as high complexity of operation and distortion of reconstructed signal,a new ECG compression encoding algorithm based on Set Partitioning In Hierarchical Trees (SPIHT) is brought out after studying the integer lifting scheme wavelet transform in detail.The proposed algorithm modifies zero-tree structure of SPIHT,establishes single dimensional wavelet coefficient tree of ECG signals and enhances the efficiency of SPIHT-encoding by distributing bits rationally,improving zero-tree set and ameliorating classifying method.For this improved algorithm,floating-point com- putation and storage are left out of consideration and it is easy to be implemented by hardware and software.Experimental results prove that the new algorithm has admirable features of low complexity, high speed and good performance in signal reconstruction.High compression ratio is obtained with high signal fidelity as well.
文摘In this document, we present new techniques for near-lossless and lossy compression of SAR imagery saved in PNG and binary formats of magnitude and phase data based on the application of transforms, dimensionality reduction methods, and lossless compression. In particular, we discuss the use of blockwise integer to integer transforms, subsequent application of a dimensionality reduction method, and Burrows-Wheeler based lossless compression for the PNG data and the use of high correlation based modeling of sorted transform coefficients for the raw floating point magnitude and phase data. The gains exhibited are substantial over the application of different lossless methods directly on the data and competitive with existing lossy approaches. The methods presented are effective for large scale processing of similar data formats as they are heavily based on techniques which scale well on parallel architectures.
文摘A floating-point wavelet-based and an integer wavelet-based image interpolations in lifting structures and polynomial curve fitting for image resolution enhancement are proposed in this paper. The proposed prediction methods estimate high-frequency wavelet coefficients of the original image based on the available low-frequency wavelet coefficients, so that the original image can be reconstructed by using the proposed prediction method. To further improve the reconstruction performance, we use polynomial curve fitting to build relationships between actual high-frequency wavelet coefficients and estimated high-frequency wavelet coefficients. Results of the proposed prediction algorithm for different wavelet transforms are compared to show the proposed prediction algorithm outperforms other methods.
基金The National Key Technology R&D Program of China during the 12th Five Year Plan Period(No.2013BAJ05B03)
文摘In order to increase the hardware utilization and minimize the chip area a multi-transform coding architecture which includes 4 ×4 forward integer transform 4 ×4 inverse integer transform 4 ×4 Hadamard transform and 2 ×2 Hadamard transform is proposed. By simplifying these transforms and exploring their similarities the proposed design merges the architectures processing individual transforms into a high-performance multi-transform coding architecture.Using a semiconductor manufacturing international corporation SMIC 0.18 μm complementary metal oxide semiconductor CMOS technology the proposed architecture achieves the maximum operating clock frequency of 200 MHz and the throughput rate of 800 ×106 pixel/s with the hardware cost of 3 704 gates.The results demonstrate that the data throughput rate per unit area DTUA of this design is at least 40.28%higher than that of the reference design.This design can meet the requirements of real-time decoding digital cinema video 4 096 ×2 048@30 Hz at 62.9 MHz which helps to reduce the power consumption.
基金Supported by the National Natural Science Foundation of China under Grant No.69773052the Foundation of National Education Committee and University of Science and Technology of China for the Excellent Personnel Returned to the Country。
文摘The general,explicit and formally closed expression of arbitrary n-times Foldy-Wouthuysen transformations is clearly and strictly derived out.It is proved that if transformed Hamiltonian needs to be approximated to the order 1/m^(K) or mv^(2K) when to involve the orders of the operators,then to make N=[(K+1)/2]-times Foldy-Wouthuysen transformations is just enough(“[...]”means to take the part of integer).An example in non-relativistic quantum chromodynamics is given.